JP3859287B2 - SMD type coil and manufacturing method thereof - Google Patents

SMD type coil and manufacturing method thereof Download PDF

Info

Publication number
JP3859287B2
JP3859287B2 JP35642796A JP35642796A JP3859287B2 JP 3859287 B2 JP3859287 B2 JP 3859287B2 JP 35642796 A JP35642796 A JP 35642796A JP 35642796 A JP35642796 A JP 35642796A JP 3859287 B2 JP3859287 B2 JP 3859287B2
Authority
JP
Japan
Prior art keywords
insulating substrate
magnet
collective
hole
smd type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35642796A
Other languages
Japanese (ja)
Other versions
JPH10189338A (en
Inventor
克彦 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Electronics Co Ltd
Original Assignee
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Electronics Co Ltd filed Critical Citizen Electronics Co Ltd
Priority to JP35642796A priority Critical patent/JP3859287B2/en
Publication of JPH10189338A publication Critical patent/JPH10189338A/en
Application granted granted Critical
Publication of JP3859287B2 publication Critical patent/JP3859287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は携帯電話、PHS、パソコン等の一般電子機器に使用されるSMD型コイル及びその製造方法に関する。
【0002】
【従来の技術】
近年の電子機器は、高性能化、多機能化とともに小型化、軽量化を追求している。携帯電話、PHS、パソコン等がその一例である。これらの電子機器で使用されるインダクタは、SMDであることが必須となっている。
【0003】
インダクタは、フェライト等のコアに巻線された導線に電流を流すことにより発生する電磁気の作用を利用したインピーダンス素子である。この原理のために、他の受動部品に比べ構造が複雑になりSMD化が比較的遅れている。
【0004】
薄膜チップインダクタは、一般的な巻線を用いたチップコイル導体と比較し、製造方法の違いから小型化で高精度なコイル導体といえる。その技術が特開平5−82349号公報に開示されている。その概要を説明する。
【0005】
図13は従来の渦巻状薄膜コイルの断面図、図14はその平面図である。その製造工程の概要は、ベースとなる低誘電率セラミックスウェハよりなる絶縁基板21の表面に銅を主体とした複数の低抵抗スパイラル状の薄膜コイル導体22A、22B、22Cと、その厚み方向に低誘電率耐熱樹脂コート膜よりなる絶縁層23A、23Bを介し重ねて多層化して設け、少なくとも薄膜コイル導体22A、22B、22Cの巻き始め端部24と巻き終わり端部24でそれぞれの各薄膜コイル導体22A、22B、22Cを電気的に接続するものである。
【0006】
【発明が解決しようとする課題】
しかしながら、前述した渦巻状薄膜コイルには次のような問題点がある。即ち、平面型SMD型コイルでは、コイル巻数を多くすることが出来ず、コイルのインダクタンスを大きくとりたい場合は困難である。
【0007】
本発明は上記従来の課題に鑑みなされたものであり、その目的は、コイルのインダクタンスを大きくとることが可能となり、電子機器の小型化、軽量化、低コスト化を実現し、超薄型で小型な平面型SMD型コイル及びその製造方法を提供するものである。
【0009】
上記目的を達成するために、本発明におけるSMD型コイルは、PCB基板又はセラミック体よりなる略四角形状をした絶縁基板の裏面略中央部にリング状のマグネット収納凹溝を有し、該マグネット収納凹溝の内周及び外周近傍の円周上に複数個のスルーホールを形成し該スルーホール内面及び前記絶縁基板の全面に銅メッキ層を形成し、エッチング処理により前記絶縁基板の対向する側面に電極部を形成すると共に、前記内外周のスルーホールを結ぶ放射状銅箔パターンを形成した第1又は第2の絶縁基板と、前記第1の絶縁基板と第2の絶縁基板のマグネット収納凹溝を対向させ、前記2つのマグネット収納凹溝により形成したスペースにマグネットを搭載、位置合わせして接着、接合した後、再メッキ処理により、前記2つの絶縁基板のスルーホール部及び電極部を導通させることにより、前記マグネットを囲み前記放射状銅箔パターンと前記スルーホールを介して上下パターンが連続的に繋げて閉ループ化したことを特徴とするものである。
【0010】
また、前記第1又は第2の絶縁基板のうち、一方の絶縁基板はPCB基板又はセラミック体等よりなる絶縁体よりなり、他方の絶縁基板はポリイミドフィルム等よりなる絶縁体であることを特徴とするものである。
【0011】
また、前記第1又は第2の絶縁基板は、共にポリイミドフィルム等よりなる絶縁体であることを特徴とするものである。
【0012】
また、本発明におけるSMD型コイルの製造方法は、PCB基板又はセラミック体等よりなる多数個取りする集合絶縁基板の各列毎の略中心部に位置し、所定間隔で2つの同心円の円周上に複数個のスルーホールと、前記各列間に長穴状のスルーホールを施したスルーホール加工工程と、メッキ処理により前記スルーホール及び長穴スルーホールの内面を含む集合絶縁基板の全表面に銅メッキ層を形成するメッキ工程と、メッキレジストをラミネートし、露光現像後パターンマスクを形成し、パターンエッチングを行い前記集合絶縁基板の対向する側面に電極部と、上下面に内外周のスルーホールを結ぶ放射状銅箔パターンを前記スルーホールを介して上下パターンが連続的に繋がるように閉ループ化するエッチング工程と、前記集合絶縁基板をSMD型コイル単体に分割するダイシング工程とからなることを特徴とするものである。
【0013】
また、PCB基板又はセラミック体等よりなる多数個取りする集合絶縁基板の各列毎の略中心部の裏面に位置し、所定間隔で複数個のリング状のマグネット収納凹溝と、該各マグネット収納凹溝の内周及び外周近傍の円周上に複数個のスルーホールと、前記各列間に長穴のスルーホール加工を施した後、メッキ処理により前記集合絶縁基板の前記スルーホール及び長穴のスルーホールの内面を含む全表面に銅メッキ層を形成し、メッキレジストをラミネートし、露光現像後パターンマスクを形成し、パターンエッチングを行う第1又は第2の集合絶縁基板加工工程と、前記第1又は第2の集合絶縁基板のいずれか一方の各マグネット収納凹溝に、マグネットを収納するマグネット装着工程と、前記第1及び第2の集合絶縁基板のマグネット収納凹溝が対向するように2つの集合絶縁基板を重ね、位置合わせし、両接着部を接着、接合して一体化する接着工程と、再メッキ処理により前記一体化集合体の接合する各スルーホール部及び電極部を導通させる再メッキ工程と、前記一体化集合体を1つのマグネットを含むSMD型コイル単体に分割するダイシング工程とからなることを特徴とするものである。
【0014】
また、前記第1又は第2の集合絶縁基板のうち、一方の集合絶縁基板はPCB基板又はセラミック体等よりなる集合絶縁体よりなり、他方の集合絶縁基板はポリイミドフィルム等よりなる集合絶縁体であることを特徴とするものである。
【0015】
また、前記第1又は第2の集合絶縁基板は共にポリイミドフィルム等よりなる集合絶縁体であることを特徴とするものである。
【0016】
【発明の実施の形態】
以下図面に基づいて本発明におけるSMD型コイル及びその製造方法について説明する。図1〜図3は本発明の第1の実施の形態である一枚基板の空芯のSMD型コイル及びその製造方法に係わり、図1はSMD型コイル単体の斜視図、図2は図1のA−A線断面図、図3は集合絶縁基板の斜視図である。
【0017】
図1及び図2において、2はPCB基板又はセラミック体よりなる略四角形状の上下面に銅箔張りされた絶縁基板で、該絶縁基板2の略中央部には、2つの同心円の円周上に複数の外周及び内周スルーホール3a及び3bが、プレス又は切削ドリル等の加工手段により形成されている。前記絶縁基板2の前記スルーホール3a及び3bの内面を含む全表面に銅メッキ層を形成し、エッチング処理により前記絶縁基板2の対向する側面に電極部4と、上下面には前記スルーホール3a及び3bを結ぶ放射状銅箔パターン5が形成される。前記上下の放射状銅箔パターン5は前記スルーホール3a及び3bを介して、コイル端末巻き始め部4aとコイル端末巻き終り部4bとは一本の連続線として繋がり閉ループ化してSMD型コイル1が構成される。
【0018】
図3において、その製造方法を説明する。前記PCB基板又はセラミック体よりなる多数個取りする集合絶縁基板6の各列の略中央部に位置し、所定間隔で2つの同心円の円周上に複数のスルーホール3a及び3bと、前記各列間に長穴状のスルーホール3cを切削ドリル又はプレス等の加工手段により形成されるスルーホール加工工程を施す。
【0019】
次に、メッキ工程において、前記スルーホール3a、3b及び3cの壁面を含む集合絶縁基板6面を洗浄した後、前記集合絶縁基板6全面に無電解メッキ及び電解メッキにより銅メッキ層を形成する。該銅メッキ層は前記スルーホール3a、3b及び3c内まで施される。
【0020】
更に、エッチング工程において、メッキレジストをラミネートし、露光現像してパターンマスクを形成した後、通常の基板エッチング液であるCuCl2 +H2 2 等を用いてパターンエッチングを行うことにより、前記絶縁基板2の対向する側面の電極部4と、上下面に内外周のスルーホール3a及び3bを結ぶ放射状銅箔パターン5を、前記スルーホール3a及び3bを介して上下パターンがコイル端末巻き始め部4aとコイル端末巻き終り部4bとが一本の連続線として繋がるように閉ループ化される。
【0021】
前記集合絶縁基板6を分割するダイシング工程で、SMD型コイル単体に分割するために、前記集合絶縁基板6の四隅に設けた位置合わせ用ガイド穴6cを図示しない治具にセットして直交するX方向7、Y方向8に沿ってダイシング又はスライシングマシン等で1チップに切断、分離することによりSMD型コイル1が完成される。
【0022】
なお、完成された前記SMD型コイル1の上下面に露出した放射状銅箔パターン5を絶縁するためにレジストコート等の処理により、レジスト膜を形成しても良い。
【0023】
図4〜図10は本発明の第2の実施の形態である2枚基板の有芯のSMD型コイル及びその製造方法に係わり、図4はSMD型コイル単体の第1絶縁基板の表面側の斜視図、図5は図4の裏面側の斜視図、図6は第1絶縁基板及び第2絶縁基板が対向した状態の断面図、図7はリング状の磁石の斜視図、図8はSMD型コイル単体の断面図である。図において、前述した第1の実施の形態と同一部材は同一符号で示す。
【0024】
図4及び図5に示すように、2aはPCB基板又はセラミック体よりなる略四角形状の第1絶縁基板で、9は該第1絶縁基板2aの裏面の略中央部に位置するリング状のマグネット収納凹溝である。3a及び3bは、前記マグネット収納凹溝9の外周及び内周近傍の円周上にプレス又は切削ドリル等の加工手段により形成した複数のスルーホールである。該スルーホール3a及び3bの内面及び前記第1絶縁基板2aの表面に銅メッキ層を形成し、エッチング処理により前記第1絶縁基板2aの対向する側面に電極部4を形成すると共に、前記スルーホール3a及び3bを結ぶ放射状銅箔パターン5を形成する。該放射状銅箔パターン5は前記スルーホール3a及び3bを介して断面がU字形状に繋がっている。第2絶縁基板2bは前記第1絶縁基板2aと寸法及び加工形状が略同一なものを使用する。
【0025】
図6及び図7において、10はマグネットで、切削又は成形したフェライト、サマリウムコバルト等より成るリング状のマグネットで、前記第1絶縁基板2aと第2絶縁基板2bのマグネット収納凹溝9が対向するようにして、後述する接着剤を塗布した後、前記マグネットを前記マグネット収納凹溝9に装着する。
【0026】
前記マグネット10のサイズは、最も効率良くするには、閉ループの内側にギリギリの距離までマグネット10を近づけるのが良く、従って、閉ループギリギリの大きさのマグネットが最も適す。マグネット10の断面形状は、図7に示すように四角形状に限るものではない。
【0027】
図8において、前記第1絶縁基板2aと第2絶縁基板2bの接合部11のいずれか一方に接着剤12を塗布するか、又はシート状の接着剤12を被着して位置合わせし、接着又は熱圧着して接合した後、再メッキ処理により前記第1絶縁基板2a及び第2絶縁基板2bの前記スルーホール3a、3bの接続部3d及び電極部4の接続部4cにて導通させることにより、前記マグネット10を囲み前記放射状銅箔パターン5と前記スルーホール3a及び3bを介して上下パターンがコイル端末巻き始め部4aとコイル端末巻き終り部4bとは一本の連続線として繋がるように閉ループ化したSMD型コイル1Aが構成される。
【0028】
図9及び図10において、その製造方法を説明する。先ず、図9に示すように、前記PCB基板又はセラミック体よりなる多数個取りする第1集合絶縁基板6aの各列毎の略中心部の裏面に位置し、所定間隔で複数個のリング状のマグネット収納凹溝9を形成し、該各マグネット収納凹溝9の内周及び外周近傍の円周上に複数個のスルーホール3a及び3bと、前記各列間に長穴のスルーホール3cを切削ドリル又はプレス等の加工手段により形成されるスルーホール加工工程を施す。
【0029】
次に、第1のメッキ工程において、前記スルーホール3a、3b及び3cの壁面を含む第1集合絶縁基板6a面を洗浄した後、無電解メッキ及び電解メッキにより銅メッキ層は、前記スルーホール3a、3b及び長穴のスルーホール3cの内面を含む全表面に形成される。
【0030】
エッチング工程において、メッキレジストをラミネートし、露光現像後パターンマスクを形成しパターンエッチングを行うことにより、前記長穴のスルーホール3cは対向する側面に電極部4と、前記スルーホール3a及び3bを結ぶ放射状の銅箔パターン5が形成される。第1集合絶縁基板6aが完成される。
【0031】
マグネット装着工程において、図8及び図10に示すように、予め前記第1集合絶縁基板6aと第2集合絶縁基板6bのいずれかの接合部11にエポシキ系、シリコン系等の接着剤12をマスクを使って必要箇所に印刷、塗布するか、又はシート状の接着剤12を被着しておき、前記2つの集合絶縁基板6a、6bのいずれか一方の前記マグネット収納凹溝9に前記マグネット10を搭載する。
【0032】
接着工程において、前記マグネットを装着した、前記第1集合絶縁基板6aと第2集合絶縁基板6bのマグネット収納凹溝9が対向するように2つの集合絶縁基板6a、6bを重ね、前記スルーホール3a、3bの接続部3d及び電極部4の接続部4cの位置合わせを行い、前記接合部11を接着又は熱圧着することにより、前記2つの集合絶縁基板6a、6bは一体的に接合する。一体化集合体13ができる。
【0033】
前記2つの集合絶縁基板6aと6bの位置合わせは、予め、集合絶縁基板6aと6bに設けられた基板2枚を重ねた時の位置合わせ用ガイド穴6cにより図示しない治具を用いて確実に行う。
【0034】
なお、前記マグネット10の装着工程と前記集合絶縁基板6a又は6bへの接着剤12の塗布は、上記順序と逆でも良いことは言うまでもない。
【0035】
第2メッキ工程において、前記一体化集合体13を再び銅メッキ処理を行い、前記一体化集合体13を前記スルーホール3a、3bの接続部3d及び電極部4の接続部4cを確実に導通させる。従って、前記第1集合絶縁基板6aと第2集合絶縁基板6bは前記リング状のマグネット10を囲み、前記放射状銅箔パターン5と前記スルーホール3a及び3bを介して、上下パターンがコイル端末巻き始め部4aとコイル端末巻き終り部4bとは一本の連続線として連続的に繋がり閉ループ化される。
【0036】
前記一体化集合体13を分割するダイシング工程で、1つのマグネット10を含むSMD型コイル単体に分割するために、前記位置合わせ用ガイド穴6cを使って、図示しない治具にセットして直交するX方向7、Y方向8に沿ってダイシング又はスライシングマシン等で1チップに切断、分離してSMD型コイル1Aが完成される。
【0037】
なお、前述と同様に、上下面に露出した放射状銅箔パターン5を絶縁するために、一体化集合体13を切断前に、レジストコート等の処理により、レジスト膜を形成しても良い。
【0038】
図11は本発明の第3の実施の形態である。図11において、前記2枚基板の有芯SMD型コイル1Bを更に薄型化するために、例えば、第1絶縁基板2aはPCB基板又はセラミック体等よりなる絶縁体とし、第2絶縁基板2cはポリイミドフィルム等よりなる絶縁体として、同様な製造方法で2枚基板の有芯SMD型コイル1Bを製造することができる。
【0039】
図12は本発明の第4の実施の形態である。図12において、前記2枚基板の有芯SMD型コイル1Cを超薄型化するために、例えば、第1絶縁基板2d及び第2絶縁基板2eを共にポリイミドフィルム等よりなる絶縁体として、同様な製造方法で2枚基板の有芯SMD型コイル1Cを製造することができる。
【0040】
【発明の効果】
以上説明したように、本発明によれば、PCB基板又はセラミック体等よりなる絶縁基板の略中央部に位置し、2つの同心円上に複数のスルーホールを形成し、エッチング処理により、前記絶縁基板の対向する側面に電極部と、絶縁基板の上下面に前記スルーホールを結ぶ放射状銅箔パターンを前記スルーホールを介して上下パターンがコイル端末巻き始め部とコイル端末巻き終り部とは一本の連続線として連続的に繋がるように形成して閉ループ化することにより、コイルのインダクタンスを大きく取りたい場合や、巻数を多く必要とするSMD型コイルを、薄型で小型に実現できる。更に、前記絶縁基板の一方、又は両方をポリイミドフィルム等よりなる絶縁体にすることにより、超薄型化が可能である。また、製造方法は、多数個取りする集合絶縁基板により行うため製造コストを低減することが可能である。従って、電子機器の小型化、軽量化、低コスト化が期待できる等多大な効果を奏するものである。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係わるSMD型コイルの斜視図である。
【図2】図1のA−A線断面図である。
【図3】図1のSMD型コイルの製造方法を説明する集合絶縁基板の斜視図である。
【図4】本発明の第2の実施の形態に係わるSMD型コイルの第1絶縁基板の表面側の斜視図である。
【図5】図5(a)は図4の第1絶縁基板の裏面側の斜視図、図5(b)は図5(a)のB−B線断面図である。
【図6】図4の第1絶縁基板と第2絶縁基板が対向した状態の断面図である。
【図7】マグネットの斜視図である。
【図8】完成SMD型コイルの断面図である。
【図9】SMD型コイルの製造方法を説明する第1集合絶縁基板の斜視図である。
【図10】第1集合絶縁基板と第2集合絶縁基板を接着、接合した一体化集合体の斜視図である。
【図11】本発明の第3の実施の形態に係わるSMD型コイルの断面図である。
【図12】本発明の第4の実施の形態に係わるSMD型コイルの断面図である。
【図13】従来のSMD型コイルの断面図である。
【図14】図13の平面図である。
【符号の説明】
1、1A、1B、1C SMD型コイル
2 絶縁基板
2a、2d 第1絶縁基板
2b、2c、2e 第2絶縁基板
3a、3b スルーホール
3c 長穴スルーホール
3d、4c 接続部
4 電極部
5 放射状銅箔パターン
6 集合絶縁基板
6a 第1集合絶縁基板
6b 第2集合絶縁基板
9 マグネット収納凹溝
10 マグネット
11 接合部
12 接着剤
13 一体化集合体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an SMD type coil used for general electronic equipment such as a mobile phone, a PHS, and a personal computer, and a manufacturing method thereof.
[0002]
[Prior art]
In recent years, electronic devices have been pursued to be smaller and lighter with higher performance and more functions. Mobile phones, PHS, personal computers, etc. are examples. The inductor used in these electronic devices is required to be SMD.
[0003]
An inductor is an impedance element that uses an electromagnetic action generated by passing a current through a conducting wire wound around a core such as ferrite. Because of this principle, the structure is complicated compared to other passive components, and the SMD implementation is relatively delayed.
[0004]
Thin film chip inductors can be said to be miniaturized and highly accurate coil conductors due to differences in manufacturing methods compared to chip coil conductors using general windings. This technique is disclosed in Japanese Patent Laid-Open No. 5-82349. The outline will be described.
[0005]
FIG. 13 is a sectional view of a conventional spiral thin film coil, and FIG. 14 is a plan view thereof. The outline of the manufacturing process is as follows: a plurality of low resistance spiral thin film coil conductors 22A, 22B, 22C mainly made of copper on the surface of an insulating substrate 21 made of a low dielectric constant ceramic wafer serving as a base; Each of the thin film coil conductors is provided at least at the winding start end 24 and the winding end end 24 of the thin film coil conductors 22A, 22B, 22C. 22A, 22B, and 22C are electrically connected.
[0006]
[Problems to be solved by the invention]
However, the spiral thin film coil described above has the following problems. That is, in the planar SMD type coil, the number of coil turns cannot be increased, and it is difficult to increase the coil inductance.
[0007]
The present invention has been made in view of the above-described conventional problems, and the purpose thereof is to make it possible to increase the inductance of the coil, to realize downsizing, weight reduction, and cost reduction of the electronic device, and to be ultra-thin. A small planar SMD type coil and a manufacturing method thereof are provided.
[0009]
In order to achieve the above object, the SMD type coil according to the present invention has a ring-shaped magnet housing concave groove at a substantially central portion on the back surface of a substantially square-shaped insulating substrate made of a PCB substrate or a ceramic body. A plurality of through holes are formed on the inner circumference of the concave groove and the circumference in the vicinity of the outer circumference, a copper plating layer is formed on the inner surface of the through hole and the entire surface of the insulating substrate, and etching processing is performed on opposite side surfaces of the insulating substrate. A first or second insulating substrate formed with a radial copper foil pattern connecting the through-holes on the inner and outer periphery, and a magnet housing groove in the first insulating substrate and the second insulating substrate. A magnet is mounted in a space formed by the two magnet housing concave grooves so as to face each other, aligned, bonded and joined, and then re-plated to form the two insulating groups. By making the through-hole part and the electrode part of the plate conductive, the upper and lower patterns are connected continuously through the radial copper foil pattern and the through-hole to surround the magnet, thereby forming a closed loop.
[0010]
In addition, one of the first or second insulating substrates is characterized in that one insulating substrate is made of an insulator made of a PCB substrate or a ceramic body, and the other insulating substrate is an insulator made of a polyimide film or the like. To do.
[0011]
The first or second insulating substrate is an insulator made of a polyimide film or the like.
[0012]
In addition, the method of manufacturing the SMD type coil according to the present invention is located at a substantially central portion of each row of the collective insulating substrate made of a PCB substrate or a ceramic body, and is on the circumference of two concentric circles at a predetermined interval. A plurality of through-holes, a through-hole processing step in which elongated holes are formed between the rows, and a plating process on the entire surface of the collective insulating substrate including the inner surfaces of the through-holes and the elongated hole through-holes by plating. A plating process for forming a copper plating layer, a plating resist is laminated, a pattern mask is formed after exposure and development, pattern etching is performed, electrode portions are formed on opposite side surfaces of the collective insulating substrate, and inner and outer through holes are formed on upper and lower surfaces. An etching step of forming a closed copper loop so that the upper and lower patterns are continuously connected through the through holes, and the collective insulating group The is characterized in that comprising a dicing step of dividing the single SMD type coils.
[0013]
In addition, a plurality of ring-shaped magnet housing grooves at predetermined intervals located on the back surface of a substantially central portion of each row of a plurality of collective insulating substrates made of a PCB substrate or a ceramic body, and the magnet housing A plurality of through holes are formed on the inner circumference of the concave groove and the circumference in the vicinity of the outer circumference, and a through hole processing of a long hole is performed between the rows, and then the through hole and the long hole of the collective insulating substrate are performed by plating. Forming a copper plating layer on the entire surface including the inner surface of the through hole, laminating a plating resist, forming a pattern mask after exposure and development, and performing a pattern etching, the first or second collective insulating substrate processing step, A magnet mounting step of storing a magnet in each of the magnet storage concave grooves of either the first or second collective insulating substrate, and a magnet housing of the first and second collective insulating substrates. Two through-insulation substrates are stacked and aligned so that the concave grooves face each other, and the bonding process of bonding and bonding the two bonding portions together to integrate them, and each through hole where the integrated assembly is bonded by re-plating treatment A re-plating step for conducting the electrode portion and the electrode portion, and a dicing step for dividing the integrated assembly into single SMD type coils including one magnet.
[0014]
Of the first and second collective insulating substrates, one collective insulating substrate is a collective insulator made of a PCB substrate or a ceramic body, and the other collective insulating substrate is a collective insulator made of a polyimide film or the like. It is characterized by being.
[0015]
Further, both the first and second collective insulating substrates are collective insulators made of a polyimide film or the like.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The SMD type coil and the manufacturing method thereof according to the present invention will be described below with reference to the drawings. 1 to 3 relate to a single-substrate air-core SMD type coil and a manufacturing method thereof according to the first embodiment of the present invention, FIG. 1 is a perspective view of a single SMD type coil, and FIG. FIG. 3 is a perspective view of the collective insulating substrate.
[0017]
1 and 2, reference numeral 2 denotes an insulating substrate made of a PCB substrate or a ceramic body and covered with copper foil on the upper and lower surfaces of a substantially square shape. In the substantially central portion of the insulating substrate 2, two concentric circles are arranged on the circumference. A plurality of outer peripheral and inner peripheral through holes 3a and 3b are formed by a processing means such as a press or a cutting drill. A copper plating layer is formed on the entire surface including the inner surfaces of the through holes 3a and 3b of the insulating substrate 2, and an electrode portion 4 is formed on the opposite side surface of the insulating substrate 2 by etching, and the through holes 3a are formed on the upper and lower surfaces. And the radial copper foil pattern 5 which connects 3b is formed. The upper and lower radial copper foil patterns 5 are connected to the coil terminal winding start portion 4a and the coil terminal winding end portion 4b as a single continuous line through the through holes 3a and 3b to form a closed loop, whereby the SMD type coil 1 is configured. Is done.
[0018]
The manufacturing method will be described with reference to FIG. A plurality of through-holes 3a and 3b located on the circumference of two concentric circles at a predetermined interval, are located at substantially the center of each row of the collective insulating substrate 6 made of a plurality of PCB substrates or ceramic bodies. A through hole machining step is performed in which a long hole-like through hole 3c is formed by a machining means such as a cutting drill or a press.
[0019]
Next, in the plating step, the surface of the collective insulating substrate 6 including the wall surfaces of the through holes 3a, 3b and 3c is washed, and then a copper plating layer is formed on the entire surface of the collective insulating substrate 6 by electroless plating and electrolytic plating. The copper plating layer is applied to the through holes 3a, 3b and 3c.
[0020]
Furthermore, in the etching process, after plating resist is laminated, exposed and developed to form a pattern mask, pattern etching is performed using CuCl 2 + H 2 O 2 or the like that is a normal substrate etching solution, whereby the insulating substrate 2, the electrode part 4 on the opposite side surface, the radial copper foil pattern 5 connecting the inner and outer through holes 3 a and 3 b to the upper and lower surfaces, and the upper and lower patterns via the through holes 3 a and 3 b, the coil end winding start part 4 a A closed loop is formed so that the coil terminal winding end portion 4b is connected as one continuous line.
[0021]
In order to divide the collective insulating substrate 6 into single SMD type coils in the dicing step, the alignment guide holes 6c provided at the four corners of the collective insulating substrate 6 are set in jigs (not shown) and orthogonal X The SMD type coil 1 is completed by cutting and separating into one chip with a dicing or slicing machine along the direction 7 and the Y direction 8.
[0022]
In order to insulate the radial copper foil pattern 5 exposed on the upper and lower surfaces of the completed SMD type coil 1, a resist film may be formed by a process such as resist coating.
[0023]
4 to 10 relate to a cored SMD type coil having two substrates and a manufacturing method thereof according to the second embodiment of the present invention, and FIG. 4 illustrates the surface side of the first insulating substrate of the single SMD type coil. FIG. 5 is a perspective view of the back side of FIG. 4, FIG. 6 is a sectional view of the first insulating substrate and the second insulating substrate facing each other, FIG. 7 is a perspective view of a ring-shaped magnet, and FIG. It is sectional drawing of a type | mold coil single-piece | unit. In the figure, the same members as those in the first embodiment are denoted by the same reference numerals.
[0024]
As shown in FIGS. 4 and 5, 2a is a substantially rectangular first insulating substrate made of a PCB substrate or a ceramic body, and 9 is a ring-shaped magnet located substantially at the center of the back surface of the first insulating substrate 2a. It is a storage ditch. Reference numerals 3a and 3b denote a plurality of through holes formed on the circumference in the vicinity of the outer circumference and the inner circumference of the magnet housing groove 9 by a processing means such as a press or a cutting drill. A copper plating layer is formed on the inner surfaces of the through-holes 3a and 3b and the surface of the first insulating substrate 2a, and an electrode portion 4 is formed on the opposite side surface of the first insulating substrate 2a by an etching process. A radial copper foil pattern 5 connecting 3a and 3b is formed. The radial copper foil pattern 5 has a U-shaped cross section through the through holes 3a and 3b. The second insulating substrate 2b is substantially the same in size and shape as the first insulating substrate 2a.
[0025]
6 and 7, reference numeral 10 denotes a magnet, which is a ring-shaped magnet made of cut or molded ferrite, samarium cobalt or the like, and the magnet housing grooves 9 of the first insulating substrate 2a and the second insulating substrate 2b face each other. In this way, after the adhesive described later is applied, the magnet is mounted in the magnet housing groove 9.
[0026]
For the most efficient size of the magnet 10, it is preferable to bring the magnet 10 close to the inner distance of the closed loop to the last distance, and therefore a magnet having the size of the closed loop is most suitable. The cross-sectional shape of the magnet 10 is not limited to a quadrangular shape as shown in FIG.
[0027]
In FIG. 8, the adhesive 12 is applied to either one of the joints 11 of the first insulating substrate 2a and the second insulating substrate 2b, or the sheet-like adhesive 12 is applied and aligned, and then bonded. Or, after joining by thermocompression bonding, by conducting re-plating treatment, the connection portions 3d of the through holes 3a and 3b of the first insulating substrate 2a and the second insulating substrate 2b and the connection portions 4c of the electrode portion 4 are made conductive. The upper and lower patterns surround the magnet 10 via the radial copper foil pattern 5 and the through holes 3a and 3b so that the coil end winding start portion 4a and the coil end winding end portion 4b are connected as a single continuous line. An SMD type coil 1A is formed.
[0028]
The manufacturing method will be described with reference to FIGS. First, as shown in FIG. 9, a plurality of ring-shaped first assembly insulating substrates 6 a made of a PCB substrate or a ceramic body are positioned on the back surface of the substantially central portion of each row and are arranged at predetermined intervals. A magnet housing groove 9 is formed, and a plurality of through holes 3a and 3b are cut on the circumference in the vicinity of the inner circumference and outer circumference of each magnet housing groove 9, and a long hole through hole 3c is cut between the rows. A through hole processing step formed by a processing means such as a drill or a press is performed.
[0029]
Next, in the first plating step, after cleaning the surface of the first collective insulating substrate 6a including the wall surfaces of the through holes 3a, 3b and 3c, the copper plating layer is formed by electroless plating and electrolytic plating to form the through hole 3a. 3b and the inner surface of the elongated through hole 3c.
[0030]
In the etching process, plating resist is laminated, a pattern mask is formed after exposure and development, and pattern etching is performed, so that the through-hole 3c of the elongated hole connects the electrode portion 4 and the through-holes 3a and 3b to the opposite side surfaces. A radial copper foil pattern 5 is formed. The first collective insulating substrate 6a is completed.
[0031]
In the magnet mounting step, as shown in FIG. 8 and FIG. 10, an epoxy-based or silicon-based adhesive 12 is masked in advance on one of the joint portions 11 of the first collective insulating substrate 6a and the second collective insulating substrate 6b. Is used to print and apply to a necessary portion, or a sheet-like adhesive 12 is applied, and the magnet 10 is inserted into the magnet housing groove 9 of one of the two collective insulating substrates 6a and 6b. Is installed.
[0032]
In the bonding process, the two collective insulating substrates 6a and 6b are overlapped so that the magnet housing concave grooves 9 of the first collective insulating substrate 6a and the second collective insulating substrate 6b on which the magnets are mounted face each other, and the through hole 3a By aligning the connecting portion 3d of 3b and the connecting portion 4c of the electrode portion 4 and bonding or thermocompression bonding the joint portion 11, the two collective insulating substrates 6a and 6b are integrally joined. An integrated assembly 13 is formed.
[0033]
The alignment of the two collective insulating substrates 6a and 6b is ensured in advance by using a jig (not shown) by the alignment guide hole 6c when the two substrates provided on the collective insulating substrates 6a and 6b are overlapped. Do.
[0034]
Needless to say, the mounting process of the magnet 10 and the application of the adhesive 12 to the collective insulating substrate 6a or 6b may be performed in the reverse order.
[0035]
In the second plating step, the integrated assembly 13 is again subjected to a copper plating process, and the integrated assembly 13 is reliably connected to the connection portion 3d of the through holes 3a and 3b and the connection portion 4c of the electrode portion 4. . Therefore, the first collective insulating substrate 6a and the second collective insulating substrate 6b surround the ring-shaped magnet 10, and the upper and lower patterns start to be coiled via the radial copper foil pattern 5 and the through holes 3a and 3b. The part 4a and the coil end winding end part 4b are continuously connected as a single continuous line to form a closed loop.
[0036]
In order to divide the integrated assembly 13 into a single SMD type coil including one magnet 10 in a dicing step, the alignment assembly 13 is set in a jig (not shown) and orthogonal to the alignment guide hole 6c. The SMD type coil 1A is completed by cutting and separating into one chip with a dicing or slicing machine or the like along the X direction 7 and the Y direction 8.
[0037]
As described above, in order to insulate the radial copper foil patterns 5 exposed on the upper and lower surfaces, a resist film may be formed by a process such as resist coating before the integrated assembly 13 is cut.
[0038]
FIG. 11 shows a third embodiment of the present invention. In FIG. 11, in order to further reduce the thickness of the cored SMD type coil 1B of the two substrates, for example, the first insulating substrate 2a is an insulator made of a PCB substrate or a ceramic body, and the second insulating substrate 2c is a polyimide. As an insulator made of a film or the like, a cored SMD type coil 1B having two substrates can be manufactured by a similar manufacturing method.
[0039]
FIG. 12 shows a fourth embodiment of the present invention. In FIG. 12, in order to make the cored SMD type coil 1C of the two substrates ultra thin, for example, the first insulating substrate 2d and the second insulating substrate 2e are both made of an insulator made of a polyimide film or the like. The cored SMD type coil 1C having two substrates can be manufactured by the manufacturing method.
[0040]
【The invention's effect】
As described above, according to the present invention, a plurality of through-holes are formed on two concentric circles located in a substantially central portion of an insulating substrate made of a PCB substrate or a ceramic body, and the insulating substrate is etched. The upper and lower patterns of the radial copper foil pattern connecting the through hole to the upper and lower surfaces of the insulating substrate through the through hole are one coil end winding start portion and the coil end winding end portion. By forming a continuous loop as a continuous line and forming a closed loop, it is possible to realize a thin and small SMD coil that requires a large coil inductance or requires a large number of turns. Furthermore, by making one or both of the insulating substrates into an insulator made of a polyimide film or the like, it is possible to reduce the thickness. In addition, since the manufacturing method is performed using a collective insulating substrate obtained by a large number, it is possible to reduce the manufacturing cost. Therefore, it is possible to expect great effects such as miniaturization, weight reduction, and cost reduction of electronic devices.
[Brief description of the drawings]
FIG. 1 is a perspective view of an SMD type coil according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
3 is a perspective view of a collective insulating substrate for explaining a method of manufacturing the SMD type coil of FIG. 1; FIG.
FIG. 4 is a perspective view of the surface side of a first insulating substrate of an SMD type coil according to a second embodiment of the present invention.
5A is a perspective view of the back surface side of the first insulating substrate of FIG. 4, and FIG. 5B is a cross-sectional view taken along line BB of FIG. 5A.
6 is a cross-sectional view of a state where the first insulating substrate and the second insulating substrate of FIG. 4 face each other.
FIG. 7 is a perspective view of a magnet.
FIG. 8 is a cross-sectional view of a completed SMD type coil.
FIG. 9 is a perspective view of a first collective insulating substrate for explaining a method of manufacturing an SMD type coil.
FIG. 10 is a perspective view of an integrated assembly in which a first collective insulating substrate and a second collective insulating substrate are bonded and bonded together.
FIG. 11 is a cross-sectional view of an SMD type coil according to a third embodiment of the present invention.
FIG. 12 is a cross-sectional view of an SMD type coil according to a fourth embodiment of the present invention.
FIG. 13 is a cross-sectional view of a conventional SMD type coil.
14 is a plan view of FIG. 13;
[Explanation of symbols]
1, 1A, 1B, 1C SMD type coil 2 Insulating substrate 2a, 2d First insulating substrate 2b, 2c, 2e Second insulating substrate 3a, 3b Through hole 3c Long hole through hole 3d, 4c Connection portion 4 Electrode portion 5 Radial copper Foil pattern 6 Collective insulating substrate 6a First collective insulating substrate 6b Second collective insulating substrate 9 Magnet housing concave groove 10 Magnet 11 Bonding portion 12 Adhesive 13 Integrated assembly

Claims (5)

PCB基板又はセラミック体等よりなる略四角形状をした絶縁基板の裏面略中央部にリング状のマグネット収納凹溝を有し、該マグネット収納凹溝の内周及び外周近傍の円周上に複数個のスルーホールを形成し該スルーホール内面及び前記絶縁基板の全面に銅メッキ層を形成し、エッチング処理により前記絶縁基板の対向する側面に電極部を形成すると共に、前記内外周のスルーホールを結ぶ放射状銅箔パターンを形成した第1又は第2の絶縁基板と、前記第1の絶縁基板と第2の絶縁基板のマグネット収納凹溝を対向させ、前記2つのマグネット収納凹溝により形成したスペースにマグネットを搭載、位置合わせして接着、接合した後、再メッキ処理により、前記2つの絶縁基板のスルーホール部及び電極部を導通させることにより、前記マグネットを囲み前記放射状銅箔パターンと前記スルーホールを介して上下パターンが連続的に繋げて閉ループ化したことを特徴とするSMD型コイル。  A ring-shaped magnet housing groove is provided at the substantially central portion of the back surface of the substantially square-shaped insulating substrate made of a PCB substrate or a ceramic body, and a plurality of magnet housing grooves are provided on the inner circumference and the circumference in the vicinity of the outer circumference. A through-hole is formed, a copper plating layer is formed on the inner surface of the through-hole and the entire surface of the insulating substrate, and electrode portions are formed on opposite side surfaces of the insulating substrate by etching, and the inner and outer through-holes are connected. In the space formed by the first or second insulating substrate on which the radial copper foil pattern is formed, and the magnet housing grooves of the first insulating substrate and the second insulating substrate are opposed to each other, and the two magnet housing grooves are formed. After mounting the magnet, aligning and bonding, joining, by conducting re-plating treatment, the through hole part and the electrode part of the two insulating substrates are made conductive, SMD type coils, characterized in that the vertical pattern through the through hole and the radial copper foil patterns enclose Gunetto were closed loop of by connecting continuously. 前記マグネットがフェライトであることを特徴とする請求項1記載のSMD型コイル。  The SMD type coil according to claim 1, wherein the magnet is ferrite. PCB基板又はセラミック体等よりなる多数個取りする集合絶縁基板の各列毎の略中央部の裏面に位置し、所定間隔で複数個のリング状のマグネット収納凹溝と、該各マグネット収納凹溝の内周及び外周近傍の円周上に複数個のスルーホールと、前記各列間に長穴のスルーホール加工を施した後、メッキ処理により前記集合絶縁基板のスルーホール及び長穴スルーホールの内面を含む全表面に銅メッキ層を形成し、メッキレジストをラミネートし、露光現象後パターンマスクを形成し、パターンエッチングを行う第1又は第2の集合絶縁基板加工工程と、前記第1又は第2の集合絶縁基板のいずれか一方のマグネット収納凹溝に、マグネットを収納するマグネット装着工程と、前記第1及び第2の集合絶縁基板のマグネット収納凹溝が対向するように2つの集合絶縁基板を重ねることによりマグネット収納スペースを設け、位置合わせし、両接着部を接着、接合して一体化する接着工程と、再メッキにより前記一体化集合体の接合する各スルーホール部及び電極部を導通させる再メッキ工程と、前記一体化集合体を1つのマグネットを含むSMD型コイル単体に分割するダイシング工程とからなるSMD型コイルの製造方法。  A plurality of ring-shaped magnet housing grooves and a plurality of ring-shaped magnet housing grooves at a predetermined interval, located on the back surface of a substantially central portion of each row of a collective insulating substrate made of a PCB substrate or a ceramic body. A plurality of through holes on the circumference in the vicinity of the inner periphery and outer periphery of the substrate, and a through hole processing of a long hole between the rows, and then, through the plating process, the through hole and the long hole through hole of the collective insulating substrate Forming a copper plating layer on the entire surface including the inner surface, laminating a plating resist, forming a pattern mask after an exposure phenomenon, and performing pattern etching; The magnet mounting step for storing magnets and the magnet storage grooves of the first and second collective insulating substrates face each other in one of the magnet storage grooves of the two collective insulating substrates. In this way, a magnet storage space is provided by overlapping two collective insulating substrates, aligned, and an adhesion process in which both adhesive portions are bonded and bonded together, and each through which the integrated aggregate is bonded by replating A method for producing an SMD type coil comprising a re-plating step for conducting a hole portion and an electrode portion, and a dicing step for dividing the integrated assembly into a single SMD type coil including one magnet. 前記第1又は第2の集合絶縁基板のうち、一方の集合絶縁基板はPCB基板又はセラミック体等よりなる集合絶縁体よりなり、他方の集合絶縁基板はポリイミドフィルムよりなる集合絶縁体であり、前記2つの集合絶縁基板を接合して前記マグネットを収納したことを特徴とする請求項記載のSMD型コイルの製造方法。Of the first or second collective insulating substrate, one collective insulating substrate is made of a collective insulator made of a PCB substrate or a ceramic body, and the other collective insulating substrate is a collective insulator made of a polyimide film, 4. The method of manufacturing an SMD type coil according to claim 3, wherein the magnet is housed by joining two collective insulating substrates. 前記マグネットがフェライトであることを特徴とする請求項又は記載のSMD型コイルの製造方法。The method of manufacturing an SMD type coil according to claim 3 or 4 , wherein the magnet is ferrite.
JP35642796A 1996-12-26 1996-12-26 SMD type coil and manufacturing method thereof Expired - Lifetime JP3859287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35642796A JP3859287B2 (en) 1996-12-26 1996-12-26 SMD type coil and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35642796A JP3859287B2 (en) 1996-12-26 1996-12-26 SMD type coil and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10189338A JPH10189338A (en) 1998-07-21
JP3859287B2 true JP3859287B2 (en) 2006-12-20

Family

ID=18448962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35642796A Expired - Lifetime JP3859287B2 (en) 1996-12-26 1996-12-26 SMD type coil and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3859287B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289436A (en) * 2001-03-28 2002-10-04 Niigata Seimitsu Kk Inductance element
JP2006013054A (en) 2004-06-24 2006-01-12 Citizen Electronics Co Ltd Method for manufacturing smd coil package
CN101151688B (en) * 2004-12-07 2013-01-16 富多电子公司 Miniature transformer, multilayer printing circuit and methods for manufacturing same

Also Published As

Publication number Publication date
JPH10189338A (en) 1998-07-21

Similar Documents

Publication Publication Date Title
US10347409B2 (en) Arrayed embedded magnetic components and methods
KR101538580B1 (en) Electronic component and manufacturing method thereof
JP5195876B2 (en) Coil component and manufacturing method thereof
US5398400A (en) Method of making high accuracy surface mount inductors
JP4247518B2 (en) Small inductor / transformer and manufacturing method thereof
KR101165116B1 (en) Miniature circuitry and inductive componets and methods for manufacturing same
US20150116950A1 (en) Coil component, manufacturing method thereof, coil component-embedded substrate, and voltage adjustment module having the same
US10522279B2 (en) Embedded high voltage transformer components and methods
JP2007503716A (en) Ultra-thin flexible inductor
US20140049353A1 (en) Inductor and method of manufacturing inductor
KR101532171B1 (en) Inductor and Manufacturing Method for the Same
JP2011091097A (en) Coil component
JP2008171965A (en) Microminiature power converter
WO2021004459A1 (en) Embedded circuit board and fabrication method therefor
KR20150050306A (en) Coil component, manufacturing method thereof, coil component embedded substrate, module having the same
CN114883082A (en) Inductance structure and manufacturing method thereof, electronic package and manufacturing method thereof, and manufacturing method of package carrier
JP3859287B2 (en) SMD type coil and manufacturing method thereof
CN110415944B (en) Transformer, manufacturing method thereof and electromagnetic device
CN110415940B (en) Integrated transformer and electronic device
CN109616279B (en) Inductance element and filter
CN110415946B (en) Electromagnetic element and method for manufacturing the same
JP2003282328A (en) Thin magnetic element, its manufacturing method, and power source module using the same
JPH10208939A (en) Smd type coil and its manufacture
CN221379134U (en) Transformer, transformer chip and semiconductor packaging device
US20240186056A1 (en) Coil component and manufacturing method therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6