JP2003282328A - Thin magnetic element, its manufacturing method, and power source module using the same - Google Patents

Thin magnetic element, its manufacturing method, and power source module using the same

Info

Publication number
JP2003282328A
JP2003282328A JP2002082632A JP2002082632A JP2003282328A JP 2003282328 A JP2003282328 A JP 2003282328A JP 2002082632 A JP2002082632 A JP 2002082632A JP 2002082632 A JP2002082632 A JP 2002082632A JP 2003282328 A JP2003282328 A JP 2003282328A
Authority
JP
Japan
Prior art keywords
magnetic
coil
thin
thin film
magnetic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002082632A
Other languages
Japanese (ja)
Inventor
Shinya Matsutani
伸哉 松谷
Takashi Ida
隆 伊田
Osamu Inoue
修 井上
Hiroyuki Handa
浩之 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002082632A priority Critical patent/JP2003282328A/en
Publication of JP2003282328A publication Critical patent/JP2003282328A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin magnetic element that is low in DC superposition characteristics and is reduced in magnetic loss in a high-frequency region. <P>SOLUTION: In this thin magnetic element, a sheet-like coil 2, containing a conductor coil 3 and a resin insulating section 4 and a metallic thin film magnetic member 1 having higher permeability than the insulating section 4 are arranged so that the member 1 so as to pinch the coil 2. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電子機器のインダク
タンス素子、チョークコイル、トランスその他に用いら
れる超小型の薄型磁性素子及びその製造方法並びにそれ
を用いた電源モジュールに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microminiature thin magnetic element used for an inductance element, a choke coil, a transformer and the like of electronic equipment, a method for manufacturing the same, and a power supply module using the same.

【0002】[0002]

【従来の技術】近年、電子機器の全般的な小型・薄型化
に伴い、これらに用いられる電子部品や電源デバイスな
ども小型化、薄型化することが強く求められている。特
に、携帯機器等では小型化以上に薄型化の要求が強くな
ってきている。
2. Description of the Related Art In recent years, as electronic devices have been generally made smaller and thinner, it has been strongly demanded that electronic components and power supply devices used therein be made smaller and thinner. In particular, in portable devices and the like, there is an increasing demand for thinner devices than for miniaturization.

【0003】一方、CPUなどのLSIは高速・高集積
化してきており、このようなLSIに供給される電源回
路には大電流が供給されることがある。従って、高速・
高集積化されたLSIに供給される電源回路に用いられ
るチョークコイル等のインダクタンス素子にはコイル導
体を低抵抗化して低発熱を実現すること、及び直流重畳
によるインダクタンス値の低下が少ないこと(直流重畳
特性が良好であること)が必要とされている。又、使用
周波数が高周波化しているので高周波域での損失の低い
ことが求められている。
On the other hand, LSIs such as CPUs are becoming high-speed and highly integrated, and a large current may be supplied to a power supply circuit supplied to such an LSI. Therefore, high speed
Inductance elements such as choke coils used in power supply circuits that are supplied to highly integrated LSIs should have a coil conductor with low resistance to realize low heat generation, and the inductance value should not be reduced by DC superimposition (DC Good superposition characteristics) are required. Further, since the used frequency is high, it is required that the loss in the high frequency range is low.

【0004】更に、部品のコストを安くすることが強く
求められているため、単純な形状の部品構成素子を簡単
な工程で組み立てられることが必要となっている。すな
わち、大電流、高周波で使用可能であり、且つ小型・薄
型化されたインダクタンス素子や電源を安価に供給する
ことが求められている。電源回路に使用される部品の中
で、最も厚さの大きいものはインダクタンス素子であ
る。そのため、インダクタンス素子等の磁性素子の薄型
化は電源自体の薄型化のためにも強く望まれている。
Further, since there is a strong demand to reduce the cost of parts, it is necessary to assemble a component component having a simple shape in a simple process. That is, it is required to inexpensively supply an inductance element and a power source which can be used with a large current and a high frequency and which are small and thin. Among the components used in the power supply circuit, the thickest one is the inductance element. Therefore, thinning of the magnetic element such as the inductance element is strongly desired also for thinning of the power source itself.

【0005】一般に、磁性素子を小型化すると磁路断面
積が減少し、インダクタンス値が減少してしまう。この
ような小型の磁性素子の特性を向上させる(インダクタ
ンス値を大きくする)手段として、例えば実開昭53−
136538号公報や特開昭61−136213号公報
にはフェライト等を用いた鍔付きのドラム形状のコア材
に巻き線を施した後、鍔の内側を磁性体粉末と樹脂の混
合物で埋めて閉磁路構造としたものが提案されている。
Generally, when the magnetic element is downsized, the magnetic path cross-sectional area is reduced and the inductance value is reduced. As a means for improving the characteristics of such a small magnetic element (increasing the inductance value), for example, the actual exploitation 53-
In Japanese Patent No. 136538 and Japanese Patent Laid-Open No. 61-136213, after winding a drum-shaped core material made of ferrite or the like with a collar, winding is performed, the inside of the collar is filled with a mixture of magnetic powder and resin to close the magnetic field. Road structures have been proposed.

【0006】この構造では通常巻き線に用いられるボビ
ンが不要となり、その分磁路断面積が大きく取れ、かつ
閉磁路構造となるのでインダクタンス値が大きくなり、
磁性素子の特性が向上する。しかしながら、この構造は
磁性素子の小型化を目的としたものであって、薄型化を
目的としたものではなく、更に磁性体粉末と樹脂の混合
物中の磁路長が長いために充分な特性が得られたとは云
えず問題点があった。又、実際にこのような従来技術を
用いて、例えばサイズが2×1×1mm程度のインダク
タンス素子も市販されているが、このインダクタンス素
子はコイルの直流抵抗が大きいものであった。
In this structure, the bobbin normally used for the winding is not required, the magnetic path cross-sectional area can be increased correspondingly, and the closed magnetic circuit structure is formed, so that the inductance value becomes large,
The characteristics of the magnetic element are improved. However, this structure is intended to reduce the size of the magnetic element and is not intended to be thin, and since the magnetic path length in the mixture of magnetic powder and resin is long, sufficient characteristics are not obtained. There was a problem that could not be said to have been obtained. In addition, an inductance element having a size of, for example, about 2 × 1 × 1 mm is actually commercially available by using such a conventional technique, but this inductance element has a large DC resistance of the coil.

【0007】従って、低い直流抵抗と大きなインダクタ
ンス値とを有する磁性素子を実現するためには太い導線
を用いてコイルを作製し、ターン数も増やす必要があ
る。しかしながら、薄型化のためには同時に厚さを1m
m程度以下と小さくする必要があるので、コイルは平面
形に巻くことが望ましい。この平面形のコイルを収容す
るスペースを確保するためには、サイズを2〜10mm
角と大きくすることになる。ところがこのような面積/
厚さ比の大きい薄型構造では漏洩磁束が大きくなつて、
大きなインダクタンス値が得られにくい。
Therefore, in order to realize a magnetic element having a low DC resistance and a large inductance value, it is necessary to manufacture a coil using a thick conductor wire and increase the number of turns. However, in order to reduce the thickness, at the same time, make the thickness 1 m.
Since it is necessary to make it as small as about m or less, it is desirable to wind the coil in a plane shape. In order to secure a space for accommodating this planar coil, the size should be 2 to 10 mm.
It will be a big corner. However, such an area /
In a thin structure with a large thickness ratio, the magnetic flux leakage increases,
It is difficult to obtain a large inductance value.

【0008】このような薄型構造の磁性素子の特性向上
(漏洩磁束の減少)を狙った技術として、特開平6−3
42725号公報には導線(平面形コイル)をフェライ
トと樹脂とのペーストに埋め込んだものの上下にフェラ
イト板を貼り付けた構造が提案されている。又、特開平
9−270334号公報には磁性体粉末を含んだ樹脂に
平面形コイルが埋め込まれ、その上下に金属磁性板を貼
り付けた構造が提案されている。これらの構造は透磁率
の高い磁性体を外面に配置することで薄型化しても漏洩
磁束が比較的少なく、特性が充分発現されるように配慮
したものである。
As a technique aimed at improving the characteristics of such a thin magnetic element (reducing the leakage flux), Japanese Patent Laid-Open No. 6-3
Japanese Patent No. 42725 proposes a structure in which a conductor (planar coil) is embedded in a paste of ferrite and resin, and ferrite plates are attached to the upper and lower sides of the paste. Further, Japanese Patent Application Laid-Open No. 9-270334 proposes a structure in which a planar coil is embedded in a resin containing magnetic powder and metal magnetic plates are attached to the upper and lower sides thereof. These structures are designed so that the magnetic flux having a high magnetic permeability is arranged on the outer surface so that the leakage magnetic flux is relatively small even if the magnetic body is made thin and the characteristics are sufficiently exhibited.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、特開平
6−342725号公報や特開平9−270334号公
報に開示されている磁性素子は、平面形コイル自体が磁
性体粉末含有樹脂に完全に埋め込まれた構造となってい
るため、平面形コイルの導体間及び周りには磁性体粉末
含有樹脂が存在する構造となっている。従って、平面形
コイルの外周部分を通る本来の磁路よりもショートパス
となる磁路、つまり平面形コイルの導体を横切ったり、
近接する導体間を横切ったりする磁路が生じやすい。こ
のように平面形コイルの導体や導体間を通る磁束が増加
すると、高周波域では磁気損失が増大するとともにイン
ダクタンス値も低下するという問題が生じる。
However, in the magnetic element disclosed in JP-A-6-342725 and JP-A-9-270334, the planar coil itself is completely embedded in the resin containing the magnetic powder. Due to this structure, the resin containing magnetic powder is present between and around the conductors of the planar coil. Therefore, crossing the magnetic path that is a shorter path than the original magnetic path that passes through the outer peripheral portion of the planar coil, that is, the conductor of the planar coil,
A magnetic path that crosses between adjacent conductors is likely to occur. When the conductors of the planar coil and the magnetic flux passing between the conductors thus increase, there arises a problem that the magnetic loss increases and the inductance value also decreases in the high frequency range.

【0010】又、更なる磁性素子の薄型化(例えば面積
/厚さ比>0.4以上)に対応するためには、コイルの
上下磁性部材の厚み方向の断面積が極端に薄くなるた
め、従来以上にインダクタンス値、特に直流重畳特性が
劣化すると言う問題があった。そのためには、磁性部材
厚みが薄くても飽和磁束密度が高く、ある一定以上の透
磁率を有する磁性材料が不可欠である。又、磁性素子の
実装後の基板の反り、落下、ヒートショック等で導体コ
イルの断線、ショート、磁性部材の欠落等の問題が生じ
る。
In order to further reduce the thickness of the magnetic element (for example, the area / thickness ratio> 0.4 or more), the upper and lower magnetic members of the coil have extremely thin cross-sectional areas. There is a problem that the inductance value, especially the DC superposition characteristic, deteriorates more than ever before. For that purpose, a magnetic material having a high saturation magnetic flux density and a magnetic permeability of a certain level or more is indispensable even if the magnetic member is thin. In addition, after mounting the magnetic element, the circuit board may be warped, dropped, heat shocked, or the like, causing problems such as disconnection of the conductor coil, short circuit, or missing of the magnetic member.

【0011】本発明はこれらの問題を解決するために、
磁気特性に特に直流重畳特性に優れ、高周波域での磁気
損失が少なく、また信頼性に優れた薄型磁性素子を提供
することを目的とする。更に、このような磁性素子を生
産性高く製造する製造方法とこのような磁性素子を備え
た電源モジュールとを併せて提供することを目的とす
る。
The present invention is directed to solving these problems.
It is an object of the present invention to provide a thin magnetic element having excellent magnetic characteristics, particularly DC superimposition characteristics, little magnetic loss in a high frequency range, and excellent reliability. Another object of the present invention is to provide a manufacturing method for manufacturing such a magnetic element with high productivity and a power supply module including such a magnetic element.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に本発明は、以下の構成を有するものである。
To solve the above problems, the present invention has the following constitution.

【0013】本発明の請求項1に記載の発明は、導体コ
イル及び樹脂絶縁部を含むシート状コイルと、このシー
ト状コイルを挟持するように前記樹脂絶縁部より透磁率
が高い金属薄膜磁性部材を配置した薄型磁性素子であ
り、導体コイルと上下金属薄膜磁性部材よりも透磁率の
小さい樹脂絶縁部とを含むシート状コイルが用いられる
ので、導体コイルの導体や近接する導体間を横切る磁束
が抑制されるとともに、金属薄膜磁性部材を配置するこ
とにより直流重畳特性に優れ、高周波域における磁気損
失が少ない薄型磁性素子を実現することができる。
The invention according to claim 1 of the present invention is a sheet-shaped coil including a conductor coil and a resin insulating portion, and a metal thin film magnetic member having a magnetic permeability higher than that of the resin insulating portion so as to sandwich the sheet-shaped coil. Since a sheet-shaped coil including a conductor coil and a resin insulating portion having a magnetic permeability smaller than that of the upper and lower metal thin film magnetic members is used as the thin magnetic element, the magnetic flux crossing between the conductor of the conductor coil and the adjacent conductors is reduced. It is possible to realize a thin magnetic element which is suppressed and which is excellent in DC superposition characteristics and has less magnetic loss in a high frequency region by disposing the metal thin film magnetic member.

【0014】本発明の請求項2に記載の発明は、導体コ
イル及び樹脂絶縁部を含むシート状コイルと、このシー
ト状コイルを挟持するように前記樹脂絶縁部より透磁率
が高い金属薄膜磁性部材を配置し、且つこの金属薄膜磁
性部材は前記金属薄膜磁性部材間の導体コイルの存在し
ない前記シート状コイルの中心部及び周辺部から選ばれ
る少なくとも1ヶ所にも配置されている薄型磁性素子で
あり、直流重畳特性により優れるとともに、高周波域に
おける磁気損失が少ない薄型磁性素子を提供することが
できる。
According to a second aspect of the present invention, a sheet-shaped coil including a conductor coil and a resin insulating portion, and a metal thin film magnetic member having a magnetic permeability higher than that of the resin insulating portion so as to sandwich the sheet-shaped coil. And the metal thin film magnetic member is a thin magnetic element arranged in at least one location selected from the central portion and the peripheral portion of the sheet-shaped coil without the conductor coil between the metal thin film magnetic members. It is possible to provide a thin magnetic element that is excellent in direct current superposition characteristics and has little magnetic loss in a high frequency range.

【0015】本発明の請求項3に記載の発明は、金属薄
膜磁性部材の主組成がFe,Co及びNiから構成さ
れ、Fe,Coの合計含有量が50wt%以上である請
求項1または2のいずれか一つに記載の薄型磁性素子で
あり、飽和磁束密度の高い金属薄膜磁性部材を得ること
ができ、直流重畳特性の優れたより薄型の磁性素子を実
現することができる。
In the invention according to claim 3 of the present invention, the main composition of the metal thin film magnetic member is composed of Fe, Co and Ni, and the total content of Fe and Co is 50 wt% or more. The thin magnetic element according to any one of the above items, a metal thin film magnetic member having a high saturation magnetic flux density can be obtained, and a thinner magnetic element having excellent DC superposition characteristics can be realized.

【0016】本発明の請求項4に記載の発明は、金属薄
膜磁性部材が異種金属磁性部材の積層構造から構成され
る請求項1または2のいずれか一つに記載の薄型磁性素
子であり、高周波特性の優れた薄型磁性素子を実現する
ことができる。
The invention according to claim 4 of the present invention is the thin magnetic element according to any one of claims 1 and 2, wherein the metal thin film magnetic member has a laminated structure of different metal magnetic members. It is possible to realize a thin magnetic element having excellent high frequency characteristics.

【0017】本発明の請求項5に記載の発明は、金属薄
膜磁性部材が結晶質金属磁性薄膜と非晶質金属磁性薄膜
の積層構造から構成される請求項4に記載の薄型磁性素
子であり、請求項4と同じ作用を有する薄型磁性素子を
実現することができる。
The invention according to claim 5 of the present invention is the thin magnetic element according to claim 4, wherein the metal thin film magnetic member is composed of a laminated structure of a crystalline metal magnetic thin film and an amorphous metal magnetic thin film. A thin magnetic element having the same effect as that of claim 4 can be realized.

【0018】本発明の請求項6に記載の発明は、金属薄
膜磁性部材が飽和磁束密度1.0T以上、透磁率300
以上である請求項1または2のいずれか一つに記載の薄
型磁性素子であり、直流重畳特性に優れる薄型磁性素子
を実現することができる。
According to a sixth aspect of the present invention, the metal thin film magnetic member has a saturation magnetic flux density of 1.0 T or more and a magnetic permeability of 300.
The thin magnetic element according to any one of claims 1 and 2 as described above, and it is possible to realize a thin magnetic element having excellent DC superposition characteristics.

【0019】本発明の請求項7に記載の発明は、厚みが
10μm以上で100μm以下の金属薄膜磁性部材であ
る請求項1または2のいずれか一つに記載の薄型磁性素
子であり、直流重畳特性に優れ、高周波域での磁気損失
が少ない薄型磁性素子を実現することができる。
The invention according to claim 7 of the present invention is the thin magnetic element according to any one of claims 1 and 2, which is a metal thin film magnetic member having a thickness of 10 μm or more and 100 μm or less. It is possible to realize a thin magnetic element having excellent characteristics and having little magnetic loss in a high frequency range.

【0020】本発明の請求項8に記載の発明は、導体コ
イルは上下2段に分かれてそれぞれ平面形に巻回された
2段コイルであって、最内周部で上下2段のコイルが互
いに接続されている請求項1または2のいずれか一つに
記載の薄型磁性素子であり、導体コイルの占積率を高く
することができるとともに、導体コイル端がコイルの最
外周側にくるために、上下に配置された金属薄膜磁性部
材に穴を設けることなく、容易に端子部を取り出すこと
ができる。
In the invention according to claim 8 of the present invention, the conductor coil is a two-stage coil which is divided into upper and lower two stages and wound in a planar shape, and the upper and lower two-stage coils are formed in the innermost peripheral portion. The thin magnetic element according to any one of claims 1 and 2, which are connected to each other, wherein the space factor of the conductor coil can be increased and the end of the conductor coil is located on the outermost side of the coil. In addition, the terminal portions can be easily taken out without providing holes in the metal thin film magnetic members arranged above and below.

【0021】本発明の請求項9に記載の発明は、樹脂絶
縁部はエポキシ樹脂、フェノール樹脂、ポリイミド樹
脂、シリコン樹脂或いはこれらの変性樹脂を少なくとも
一種類以上含む請求項1または2のいずれか一つに記載
の薄型磁性素子であり、生産性の高い薄型磁性素子を実
現できる。
According to a ninth aspect of the present invention, the resin insulating portion contains at least one kind of epoxy resin, phenol resin, polyimide resin, silicon resin or modified resin thereof. And the thin magnetic element having high productivity can be realized.

【0022】本発明の請求項10に記載の発明は、シー
ト状コイルが配線基板の配線層の一部として配線基板の
内部又は表面に設けられている請求項1または2のいず
れか一つに記載の薄型磁性素子であり、容易に配線基板
の内部又は表面に配置された薄型磁性素子を形成するこ
とが可能となる。
According to a tenth aspect of the present invention, the sheet-shaped coil is provided inside or on the surface of the wiring board as a part of the wiring layer of the wiring board. The thin magnetic element described above makes it possible to easily form the thin magnetic element disposed inside or on the surface of the wiring board.

【0023】本発明の請求項11に記載の発明は、導体
コイルを樹脂絶縁部に内蔵してシート状コイルを作製す
る工程と、シート状コイルの上下にめっきにより金属薄
膜磁性部材を所定の形状に形成する工程を含む薄型磁性
素子の製造方法であり、簡易な方法で薄型磁性素子を製
造することが可能となり、信頼性と生産性を高めること
ができる。
According to an eleventh aspect of the present invention, a step of producing a sheet-shaped coil by incorporating a conductor coil in a resin insulating portion, and a metal thin-film magnetic member having a predetermined shape by plating on and under the sheet-shaped coil are provided. It is a method for manufacturing a thin magnetic element including a step of forming a thin magnetic element, and it is possible to manufacture a thin magnetic element by a simple method, and reliability and productivity can be improved.

【0024】本発明の請求項12に記載の発明は、導体
コイルを樹脂絶縁部に内蔵してシート状コイルを作製す
る工程と、シート状コイルの上下にスパッタリング、蒸
着法により金属薄膜磁性部材を所定の形状に形成する工
程を含む薄型磁性素子の製造方法であり、従来の比較的
簡易な薄膜法を用いて薄型磁性素子を製造することが可
能となり、小型の薄型磁性素子の製造方法を提供するこ
とができる。
According to a twelfth aspect of the present invention, there is provided a step of producing a sheet coil by incorporating a conductor coil in a resin insulating portion, and a metal thin film magnetic member is formed on the sheet coil by sputtering and vapor deposition. A method for manufacturing a thin magnetic element including a step of forming into a predetermined shape. It becomes possible to manufacture a thin magnetic element using a conventional relatively simple thin film method, and a method for manufacturing a small thin magnetic element is provided. can do.

【0025】本発明の請求項13に記載の発明は、請求
項1,2のいずれか一つに記載の薄型磁性素子と半導体
チップ及びチップ部品を配線基板に実装してなる電源モ
ジュールであり、薄型で高性能な電源モジュールを実現
することができる。
A thirteenth aspect of the present invention is a power supply module in which the thin magnetic element according to any one of the first and second aspects, a semiconductor chip, and a chip component are mounted on a wiring board. It is possible to realize a thin and high-performance power supply module.

【0026】上述したように、本発明の薄型磁性素子は
高いインダクタンス値と低いコイル直流抵抗、更に良好
な直流重畳特性を有する薄型磁性素子である。従って、
この薄型磁性素子に配線基板や半導体チップやコンデン
サ等の他の部品を実装して作製した電源モジュールも、
上記特性に優れておりかつ薄型化を実現できる。
As described above, the thin magnetic element of the present invention is a thin magnetic element having a high inductance value, a low coil DC resistance, and a good DC superposition characteristic. Therefore,
A power supply module manufactured by mounting other components such as a wiring board, a semiconductor chip, and a capacitor on this thin magnetic element is also available.
It is excellent in the above characteristics and can be made thin.

【0027】[0027]

【発明の実施の形態】本発明の薄型磁性素子の実施の形
態について、図面を参照しながら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a thin magnetic element of the present invention will be described with reference to the drawings.

【0028】以下では、インダクタンス素子やチョーク
コイルに用いられる薄型磁性素子の例について説明する
が、本発明はこれに限定されるものではなく、2次巻き
線の必要なトランス等に用いてもその効果を発揮するも
のである。図1は本発明の実施の形態の一例である薄型
インダクタンス素子の断面図である。又図2、図3は図
1に示すものとは別の実施の形態を示す薄型インダクタ
ンス素子の断面図である。以下にそれぞれの薄型インダ
クタンス素子について説明する。
Hereinafter, an example of a thin magnetic element used for an inductance element or a choke coil will be described, but the present invention is not limited to this, and even if it is used for a transformer or the like which requires a secondary winding. It is effective. FIG. 1 is a sectional view of a thin inductance element that is an example of an embodiment of the present invention. 2 and 3 are sectional views of a thin inductance element showing another embodiment different from that shown in FIG. Each thin inductance element will be described below.

【0029】図1に示す薄型インダクタンス素子は、導
体コイル3及び樹脂絶縁部4からなるシート状コイル2
が金属薄膜磁性部材1a,1bにより挟持されるような
構造になっている。
The thin inductance element shown in FIG. 1 comprises a sheet coil 2 composed of a conductor coil 3 and a resin insulating portion 4.
Is sandwiched between the metal thin film magnetic members 1a and 1b.

【0030】又、導体コイル3は導体が平面形に2段に
巻かれて樹脂絶縁部4で覆われ、最内周部3aで上下の
導体がつながっている。導体コイル3の端子部3bはコ
イル最外周より取り出されている。又図1に示された薄
型インダクタンス素子の場合、シート状コイル2の端子
部3bは互いに異なる方向に取り出されているが、同じ
方向に取り出される構造であっても良い。
In the conductor coil 3, the conductor is wound in two steps in a planar shape and covered with the resin insulating portion 4, and the upper and lower conductors are connected at the innermost peripheral portion 3a. The terminal portion 3b of the conductor coil 3 is taken out from the outermost circumference of the coil. In the case of the thin inductance element shown in FIG. 1, the terminal portions 3b of the sheet-shaped coil 2 are taken out in mutually different directions, but they may be taken out in the same direction.

【0031】又、薄型磁性素子は回路基板などに実装さ
れて使用されることが多く、最近では高密度実装技術が
急速に進展しており、磁性素子の下に配線を配置する回
路設計が行われている。そのため金属薄膜磁性部材1が
露出していると短絡の恐れもあり、場合によっては端子
部3bのみを露出させて外装14にて絶縁被覆しても良
い。この外装材として、耐熱性と可塑性の観点からエポ
キシ樹脂、フェノール樹脂、ポリイミド樹脂、シリコン
樹脂或いはこれらの変性樹脂を少なくとも一種類以上含
む絶縁性樹脂が好ましい。この外装14の効果は絶縁性
と信頼性を更に向上することができる。
In addition, thin magnetic elements are often mounted on a circuit board or the like for use, and recently, high-density mounting technology has been rapidly developed, and circuit design for arranging wiring under the magnetic element is performed. It is being appreciated. Therefore, if the metal thin film magnetic member 1 is exposed, a short circuit may occur. In some cases, only the terminal portion 3b may be exposed and the outer coating 14 may be used for insulation coating. From the viewpoint of heat resistance and plasticity, the exterior material is preferably an insulating resin containing at least one type of epoxy resin, phenol resin, polyimide resin, silicon resin or modified resin thereof. The effect of the outer package 14 can further improve the insulation and reliability.

【0032】又、図2に示す薄型インダクタンス素子は
シート状コイル2が金属薄膜磁性部材1a,1b間に配
置され、且つシート状コイル2の中心部にも金属磁性部
材5が配置されているものである。更に金属薄膜磁性部
材1a,1bはシート状コイル2の中心部と導体コイル
周辺部の所定領域の両方に設けられても良いし、周辺部
のみに配置されていても良い。その後図1と同様にして
外装14を形成しても良い。
In the thin inductance element shown in FIG. 2, the sheet-shaped coil 2 is arranged between the metal thin film magnetic members 1a and 1b, and the metal magnetic member 5 is also arranged at the center of the sheet-shaped coil 2. Is. Further, the metal thin film magnetic members 1a and 1b may be provided both in the central portion of the sheet-shaped coil 2 and a predetermined area around the conductor coil, or may be arranged only in the peripheral portion. After that, the exterior 14 may be formed in the same manner as in FIG.

【0033】このような構造に構成することによって、
図1の薄型インダクタンス素子よりも更にインダクタン
ス特性に優れた薄型インダクタンス素子を実現すること
ができる。
By constructing such a structure,
It is possible to realize a thin inductance element having better inductance characteristics than the thin inductance element of FIG.

【0034】次に、図3は金属薄膜磁性部材1(1a〜
1h)が異種の金属薄膜磁性層の多層構造から形成され
ており、磁気特性或いは材料組成の異なる金属薄膜磁性
層を交互に積層したり、結晶質と非晶質の金属薄膜磁性
層を交互に積層することによって直流重畳特性、周波数
特性などの磁気特性を所望の特性に設計・改善すること
が可能となり、最適な特性及び寸法形状の薄型インダク
タンス素子を実現することが可能となる。又、異種の金
属薄膜磁性層は上下対称に積層しても良いし、非対称に
配置しても良いが生産性を考慮するならば上下対称に異
種の金属薄膜磁性層を積層して金属薄膜磁性部材1を形
成する方法が最も効果的である。そして、図1、図2と
同様にして外装14を形成しても良い。
Next, FIG. 3 shows a metal thin film magnetic member 1 (1a ...
1h) is formed of a multi-layer structure of different kinds of metal thin film magnetic layers, and metal thin film magnetic layers having different magnetic properties or material compositions are alternately laminated, or crystalline and amorphous metal thin film magnetic layers are alternately formed. By stacking layers, magnetic characteristics such as DC superposition characteristics and frequency characteristics can be designed and improved to desired characteristics, and it becomes possible to realize a thin inductance element having optimum characteristics and dimensions. Further, different kinds of metal thin film magnetic layers may be vertically symmetrically stacked, or may be arranged asymmetrically. The method of forming the member 1 is the most effective. Then, the exterior 14 may be formed in the same manner as in FIGS.

【0035】上記図1〜図3に示した薄型インダクタン
ス素子は2〜20mm角前後で、厚さ;0.2〜1mm
程度の非常に薄い正方板状のインダクタンス素子を想定
しているが円板状等の他の形状であってもかまわない。
又、図1〜図3に示した薄型インダクタンス素子は本発
明の構造の一例を示したものであり、本発明はこれらの
構造に限定されるものではない。
The thin inductance element shown in FIGS. 1 to 3 is about 2 to 20 mm square and has a thickness of 0.2 to 1 mm.
A rectangular plate-shaped inductance element having a very small thickness is assumed, but another shape such as a disk shape may be used.
Further, the thin inductance elements shown in FIGS. 1 to 3 are examples of the structures of the present invention, and the present invention is not limited to these structures.

【0036】以上のように、本発明の薄型磁性素子は少
なくとも、金属薄膜磁性部材、導体コイル3及び樹
脂絶縁部4を含むシート状コイル2を備えた構造であ
る。以下、,の各構成について、詳しく説明する。
As described above, the thin magnetic element of the present invention has at least the sheet-shaped coil 2 including the metal thin film magnetic member, the conductor coil 3 and the resin insulating portion 4. Hereinafter, each configuration of and will be described in detail.

【0037】金属薄膜磁性部材 本用途の薄型磁性素子の場合、コイル上下の磁性材料の
厚み方向の断面寸法が極端に薄くなるため、磁気特性、
特に直流重畳特性を満たすことが困難である。これを実
現するために薄くても飽和磁束密度が高く、且つある一
定以上の透磁率を有する磁性材料が不可欠であり、高飽
和磁束密度を実現可能な磁性材料として、主組成がF
e,Co及びNiから構成され、Fe,Coの合計含有
量が50wt%以上である金属薄膜磁性部材1であるこ
とが好ましい。又、形成された金属薄膜磁性部材1が結
晶質、非晶質、ナノ微結晶、グラニュラー構造であるか
は問わない。そして、金属薄膜磁性部材1が異種金属薄
膜磁性層の積層構造、或いは結晶質金属磁性薄膜層と非
晶質金属磁性薄膜層の積層構造をとることにより、理由
は必ずしも明らかでないが高周波での渦電流損失の低減
に効果があることを見出した。
Metal thin film magnetic member In the case of the thin magnetic element of the present application, since the cross-sectional dimension of the magnetic material above and below the coil in the thickness direction becomes extremely thin, the magnetic characteristics,
In particular, it is difficult to satisfy the DC superposition characteristics. In order to realize this, a magnetic material having a high saturation magnetic flux density and a magnetic permeability equal to or higher than a certain level is essential even if it is thin, and as a magnetic material capable of realizing a high saturation magnetic flux density, the main composition is F
It is preferable that the metal thin film magnetic member 1 is composed of e, Co and Ni, and the total content of Fe and Co is 50 wt% or more. Further, it does not matter whether the formed metal thin film magnetic member 1 has a crystalline structure, an amorphous structure, a nano crystallite, or a granular structure. The reason why the metal thin film magnetic member 1 has a layered structure of different metal thin film magnetic layers or a layered structure of a crystalline metal magnetic thin film layer and an amorphous metal magnetic thin film layer is a vortex at high frequency, although the reason is not clear. It was found that it is effective in reducing the current loss.

【0038】又、金属薄膜磁性部材1の厚みは使用周波
数により異なるが10μm以上で100μm以下が好ま
しい。これは厚すぎると高周波での渦電流損失が大きく
なり、薄すぎると必要とする透磁率が低下してしまうた
めである。又、箔状或いは板状の金属薄膜磁性部材をシ
ート状コイル2の樹脂絶縁部4上下に接着剤等を用いて
構成することも考えられるが、素子実装後の基板の反
り、落下或いはヒートショック等で金属薄膜磁性部材の
欠落が発生する恐れがある。そのため、シート状コイル
2の樹脂絶縁部4に直接形成できるめっき法、蒸着法、
スパッタ法等の工法が好ましい。中でも、真空系が不必
要で析出速度が速く、密着強度も強いめっき法が有利で
ある。めっき法には大きく分けて、無電解めっき法と電
解めっき法があるがどちらであっても構わないし、場合
により両方を併用しても問題ない。
The thickness of the metal thin film magnetic member 1 varies depending on the frequency used, but is preferably 10 μm or more and 100 μm or less. This is because if it is too thick, the eddy current loss at high frequencies becomes large, and if it is too thin, the required permeability decreases. It is also conceivable that the foil-shaped or plate-shaped metal thin film magnetic member is formed by using an adhesive or the like above and below the resin insulating portion 4 of the sheet-shaped coil 2, but the warp, drop or heat shock of the board after the element is mounted. In some cases, the metal thin film magnetic member may be missing. Therefore, the plating method, the vapor deposition method, which can be directly formed on the resin insulating portion 4 of the sheet-shaped coil 2,
A construction method such as a sputtering method is preferable. Of these, a plating method is advantageous because a vacuum system is unnecessary, the deposition rate is fast, and the adhesion strength is strong. The plating method is roughly classified into an electroless plating method and an electrolytic plating method. Either method may be used, and in some cases, both methods may be used in combination without any problem.

【0039】又、金属薄膜磁性部材1の形成時或いは形
成後に磁場中熱処理等により磁気異方性を付与すること
で薄型磁性素子の高周波数特性を改善しても良い。更に
金属薄膜磁性部材1の形成後に150℃以上で熱処理を
施し、応力を緩和させて磁気特性を向上させることがよ
り好ましい。
Further, the high frequency characteristics of the thin magnetic element may be improved by imparting magnetic anisotropy during the formation of the metal thin film magnetic member 1 or after the formation thereof by heat treatment in a magnetic field or the like. Further, it is more preferable to perform heat treatment at 150 ° C. or higher after forming the metal thin film magnetic member 1 to relieve stress and improve magnetic characteristics.

【0040】シート状コイル シート状コイル2としては、丸線、平角線、箔状線など
を必要なターン数巻いたコイルやめっき、エッチング、
打ち抜きで作製したコイルを導体コイル3として用い、
これを樹脂絶縁部4で被覆して固めることで、薄型磁性
素子の基板実装時のチャッキングや実装後の基板の反
り、落下等で導体コイル3の断線、ショート等を防ぐこ
とができる。但し、樹脂絶縁部4は金属薄膜磁性部材1
よりも透磁率が小さいことが必要であるため、非磁性材
料を用いることがより好ましい。樹脂絶縁部4は、耐熱
性と可塑性の観点からエポキシ樹脂、フェノール樹脂、
ポリイミド樹脂、シリコン樹脂或いはこれらの変性樹脂
を少なくとも一種類以上含む絶縁樹脂が好ましい。
Sheet-shaped coil As the sheet-shaped coil 2, a coil having a required number of turns of a round wire, a rectangular wire, a foil wire or the like, plating, etching,
A coil produced by punching is used as the conductor coil 3,
By covering this with the resin insulating portion 4 and hardening it, it is possible to prevent the conductor coil 3 from being broken or short-circuited due to chucking during mounting of the thin magnetic element on the substrate, warping of the substrate after mounting, dropping, or the like. However, the resin insulating portion 4 is the metal thin film magnetic member 1
Since it is necessary that the magnetic permeability is smaller than that, it is more preferable to use a non-magnetic material. The resin insulation part 4 is composed of epoxy resin, phenol resin,
An insulating resin containing at least one kind of a polyimide resin, a silicone resin or a modified resin thereof is preferable.

【0041】又、低い抵抗値を有し、高いインダクタン
ス値を得るためには導体コイル3の占積率を高くする必
要がある。そのためには、樹脂絶縁部4による導体コイ
ル3の被覆は可能な限り薄い方が良い。又、高い占積率
を実現するためには巻き線あるいはめっき法で作製した
コイルがより好ましい。更に導体コイル3の材質は低抵
抗であることが望ましいため、銀、銅を用いることが好
ましい。なお、平面形の導体コイル3の中心部や導体コ
イルの周辺部の所定領域の樹脂絶縁部4に穴部を形成す
るためには、ドリル、レーザー、パンチャー等で形成し
ても良い。又、シート状コイル2の導体コイル3は平面
形コイルであるため、薄型構造であっても太い導線を用
いることにより、低い直流抵抗を有するコイルを実現す
ることができる。
Further, in order to have a low resistance value and a high inductance value, it is necessary to increase the space factor of the conductor coil 3. For that purpose, it is preferable that the coating of the conductor coil 3 with the resin insulating portion 4 is as thin as possible. Further, in order to realize a high space factor, a coil produced by winding or plating is more preferable. Furthermore, since it is desirable that the material of the conductor coil 3 has low resistance, it is preferable to use silver or copper. In addition, in order to form a hole in the resin insulating portion 4 in a predetermined area of the central portion of the planar conductor coil 3 or the peripheral portion of the conductor coil, it may be formed by a drill, a laser, a puncher or the like. Further, since the conductor coil 3 of the sheet-shaped coil 2 is a planar coil, a coil having a low DC resistance can be realized by using a thick conductive wire even if it has a thin structure.

【0042】次に、本発明の薄型磁性素子の具体的な製
造方法について説明する。
Next, a specific method for manufacturing the thin magnetic element of the present invention will be described.

【0043】本発明の薄型磁性素子が図1に示す構造の
場合、予めシート状に形成されたシート状コイル2を準
備し、次にシート状コイル2の上下に無電解めっき法、
スパッタ法、蒸着法等により、例えばAl,Cu薄膜又
はFeNiB系の磁性薄膜を金属下地層(図示せず)と
して形成した後に、電解めっき法にて所定の厚みの金属
薄膜磁性部材1a,1bを形成することにより、容易に
薄型磁性素子を製造することができる。この方法では、
巻き線技術は必ずしも必要ではない。
In the case where the thin magnetic element of the present invention has the structure shown in FIG. 1, a sheet-shaped coil 2 which is formed in a sheet shape in advance is prepared, and then the upper and lower sides of the sheet-shaped coil 2 are electrolessly plated,
After forming, for example, an Al, Cu thin film or a FeNiB-based magnetic thin film as a metal underlayer (not shown) by a sputtering method, a vapor deposition method or the like, the metal thin film magnetic members 1a, 1b having a predetermined thickness are formed by electrolytic plating. By forming it, a thin magnetic element can be easily manufactured. in this way,
Winding technology is not necessary.

【0044】又、図4に示すような方法で製造すること
も可能である。まず、図4(a)に示すようにシート状
コイル2を複数個形成した大判シート7を用意してお
く。次に、図4(b)に示すように導体コイル3の中心
部と導体コイル周辺部の所定領域(以下、コイルの周辺
所定領域と記す。)の樹脂絶縁部4をパンチャー、レー
ザー加工機、ドリル等により除去する。そして、大判シ
ート7の上下及び除去された導体コイル3の中心部とコ
イルの周辺所定領域の内壁に無電解めっき法、スパッタ
法、蒸着法等により前記金属下地層を形成する。この金
属下地層は非磁性でもかまわないが金属磁性材であるこ
とがより好ましい。
It is also possible to manufacture by the method shown in FIG. First, as shown in FIG. 4A, a large-sized sheet 7 having a plurality of sheet-shaped coils 2 formed therein is prepared. Next, as shown in FIG. 4B, the resin insulating portion 4 in a predetermined area of the central portion of the conductor coil 3 and the peripheral portion of the conductor coil (hereinafter, referred to as a predetermined area around the coil) is punched, a laser beam machine, Remove with a drill. Then, the metal underlayer is formed on the upper and lower portions of the large-sized sheet 7 and on the inner portion of the removed central portion of the conductor coil 3 and the peripheral portion of the coil by electroless plating, sputtering, vapor deposition or the like. The metal underlayer may be non-magnetic, but it is more preferably a metal magnetic material.

【0045】尚、金属薄膜磁性部材1を形成しない場所
には、大判シート7の上下の表面にレジスト膜を形成す
ることによって選択的に金属薄膜磁性部材1を形成する
ことができる。
The metal thin film magnetic member 1 can be selectively formed by forming a resist film on the upper and lower surfaces of the large-sized sheet 7 at a place where the metal thin film magnetic member 1 is not formed.

【0046】その後、図4(c)に示すように電解めっ
き法にて樹脂絶縁部4を除去した部分(中心部、コイル
の周辺所定領域)とシート状コイル2の上下に金属薄膜
磁性部材1を形成する。その後、図4(d)に示すよう
に大判シート7を切断し、端子部を露出或いは切断端面
部に端面電極を形成して、個々の薄型磁性素子を完成す
る。
Thereafter, as shown in FIG. 4 (c), the metal thin film magnetic member 1 is formed above and below the sheet-shaped coil 2 and the portion where the resin insulating portion 4 is removed by electroplating (center portion, predetermined area around the coil). To form. After that, as shown in FIG. 4D, the large-sized sheet 7 is cut to expose the terminals or to form end face electrodes on the cut end faces to complete individual thin magnetic elements.

【0047】従来の方法では巻き線を施してコイルを作
製する必要があったため、量産性に乏しく、高コストに
なるという問題があった。これに対して本実施の形態の
方法によれば、多数の薄型磁性素子を一括製造すること
ができるので、安価に大量に製造することによって生産
コストを抑えることが可能となる。
In the conventional method, since it was necessary to form a coil by winding, there was a problem that the mass productivity was poor and the cost was high. On the other hand, according to the method of the present embodiment, a large number of thin magnetic elements can be manufactured at once, so that it is possible to suppress the production cost by mass-producing at low cost.

【0048】以上のように、本発明の薄型磁性素子の製
造はシート状コイル2を挟んで上下に金属薄膜磁性部材
1をめっき法、スパッタリング法或いは蒸着法などの薄
膜形成プロセスを用いて形成することによって、薄型磁
性素子を生産性に優れた簡単な方法で生産することがで
きる。
As described above, in the manufacture of the thin magnetic element of the present invention, the metal thin film magnetic member 1 is formed on the upper and lower sides of the sheet-shaped coil 2 by using a thin film forming process such as a plating method, a sputtering method or a vapor deposition method. As a result, the thin magnetic element can be produced by a simple method with excellent productivity.

【0049】次に、本発明の薄型磁性素子を用いた電源
モジュールについて説明する。
Next, a power supply module using the thin magnetic element of the present invention will be described.

【0050】図5には本発明の薄型磁性素子を備えた電
源モジュールの構成図が示されている。この電源モジュ
ールは、配線基板8上に薄型磁性素子13が配置され、
配線基板8と薄型磁性素子13の端子部3bとが接続ビ
ア9にて接続されている。接続ビア9は樹脂層10の中
央部に設けられている。更に、配線基板8の薄型磁性素
子13の配置面と反対側の面には、半導体チップ11や
抵抗、チップコンデンサ等のチップ部品12等が実装さ
れている。この電源モジュールは本発明による薄型磁性
素子13を用いているため、高さ方向に他の部品(半導
体チップ11やチップ部品12等)を実装したにもかか
わらず低背であり、且つ薄型磁性素子13の配置面内に
は他の部品がないので面積が小さくなる。
FIG. 5 shows the configuration of a power supply module equipped with the thin magnetic element of the present invention. In this power supply module, the thin magnetic element 13 is arranged on the wiring board 8,
The wiring board 8 and the terminal portion 3b of the thin magnetic element 13 are connected by a connection via 9. The connection via 9 is provided at the center of the resin layer 10. Further, a semiconductor chip 11, chip components 12 such as resistors and chip capacitors, etc. are mounted on the surface of the wiring board 8 opposite to the surface on which the thin magnetic element 13 is arranged. Since this power supply module uses the thin magnetic element 13 according to the present invention, it has a low profile despite mounting other components (semiconductor chip 11, chip component 12, etc.) in the height direction, and it is a thin magnetic element. Since there is no other component in the arrangement plane of 13, the area is small.

【0051】又、薄型磁性素子13の2個所の端子取り
出し位置はコイルパターンにより周囲の任意の位置に設
定できるので、本発明の電源モジュールは図5に示され
た構成に限られず設計自由度も大きいという効果も得ら
れる。
Further, since the two terminal lead-out positions of the thin magnetic element 13 can be set to arbitrary peripheral positions by the coil pattern, the power supply module of the present invention is not limited to the configuration shown in FIG. The effect of being large is also obtained.

【0052】[0052]

【実施例】本発明の薄型磁性素子及びその製造方法につ
いて、具体的に説明する。
EXAMPLES The thin magnetic element and the method for manufacturing the same according to the present invention will be specifically described.

【0053】(実施例1)まずシート状コイル2とし
て、めっき法により外径5mmφ、内径0.5mmφ、
厚さ280μm、導体径約100μmの2段積み16タ
ーンの導体コイル3が樹脂絶縁部4にて絶縁被覆された
シート状コイル2を複数個配した大判シート7を用意し
た。このシート状コイル2は上記金属薄膜磁性部材1よ
りも透磁率の小さい樹脂絶縁部4にて導体コイル3を被
覆したものであり、本実施例1においてはこの樹脂絶縁
部4の構成材料としてポリイミド樹脂を用いた。
Example 1 First, as the sheet-shaped coil 2, an outer diameter of 5 mmφ, an inner diameter of 0.5 mmφ,
A large-size sheet 7 was prepared in which a plurality of sheet coils 2 each having a thickness of 280 μm and a conductor diameter of about 100 μm and 16 turns of conductor coils 3 stacked in two layers were insulation-coated with a resin insulating portion 4. The sheet-shaped coil 2 is formed by coating the conductor coil 3 with a resin insulating portion 4 having a magnetic permeability smaller than that of the metal thin film magnetic member 1, and in the first embodiment, polyimide is used as a constituent material of the resin insulating portion 4. Resin was used.

【0054】次に、スパッタ法にて(表1)に記載され
る磁気特性の試料No.1〜No.9を有するFe,C
o,Niからなる組成の金属薄膜磁性部材1を約20〜
25μmの厚みになるようにシート状コイル2の両面に
形成した。その後、200℃、60分の熱処理を行い、
図1に示す構造のサイズ5mm角、厚さ0.4mの薄型
インダクタンス素子を作製した。又金属薄膜磁性部材1
が露出していると信頼性の低下及び短絡の恐れもあり、
端子部3bのみを露出させて外装14としてエポキシ樹
脂にて絶縁被覆した。外装14を形成することによって
絶縁性と信頼性が更に向上することになる。
Next, the sample No. with the magnetic characteristics shown in (Table 1) was formed by the sputtering method. 1-No. Fe, C having 9
The metal thin film magnetic member 1 having a composition of
It was formed on both sides of the sheet-shaped coil 2 so as to have a thickness of 25 μm. After that, heat treatment at 200 ° C. for 60 minutes,
A thin inductance element having a size of 5 mm square and a thickness of 0.4 m having the structure shown in FIG. 1 was manufactured. Metal thin film magnetic member 1
If it is exposed, there is a risk of reduced reliability and short circuit,
Only the terminal portion 3b was exposed, and the exterior 14 was insulation-coated with an epoxy resin. By forming the outer package 14, the insulation and reliability are further improved.

【0055】このようにして得られた薄型インダクタン
ス素子の特性を測定周波数;3MHz、直流重畳電流;
0.5Aの条件にてインダクタンス値を測定した。金属
薄膜磁性部材1の飽和磁束密度は、VSM(試料振動型
磁力計)を用いて磁場15kOeで測定し、又透磁率は
8の字コイルを用いて測定周波数;3MHzで初透磁率
を測定した。
The characteristics of the thin inductance element thus obtained were measured at a frequency of 3 MHz and a DC superimposed current;
The inductance value was measured under the condition of 0.5A. The saturation magnetic flux density of the metal thin film magnetic member 1 was measured with a magnetic field of 15 kOe using a VSM (sample vibrating magnetometer), and the magnetic permeability was measured using a figure 8 coil at a measurement frequency of 3 MHz. .

【0056】(表1)より、金属薄膜磁性部材1が飽和
磁束密度1.0T以上、透磁率300以上であるとき、
インダクタンス値が3.0μH以上の優れた特性を示し
ていることが分かる。又基板実装後、落差1.5mより
落下試験を実施したが、その前後でインダクタンス値の
変動は認められなかった。
From Table 1, when the metal thin film magnetic member 1 has a saturation magnetic flux density of 1.0 T or more and a magnetic permeability of 300 or more,
It can be seen that the inductor exhibits excellent characteristics with an inductance value of 3.0 μH or more. After mounting on the board, a drop test was conducted from a drop of 1.5 m, but no change in inductance value was observed before and after the drop test.

【0057】[0057]

【表1】 [Table 1]

【0058】(実施例2)シート状コイル2として、め
っき法により外径8mmφ、内径4.0mmφ、厚さ6
00μm、導体径:約230μmの2段積み14ターン
の導体コイル3を樹脂絶縁部4にて絶縁被覆されたシー
ト状コイル2を用意した。このシート状コイル2は、上
記金属薄膜磁性部材1よりも透磁率の小さい樹脂絶縁部
4にて導体コイルを被覆したものであり、本実施例2に
おいてはこの樹脂絶縁部4の構成材料としてエポキシ樹
脂を用いた。
(Example 2) As the sheet-shaped coil 2, an outer diameter of 8 mmφ, an inner diameter of 4.0 mmφ and a thickness of 6 were formed by a plating method.
A sheet-shaped coil 2 was prepared in which a conductor coil 3 having two turns of 14 μm and a conductor diameter of about 230 μm and having a diameter of about 230 μm was insulation-coated with a resin insulating portion 4. The sheet-shaped coil 2 is formed by coating the conductor coil with a resin insulating portion 4 having a magnetic permeability smaller than that of the metal thin film magnetic member 1, and in the second embodiment, epoxy is used as a constituent material of the resin insulating portion 4. Resin was used.

【0059】次に、このシート状コイル2の中心部及び
コイルの周辺所定領域にパンチャーを用いて樹脂絶縁部
4の穴開け除去加工を行った。次に、このシート状コイ
ル2の上下及び樹脂絶縁部4の穴開け除去加工を行った
内壁部に、無電解めっき法にてAl金属下地を形成し、
これを電極として電解めっき法によりめっき浴槽のFe
イオン、Coイオン、Niイオン、Cイオン、Bイオ
ン、Pイオン、Sイオン等の比率を調整し、(表2)に
記載の試料No.10〜No.18の組成を有する金属
薄膜磁性部材1を得た。磁性膜の厚みは45〜50μm
であった。その後、窒素雰囲気下で150℃、60分熱
処理を行い、図2に示す構造のサイズは8mm角、厚
さ;0.7mmの薄型インダクタンス素子を作製した。
Next, the resin insulating portion 4 was perforated and removed using a puncher at the central portion of the sheet-shaped coil 2 and a predetermined area around the coil. Then, an Al metal base is formed by electroless plating on the upper and lower sides of the sheet-shaped coil 2 and the inner wall portion of the resin insulating portion 4 which has been punched and removed.
Using this as an electrode, the Fe in the plating bath is electroplated.
Ion, Co ion, Ni ion, C ion, B ion, P ion, S ion, etc. were adjusted in proportion, and the sample No. 10-No. A metal thin film magnetic member 1 having a composition of 18 was obtained. The thickness of the magnetic film is 45-50 μm
Met. After that, heat treatment was performed at 150 ° C. for 60 minutes in a nitrogen atmosphere to produce a thin inductance element having a size of 8 mm square and a thickness of 0.7 mm shown in FIG.

【0060】得られた薄型インダクタンス素子の特性
を、測定周波数;1MHz、直流重畳電流;1.0Aに
おけるインダクタンス値を測定した。(表2)より、F
eおよびCoの合計含有量が50wt%以上のとき、優
れた特性を示すことが分かる。本実施例の薄型インダク
タンス素子は超薄型で、中心部及びコイルの周辺所定領
域にも金属薄膜磁性部材を充填する構成とすることによ
り、コイルの直流抵抗も90mΩと低いにもかかわらず
インダクタンス値が大きく、かつ直流重畳特性も良好で
あった。又基板実装後、落差1.5mmより落下試験を
実施したが、前後でインダクタンス値の変動は認められ
なかった。
With respect to the characteristics of the obtained thin inductance element, the inductance value was measured at a measurement frequency of 1 MHz and a DC superimposed current of 1.0 A. From (Table 2), F
It can be seen that when the total content of e and Co is 50 wt% or more, excellent properties are exhibited. The thin inductance element of the present embodiment is ultrathin, and by filling the central portion and a predetermined area around the coil with the metal thin film magnetic member, the inductance value is low even though the DC resistance of the coil is as low as 90 mΩ. Was large and the direct current superposition characteristics were also good. After mounting on the board, a drop test was conducted with a drop of 1.5 mm, but no change in inductance value was observed before and after.

【0061】[0061]

【表2】 [Table 2]

【0062】(実施例3)シート状コイル2として、め
っき法により外径4mmφ、内径0.8mmφ、厚さ3
00μm、導体径約80μmの2段積み14ターンの導
体コイル3を樹脂絶縁部4にて絶縁被覆されたシート状
コイル2を用意した。このシート状コイル2は、上記金
属薄膜磁性部材1よりも透磁率の小さい樹脂絶縁部4に
て導体コイルを被覆したものであり、本実施例3におい
てはこの樹脂絶縁部4の構成材料としてシリコン樹脂を
用いた。
(Example 3) As the sheet-shaped coil 2, an outer diameter of 4 mmφ, an inner diameter of 0.8 mmφ and a thickness of 3 were obtained by a plating method.
A sheet-shaped coil 2 was prepared in which a conductor coil 3 having two turns of 14 μm and a conductor diameter of 00 μm and a conductor diameter of about 80 μm was insulation-coated with a resin insulating portion 4. The sheet-shaped coil 2 is formed by coating the conductor coil with a resin insulating portion 4 having a magnetic permeability smaller than that of the metal thin film magnetic member 1. In the third embodiment, silicon is used as a constituent material of the resin insulating portion 4. Resin was used.

【0063】次に、このシート状コイル2の上下面に無
電解めっき法を用いてFeNiB系の非晶質金属薄膜磁
性層である上側第1層金属薄膜磁性部材1a、下側第1
層金属薄膜磁性部材1bを形成し、さらに前記非晶質金
属薄膜磁性層の上に電解めっき法により結晶質金属薄膜
磁性層である上側第2層金属薄膜磁性部材1c、下側第
2層金属薄膜磁性部材1dを形成する。同様に無電解め
っき法、電解めっき法をそれぞれ繰り返し、上側第3層
金属薄膜磁性部材1e、下側第3層金属薄膜磁性部材1
f、上側第4層金属薄膜磁性部材1g、下側第4層金属
薄膜磁性部材1hを積層して形成することによって、最
終的に上下各々4層構造の金属薄膜磁性部材1を形成す
る。このとき各層の厚みは10〜20μmであった。そ
の後、窒素雰囲気下で150℃、60分熱処理を行い、
図3に示す構造のサイズ3mm角、厚さ0.6mmの薄
型インダクタンス素子を作製した。
Next, by using electroless plating on the upper and lower surfaces of the sheet-shaped coil 2, the upper first layer metal thin film magnetic member 1a, which is an FeNiB type amorphous metal thin film magnetic layer, and the lower first layer.
A layer metal thin film magnetic member 1b is formed, and an upper second layer metal thin film magnetic member 1c and a lower second layer metal which are crystalline metal thin film magnetic layers are formed on the amorphous metal thin film magnetic layer by electrolytic plating. The thin film magnetic member 1d is formed. Similarly, the electroless plating method and the electrolytic plating method are repeated, respectively, and the upper third-layer metal thin film magnetic member 1e and the lower third-layer metal thin film magnetic member 1 are repeated.
f, the upper fourth-layer metal thin-film magnetic member 1g and the lower fourth-layer metal thin-film magnetic member 1h are laminated to form the final metal thin-film magnetic member 1 having a four-layer structure. At this time, the thickness of each layer was 10 to 20 μm. Then, heat treatment at 150 ° C. for 60 minutes in a nitrogen atmosphere,
A thin inductance element having a size of 3 mm square and a thickness of 0.6 mm having the structure shown in FIG. 3 was produced.

【0064】得られた薄型インダクタンス素子の特性は
測定周波数;5MHz、直流重畳電流;1.0Aにおけ
るインダクタンス値が、2.5μHであり、優れた高周
波特性で且つ直流重畳特性も良好であった。本実施例3
では4層に積層された金属薄膜磁性部材1について説明
してきたがこの積層数は何層でも良く、少なくとも上下
各々二層以上であれば良い。
The characteristics of the obtained thin inductance element were 2.5 μH at a measurement frequency of 5 MHz and a DC superposition current of 1.0 A, which was excellent high frequency characteristics and good DC superposition characteristics. Example 3
In the above, the metal thin film magnetic member 1 laminated in four layers has been described, but the number of laminated layers may be any number, as long as it is at least two layers in each of the upper and lower layers.

【0065】又、基板実装後、落差1.5mより落下試
験を実施したが、前後でインダクタンス値の変動は認め
られなかった。
After mounting on the board, a drop test was conducted from a drop of 1.5 m, but no change in inductance value was observed before and after.

【0066】[0066]

【発明の効果】以上説明してきたように本発明の薄型磁
性素子は、薄型で磁束がコイル導体を横切ることがほと
んどない構造となっているために、高周波でも磁気損失
が少なく、高いインダクタンス値と低いコイル直流抵
抗、良好な直流重畳特性を実現し、かつ基板実装時や実
装後の落下試験等に耐えうる機械強度の強い信頼性に優
れた薄型の磁性素子を提供することができる。
As described above, the thin magnetic element of the present invention is thin and has a structure in which the magnetic flux hardly crosses the coil conductor. Therefore, magnetic loss is small even at high frequencies, and a high inductance value is obtained. It is possible to provide a thin magnetic element that realizes low coil DC resistance, excellent DC superposition characteristics, and has high mechanical strength and excellent reliability that can withstand a drop test during or after mounting on a substrate.

【0067】更に本発明の磁性素子の製造方法によれ
ば、個別に巻き線を施す工程が不要となることから、簡
易な装置で大量に一括生産することができる。又本発明
の電源モジュールは本発明の磁性素子を用いることによ
り、低背かつ小面積であり、工業的価値が大きいもので
ある。
Further, according to the method of manufacturing a magnetic element of the present invention, the step of individually winding the wires is not required, and therefore a large quantity can be collectively manufactured by a simple device. Further, the power supply module of the present invention has a low profile and a small area by using the magnetic element of the present invention, and is of great industrial value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の薄型磁性素子の一実施の形態である薄
型インダクタンス素子を示す断面図
FIG. 1 is a sectional view showing a thin inductance element which is an embodiment of a thin magnetic element of the present invention.

【図2】同他の例の薄型インダクタンス素子の断面図FIG. 2 is a sectional view of a thin inductance element of another example.

【図3】同他の例の薄型インダクタンス素子の断面図FIG. 3 is a sectional view of a thin inductance element of another example.

【図4】(a)〜(d)本発明の薄型磁性素子の製造方
法の一実施の形態を示す工程図
4A to 4D are process diagrams showing an embodiment of a method for manufacturing a thin magnetic element of the present invention.

【図5】本発明の一実施の形態の電源モジュールの構造
を示す断面図
FIG. 5 is a sectional view showing a structure of a power supply module according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 金属薄膜磁性部材 1a 上側第1層金属薄膜磁性部材 1b 下側第1層金属薄膜磁性部材 1c 上側第2層金属薄膜磁性部材 1d 下側第2層金属薄膜磁性部材 1e 上側第3層金属薄膜磁性部材 1f 下側第3層金属薄膜磁性部材 1g 上側第4層金属薄膜磁性部材 1h 下側第4層金属薄膜磁性部材 2 シート状コイル 3 導体コイル 4 樹脂絶縁部 5 金属磁性部材 7 大判シート 8 配線基板 9 接続ビア 10 樹脂層 11 半導体チップ 12 チップ部品 13 薄型磁性素子 14 外装 1 Metal thin film magnetic member 1a Upper first layer metal thin film magnetic member 1b Lower first layer metal thin film magnetic member 1c Upper second layer metal thin film magnetic member 1d lower second layer metal thin film magnetic member 1e Upper third layer metal thin film magnetic member 1f Lower third layer metal thin film magnetic member 1g Upper 4th layer metal thin film magnetic member 1h Lower 4th layer metal thin film magnetic member 2 sheet coil 3 conductor coil 4 Resin insulation part 5 Metal magnetic members 7 large format sheets 8 wiring board 9 connection via 10 resin layer 11 semiconductor chips 12 chip parts 13 Thin magnetic element 14 Exterior

フロントページの続き (72)発明者 井上 修 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 半田 浩之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5E049 AA01 AA04 AA07 BA11 CC01 GC01 HC01 5E070 AB01 BA11 BB01 Continued front page    (72) Inventor Osamu Inoue             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Hiroyuki Handa             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 5E049 AA01 AA04 AA07 BA11 CC01                       GC01 HC01                 5E070 AB01 BA11 BB01

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 導体コイル及び樹脂絶縁部を含むシート
状コイルと、このシート状コイルを挟持するように前記
樹脂絶縁部より透磁率が高い金属薄膜磁性部材を配置し
た薄型磁性素子。
1. A thin magnetic element in which a sheet-shaped coil including a conductor coil and a resin insulating portion and a metal thin film magnetic member having a magnetic permeability higher than that of the resin insulating portion are arranged so as to sandwich the sheet-shaped coil.
【請求項2】 導体コイル及び樹脂絶縁部を含むシート
状コイルと、このシート状コイルを挟持するように前記
樹脂絶縁部より透磁率が高い金属薄膜磁性部材を配置
し、且つこの金属薄膜磁性部材は前記金属薄膜磁性部材
間の導体コイルの存在しない前記シート状コイルの中心
部及び周辺部から選ばれる少なくとも1ヶ所にも配置さ
れている薄型磁性素子。
2. A sheet-shaped coil including a conductor coil and a resin insulating portion, and a metal thin-film magnetic member having a magnetic permeability higher than that of the resin insulating portion so as to sandwich the sheet-shaped coil, and the metal thin-film magnetic member. Is a thin magnetic element disposed at at least one location selected from the central portion and the peripheral portion of the sheet-shaped coil where no conductor coil exists between the metal thin film magnetic members.
【請求項3】 金属薄膜磁性部材の主組成がFe,Co
及びNiから構成され、Fe,Coの合計含有量が50
wt%以上である請求項1または2のいずれか一つに記
載の薄型磁性素子。
3. The main composition of the metal thin film magnetic member is Fe, Co.
And Ni, and the total content of Fe and Co is 50
The thin magnetic element according to claim 1, wherein the thin magnetic element is at least wt%.
【請求項4】 金属薄膜磁性部材が異種金属磁性部材の
積層構造から構成される請求項1または2のいずれか一
つに記載の薄型磁性素子。
4. The thin magnetic element according to claim 1, wherein the metal thin film magnetic member has a laminated structure of different metal magnetic members.
【請求項5】 金属薄膜磁性部材が結晶質金属磁性薄膜
と非晶質金属磁性薄膜の積層構造から構成される請求項
4に記載の薄型磁性素子。
5. The thin magnetic element according to claim 4, wherein the metal thin film magnetic member has a laminated structure of a crystalline metal magnetic thin film and an amorphous metal magnetic thin film.
【請求項6】 金属薄膜磁性部材が飽和磁束密度1.0
T以上、透磁率300以上である請求項1または2のい
ずれか一つに記載の薄型磁性素子。
6. The saturated magnetic flux density of the metal thin film magnetic member is 1.0.
The thin magnetic element according to claim 1, which has a magnetic permeability of T or more and a magnetic permeability of 300 or more.
【請求項7】 厚みが10μm以上で100μm以下の
金属薄膜磁性部材である請求項1または2のいずれか一
つに記載の薄型磁性素子。
7. The thin magnetic element according to claim 1, which is a metal thin film magnetic member having a thickness of 10 μm or more and 100 μm or less.
【請求項8】 導体コイルは上下2段に分かれてそれぞ
れ平面形に巻回された2段コイルであって、最内周部で
上下2段のコイルが互いに接続されている請求項1また
は2のいずれか一つに記載の薄型磁性素子。
8. The conductor coil is a two-stage coil which is divided into two upper and lower stages and wound in a planar shape, and the upper and lower two-stage coils are connected to each other at the innermost peripheral portion. 2. The thin magnetic element according to any one of 1.
【請求項9】 樹脂絶縁部はエポキシ樹脂、フェノール
樹脂、ポリイミド樹脂、シリコン樹脂或いはこれらの変
性樹脂を少なくとも一種類以上含む請求項1または2の
いずれか一つに記載の薄型磁性素子。
9. The thin magnetic element according to claim 1, wherein the resin insulating portion contains at least one kind of epoxy resin, phenol resin, polyimide resin, silicon resin, or modified resin thereof.
【請求項10】 シート状コイルが配線基板の配線層の
一部として配線基板の内部又は表面に設けられている請
求項1に記載の薄型磁性素子。
10. The thin magnetic element according to claim 1, wherein the sheet-shaped coil is provided inside or on the surface of the wiring board as a part of the wiring layer of the wiring board.
【請求項11】 導体コイルを樹脂絶縁部に内蔵してシ
ート状コイルを作製する工程と、シート状コイルの上下
にめっきにより金属薄膜磁性部材を所定の形状に形成す
る工程を含む薄型磁性素子の製造方法。
11. A thin magnetic element including a step of producing a sheet coil by incorporating a conductor coil in a resin insulating portion and a step of forming a metal thin film magnetic member in a predetermined shape by plating on and under the sheet coil. Production method.
【請求項12】 導体コイルを樹脂絶縁部に内蔵してシ
ート状コイルを作製する工程と、シート状コイルの上下
にスパッタリング、蒸着法により金属薄膜磁性部材を所
定の形状に形成する工程を含む薄型磁性素子の製造方
法。
12. A thin type including a step of producing a sheet coil by incorporating a conductor coil in a resin insulating portion, and a step of forming a metal thin film magnetic member in a predetermined shape on the upper and lower sides of the sheet coil by sputtering and vapor deposition. Magnetic element manufacturing method.
【請求項13】 請求項1または2のいずれか一つに記
載の薄型磁性素子と半導体チップ及びチップ部品を配線
基板に実装してなる電源モジュール。
13. A power supply module comprising the thin magnetic element according to claim 1 and a semiconductor chip and a chip component mounted on a wiring board.
JP2002082632A 2002-03-25 2002-03-25 Thin magnetic element, its manufacturing method, and power source module using the same Pending JP2003282328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002082632A JP2003282328A (en) 2002-03-25 2002-03-25 Thin magnetic element, its manufacturing method, and power source module using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002082632A JP2003282328A (en) 2002-03-25 2002-03-25 Thin magnetic element, its manufacturing method, and power source module using the same

Publications (1)

Publication Number Publication Date
JP2003282328A true JP2003282328A (en) 2003-10-03

Family

ID=29230746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002082632A Pending JP2003282328A (en) 2002-03-25 2002-03-25 Thin magnetic element, its manufacturing method, and power source module using the same

Country Status (1)

Country Link
JP (1) JP2003282328A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116666A (en) * 2003-10-06 2005-04-28 Matsushita Electric Ind Co Ltd Magnetic element
WO2006077872A1 (en) * 2005-01-18 2006-07-27 Nippon Kagaku Yakin Co., Ltd. Gap sheet and magnetic core having such gap sheet inserted therein
JP2006303405A (en) * 2005-03-23 2006-11-02 Sumida Corporation Inductor
JP2009302386A (en) * 2008-06-16 2009-12-24 Nec Tokin Corp Surface-mounted inductor
JP2017524254A (en) * 2014-08-07 2017-08-24 モダ−イノチップス シーオー エルティディー Power inductor
US10541075B2 (en) 2014-08-07 2020-01-21 Moda-Innochips Co., Ltd. Power inductor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116666A (en) * 2003-10-06 2005-04-28 Matsushita Electric Ind Co Ltd Magnetic element
WO2006077872A1 (en) * 2005-01-18 2006-07-27 Nippon Kagaku Yakin Co., Ltd. Gap sheet and magnetic core having such gap sheet inserted therein
JP2006303405A (en) * 2005-03-23 2006-11-02 Sumida Corporation Inductor
JP2009302386A (en) * 2008-06-16 2009-12-24 Nec Tokin Corp Surface-mounted inductor
JP2017524254A (en) * 2014-08-07 2017-08-24 モダ−イノチップス シーオー エルティディー Power inductor
US10541075B2 (en) 2014-08-07 2020-01-21 Moda-Innochips Co., Ltd. Power inductor
US10541076B2 (en) 2014-08-07 2020-01-21 Moda-Innochips Co., Ltd. Power inductor
US10573451B2 (en) 2014-08-07 2020-02-25 Moda-Innochips Co., Ltd. Power inductor

Similar Documents

Publication Publication Date Title
KR101792281B1 (en) Power Inductor and Manufacturing Method for the Same
KR101462806B1 (en) Inductor and Manufacturing Method for the Same
TWI603352B (en) Chip electronic component and board for mounting thereof
JP4247518B2 (en) Small inductor / transformer and manufacturing method thereof
US9976224B2 (en) Chip electronic component and manufacturing method thereof
KR101862401B1 (en) Layered Inductor and Manufacturing Method fo the Same
JP5874199B2 (en) Coil component and manufacturing method thereof
US6768409B2 (en) Magnetic device, method for manufacturing the same, and power supply module equipped with the same
JP3807438B2 (en) Inductance components and electronic equipment using the same
JP2003203813A (en) Magnetic element, its manufacturing method and power source module provided therewith
JP2007503716A (en) Ultra-thin flexible inductor
WO2006008939A1 (en) Inductance component and manufacturing method thereof
CN106783070A (en) Coil block, the plate with the coil block and the method for manufacturing the coil block
JP2003347124A (en) Magnetic element and power module using the same
JP2006287093A (en) Inductance component and its manufacturing method
CN111667993B (en) Coil assembly
JP2003282328A (en) Thin magnetic element, its manufacturing method, and power source module using the same
JP2005116666A (en) Magnetic element
US11942255B2 (en) Inductor component
CN112447358B (en) Electronic component and method for manufacturing the same
KR102198529B1 (en) Chip electronic component and manufacturing method thereof
KR102118496B1 (en) Coil electronic component
JP2022064179A (en) Inductor component
CN112447359A (en) Electronic component and method for manufacturing the same
JPH05198445A (en) Thin power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212