JP2009302386A - Surface-mounted inductor - Google Patents

Surface-mounted inductor Download PDF

Info

Publication number
JP2009302386A
JP2009302386A JP2008156814A JP2008156814A JP2009302386A JP 2009302386 A JP2009302386 A JP 2009302386A JP 2008156814 A JP2008156814 A JP 2008156814A JP 2008156814 A JP2008156814 A JP 2008156814A JP 2009302386 A JP2009302386 A JP 2009302386A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic body
resin
coil
permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008156814A
Other languages
Japanese (ja)
Inventor
Kenichi Chatani
健一 茶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2008156814A priority Critical patent/JP2009302386A/en
Publication of JP2009302386A publication Critical patent/JP2009302386A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-mounted inductor which is a short type, and has high inductance, superior DC superposition characteristics, and superior mechanical strength against external stress and internal stress. <P>SOLUTION: The surface-mounted inductor has at least two or more magnetic bodies, differing in relative permeability, laminated across a coil in at least three layers in a direction perpendicular to the center axis of a coil 5 such that a firsts magnetic body 1 having the lowest relative permeability is disposed peripherally nearby the coil 5 and a second magnetic body 2 having higher relative permeability that it is disposed with the first magnetic body with the lowest relative permeability interposed. Further, a through-hole 4 is bored in part of the second magnetic body 2 with the higher relative permeability disposed as the outermost layer, and at least part of the capacity that the through-hole occupies is filled with a resin or a magnetic resin obtained by mixing the resin and magnetic powder. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、小型、携帯型の電子機器に使用される小型、低背型の面実装インダクタ(以下、「インダクタ」と称す)に関するものである。   The present invention relates to a small-sized and low-profile surface-mount inductor (hereinafter referred to as “inductor”) used in a small-sized and portable electronic device.

近年、携帯電話器、ノートパソコン、小型ゲーム機等の携帯型電子機器において、各種の多機能化に加えて電源の長時間化、大容量化が求められる結果、電源回路に搭載されるインダクタに対しても小型・低背化、大電流化、低損失化の要求が益々高まっている。インダクタの小型化と低損失化には、コアの磁気飽和が起こりにくい磁気回路構成とすること、コイル巻線の直流抵抗を小さくすること、コア損失の小さなコア材を用いること、が極めて重要である。   In recent years, in portable electronic devices such as mobile phones, notebook computers, and small game machines, in addition to various functions, it has been required to increase the power supply time and increase the capacity. On the other hand, demands for smaller size, lower height, higher current, and lower loss are increasing. To reduce the size and loss of an inductor, it is extremely important to use a magnetic circuit configuration in which the magnetic saturation of the core is unlikely to occur, to reduce the DC resistance of the coil winding, and to use a core material with low core loss. is there.

このような要求に対応するため、各種の携帯型電子機器に用いられるインダクタとしては、巻芯部の両側に鍔を有するドラム型のフェライトコアの前記巻芯部に直に巻線を施し、該鍔と該巻線の外周部を包囲するように、磁性粉末と樹脂の混合物を塗布などして配置した構成が用いられている。このような、インダクタは、例えば特許文献1に開示されている。   In order to meet such a demand, as an inductor used in various portable electronic devices, a winding is directly applied to the core portion of the drum-type ferrite core having ridges on both sides of the core portion, A configuration in which a mixture of magnetic powder and resin is applied and disposed so as to surround the outer periphery of the ridge and the winding is used. Such an inductor is disclosed in Patent Document 1, for example.

また、低背化要求に対応するため、巻芯部の片側のみに鍔を有する逆T字形のドラム型コアの前記巻芯部に直に巻線を施し、該巻線部の周囲を包囲するように、磁性粉末と樹脂の混合物で充填した構成も提案されている。このような、インダクタは、例えば特許文献2に開示されている。   Further, in order to meet the demand for a low profile, a winding is directly applied to the core portion of the inverted T-shaped drum core having a flange on only one side of the core portion, and the periphery of the winding portion is surrounded. Thus, a configuration filled with a mixture of magnetic powder and resin has also been proposed. Such an inductor is disclosed in Patent Document 2, for example.

特開2005−210055号公報Japanese Patent Laid-Open No. 2005-210055 特開2005−150470号公報JP 2005-150470 A

しかしながら、例えば特許文献1による従来のインダクタの構成では、磁気飽和回避と抗折強度保持の両観点から、各々の鍔部の厚さは少なくとも0.2mmが必要であり、また、1A以上の直流重畳電流を許容するためには、巻線損失の制限から線径0.1mm以上の銅線を用いて約150mΩ以下の直流抵抗とする必要があるため、高さ約1mm以下の低背型インダクタでは、1A以上の大電流化は困難であった。また、巻芯部の両側に鍔を有するドラム型のフェライト磁芯もしくは圧粉磁芯を得るには、焼結以前の工程でグリーン体の切削加工、もしくは圧縮成型加工によって鍔部と巻芯部を形成する必要があり、磁芯が低背になるほど、これら加工工程での歩留まりは悪化していた。   However, for example, in the configuration of the conventional inductor according to Patent Document 1, from the viewpoints of avoiding magnetic saturation and maintaining the bending strength, the thickness of each collar portion is required to be at least 0.2 mm, and a direct current of 1 A or more is required. In order to allow the superimposed current, it is necessary to use a copper wire with a wire diameter of 0.1 mm or more and a direct current resistance of about 150 mΩ or less because of the limitation of winding loss, so a low-profile inductor with a height of about 1 mm or less Then, it was difficult to increase the current of 1 A or more. In addition, in order to obtain a drum-type ferrite core or dust core having ridges on both sides of the core, the heel and core are obtained by cutting the green body or compression molding in the process before sintering. The yield in these processing steps deteriorated as the magnetic core became lower in height.

図6は、特許文献2による従来の面実装インダクタを説明する斜視図で、図6(a)は斜視図、図6(b)は断面図を示す。従来のインダクタの構成では、片側のみに鍔3bがある逆T字状のドラム型の磁性磁心3の鍔3bと反対側に、磁性粉末と樹脂の混合物からなる比透磁率が低い磁性樹脂6を配置した構造であるため、磁気回路上、開磁路構造となるため十分なインダクタンスを得ることができず、また漏洩磁束が大きくなるという欠点があった。   6A and 6B are perspective views for explaining a conventional surface mount inductor according to Patent Document 2. FIG. 6A is a perspective view, and FIG. 6B is a cross-sectional view. In the conventional inductor configuration, a magnetic resin 6 having a low relative permeability made of a mixture of magnetic powder and resin is provided on the side opposite to the flange 3b of the inverted T-shaped drum-shaped magnetic magnetic core 3 having the flange 3b only on one side. Since the structure is arranged, the magnetic circuit has an open magnetic circuit structure, so that a sufficient inductance cannot be obtained and a leakage magnetic flux is increased.

従って、各種の携帯型電子機器に用いられ、特に高さが約1mm以下の低背型インダクタにおいては、1A以上の大電流対応を実現し、かつ、従来品と同等程度の製造コストを実現することは困難であった。   Therefore, it is used in various portable electronic devices, and in particular for a low profile inductor with a height of about 1 mm or less, it can handle a large current of 1 A or more, and can realize a manufacturing cost equivalent to that of a conventional product. It was difficult.

本発明は、上述の課題を解決し、低背型、高インダクタンスで、かつ直流重畳特性が優れ、更に外部応力や内部応力に対する機械的強度の優れた面実装インダクタの提供を目的とする。   An object of the present invention is to solve the above-described problems, and to provide a surface mount inductor having a low profile, high inductance, excellent DC superimposition characteristics, and excellent mechanical strength against external stress and internal stress.

極力少ないコイル巻数で大きなインダクタンスを得るためには、コイル周囲に配置する磁性体の構成磁路の大部分を、比透磁率が50以上の高い透磁率を有する磁性体で構成することが望ましいが、一方で磁気飽和が起こり易くなるため、その一部に比透磁率の低い磁性体を組み合わせて構成するのが有効である。   In order to obtain a large inductance with as few coil turns as possible, it is desirable that the majority of the magnetic path of the magnetic material arranged around the coil is made of a magnetic material having a high permeability of 50 or more. On the other hand, since magnetic saturation is likely to occur, it is effective to combine a magnetic material having a low relative permeability with a part thereof.

本発明は、少なくとも2つ以上の異なる比透磁率を有する磁性体をコイルの巻回中心軸と垂直方向に、かつコイルを挟みこむように少なくとも3層積層して配置し、かつ比透磁率の最も低い磁性体をコイルの近接周辺部に配し、それより高い比透磁率を有する磁性体を前記比透磁率の最も低い磁性体を挟み込むように配する構造とする。このような積層構造にすることで、磁束は透磁率の最も低い磁性体を必ず通過して、高い比透磁率を有する磁性体へ達する磁路を構成するので、磁気飽和が起こりにくくなり、その結果、重畳特性を向上させることができる。
上記積層構造として、いくつかの例を挙げて説明する。例えば、2つの異なる比透磁率を有する磁性体を用い、比透磁率の最も低い磁性体(以下、「第1の磁性体」と呼ぶ)をコイルの近接周辺部に1層配し、その上下を、それより高い比透磁率を有する磁性体(以下、「第2の磁性体」と呼ぶ)で挟みこむように積層した3層構造のものや、同様に前記第1の磁性体をコイルの上下面に2層配し、更にその上下を、前記第2の磁性体で挟みこむように積層した4層構造のものでもよい。また、3つの異なる比透磁率を有する磁性体を用い、前記第1の磁性体をコイルの近接周辺部に1層配し、その上面に前記第2の磁性体を配し、更に前記コイルの下面には、3番目の比透磁率を有する磁性体(以下、「第3の磁性体」と呼ぶ)を配した3層構造のものでもよい。
上述のように、比透磁率の最も低い磁性体を第1の磁性体、また、それより高い比透磁率を有する磁性体を第n(n≧2)の磁性体と呼んで区別する。
また、前記第1の磁性体、第n(n≧2)の磁性体は、それぞれ自体が各々複数積層された積層体としてもよい。
また、高い比透磁率を有する磁性体を最外層に配置すること、また、前記高い比透磁率を有する磁性体の外縁部を、前記比透磁率の最も低い磁性体を包囲するようにキャップ状に形成することで、外部への漏洩磁束を抑えられ、その結果、インダクタンスを向上させることができる。
更に、多層構造により、内部応力や外部応力に対する磁性体の機械的強度の低下も抑えることができるので、低背型インダクタに好適な構造となる。
さらに、最外層に配置する高い比透磁率を有する磁性体層の一部に貫通穴を形成し、この貫通穴が占める容積の少なくとも一部に、樹脂もしくは樹脂と磁性粉末を混合した磁性樹脂を充填することで各層間の接合強度を高め、外部からの衝撃や内部応力に対して、層間の剥離、脱落を防止することができる。この貫通穴は、充填した樹脂や磁性樹脂、あるいは層間接合用の接着剤などの内部気泡の抜け穴としての作用効果も奏する。
In the present invention, at least two magnetic materials having different relative magnetic permeability are arranged in a direction perpendicular to the winding center axis of the coil and at least three layers so as to sandwich the coil. A low magnetic body is arranged in the vicinity of the coil, and a magnetic body having a higher relative permeability is arranged so as to sandwich the magnetic body having the lowest relative permeability. By adopting such a laminated structure, the magnetic flux always passes through the magnetic body having the lowest magnetic permeability and constitutes a magnetic path that reaches the magnetic body having a high relative permeability, so that magnetic saturation is less likely to occur. As a result, the superimposition characteristic can be improved.
The laminated structure will be described with some examples. For example, a magnetic body having two different relative magnetic permeability is used, and a magnetic body having the lowest relative magnetic permeability (hereinafter referred to as “first magnetic body”) is arranged in one layer in the vicinity of the coil, Of a three-layer structure in which a magnetic material having a higher relative magnetic permeability (hereinafter referred to as a “second magnetic material”) is sandwiched, or similarly, the first magnetic material is placed on the coil. A four-layer structure in which two layers are arranged on the lower surface and the upper and lower layers are sandwiched between the second magnetic bodies may be used. In addition, using magnetic materials having three different relative magnetic permeability, one layer of the first magnetic material is disposed in the vicinity of the coil, the second magnetic material is disposed on the upper surface thereof, and the coil A three-layer structure in which a magnetic body having a third relative permeability (hereinafter referred to as a “third magnetic body”) is disposed on the lower surface may be used.
As described above, the magnetic material having the lowest relative magnetic permeability is referred to as the first magnetic material, and the magnetic material having a higher relative magnetic permeability is referred to as the nth (n ≧ 2) magnetic material.
The first magnetic body and the n-th (n ≧ 2) magnetic body may each be a stacked body in which a plurality of layers are stacked.
Further, a magnetic body having a high relative permeability is disposed in the outermost layer, and an outer edge portion of the magnetic body having the high relative permeability is formed in a cap shape so as to surround the magnetic body having the lowest relative permeability. As a result, the leakage magnetic flux to the outside can be suppressed, and as a result, the inductance can be improved.
Furthermore, since the multilayer structure can suppress a decrease in the mechanical strength of the magnetic material against internal stress and external stress, the structure is suitable for a low-profile inductor.
Further, a through hole is formed in a part of the magnetic layer having a high relative magnetic permeability disposed in the outermost layer, and a resin or a magnetic resin mixed with resin and magnetic powder is formed in at least a part of the volume occupied by the through hole. By filling, the bonding strength between the layers can be increased, and the peeling and dropping of the layers can be prevented against external impacts and internal stresses. This through hole also has an effect as a through hole for internal bubbles such as filled resin, magnetic resin, or adhesive for interlayer bonding.

本発明によれば、導電体を巻回したコイルと、前記コイルの空芯部を含む外周部に磁性体を配してなる面実装インダクタであって、前記磁性体は少なくとも2つの異なる比透磁率を有する複数の磁性体を、前記コイルの巻回中心軸と垂直方向に、かつ前記コイルを挟み、少なくとも3層積層して配し、前記複数の磁性体のうち最も低い比透磁率を有する磁性体は、前記コイルの表裏面の少なくとも一方に隣接して配し、かつ他の磁性体の間に位置するように配してなることを特徴とする面実装インダクタが得られる。   According to the present invention, there is provided a surface-mount inductor comprising a coil wound with a conductor and a magnetic body disposed on an outer peripheral portion including an air core portion of the coil, wherein the magnetic body has at least two different relative permeability. A plurality of magnetic bodies having magnetic permeability are arranged in a direction perpendicular to the winding center axis of the coil and sandwiching at least three layers, and have the lowest relative magnetic permeability among the plurality of magnetic bodies. A surface-mount inductor is obtained in which the magnetic body is disposed adjacent to at least one of the front and back surfaces of the coil and is positioned between other magnetic bodies.

本発明によれば、前記他の磁性体は、層面と垂直方向に少なくとも1つの貫通穴を有し、前記貫通穴が占める容積の少なくとも一部は、樹脂または樹脂と磁性粉末を混合した磁性樹脂または前記最も低い比透磁率を有する磁性体のいずれかによって占められていることを特徴とする面実装インダクタが得られる。   According to the present invention, the other magnetic body has at least one through hole in a direction perpendicular to the layer surface, and at least part of the volume occupied by the through hole is a resin or a magnetic resin in which a resin and a magnetic powder are mixed. Alternatively, a surface mount inductor characterized by being occupied by any one of the magnetic bodies having the lowest relative permeability can be obtained.

本発明によれば、前記他の磁性体の少なくとも1層は、層面と平行方向に磁化容易軸を設け、かつその外縁部には前記最も低い比透磁率を有する磁性体を包囲するように少なくとも1つの壁部を形成したことを特徴とする面実装インダクタが得られる。   According to the present invention, at least one layer of the other magnetic body is provided with an easy axis in a direction parallel to the layer surface, and at least the outer edge portion surrounds the magnetic body having the lowest relative magnetic permeability. A surface mount inductor characterized in that one wall portion is formed can be obtained.

本発明によれば、前記他の磁性体の外縁部は、少なくとも1つの切り欠き部を有し、前記切り欠き部によって分割される複数の凸部を、前記最も低い比透磁率を有する磁性体を包囲するように折り曲げ前記壁部としてなることを特徴とする面実装インダクタが得られる。   According to the present invention, the outer edge portion of the other magnetic body has at least one notch portion, and the plurality of convex portions divided by the notch portion have the lowest relative magnetic permeability. A surface-mount inductor is obtained which is bent to surround the wall portion.

以上述べたように、本発明により、巻芯部の両側に鍔を有するドラム型のフェライト磁芯にコイルを巻回した従来の構成と比較して、インダクタンスと直流重畳特性を低減させることなく、インダクタをより低背化することができる。   As described above, according to the present invention, without reducing the inductance and the DC superposition characteristics, compared with the conventional configuration in which the coil is wound around the drum-type ferrite magnetic core having the flanges on both sides of the core portion, The inductor can be made shorter.

また、コイルの空芯部を含む上下面を挟み込むように第1の磁性体、第2の磁性体が積層された構造であるため、耐衝撃性を向上させることができる。   Further, since the first magnetic body and the second magnetic body are laminated so as to sandwich the upper and lower surfaces including the air core portion of the coil, the impact resistance can be improved.

さらに、コイル外側に位置する第2の磁性体の一部に貫通穴を形成し、この貫通穴が占める容積の少なくとも一部に、樹脂もしくは樹脂と磁性粉末を混合した磁性樹脂を充填することで各層間の接合強度を高め、外部からの衝撃や内部応力に対して、層間の剥離、脱落を防止することができる。なお、磁性樹脂で充填した場合は、上記の接着強度に加え磁気特性も高めることができる。   Furthermore, a through hole is formed in a part of the second magnetic body located outside the coil, and at least a part of the volume occupied by the through hole is filled with a resin or a magnetic resin mixed with resin and magnetic powder. It is possible to increase the bonding strength between the respective layers and prevent the separation and dropping of the layers against external impacts and internal stresses. In addition, when it fills with magnetic resin, in addition to said adhesive strength, a magnetic characteristic can also be improved.

さらに、高い比透磁率を有する第2の磁性体の少なくとも一層において、その外縁部を最も低い比透磁率を有する磁性体を包囲するようにキャップ状に形成することで、外部への漏洩磁束を抑えられ、その結果、インダクタンスを向上させることができると共に、外部からの衝撃や温度・湿度変化による内部応力により第2の磁性体層が脱落することを防止できる。   Furthermore, in at least one layer of the second magnetic body having a high relative magnetic permeability, the outer edge portion is formed in a cap shape so as to surround the magnetic body having the lowest relative magnetic permeability, thereby reducing the leakage magnetic flux to the outside. As a result, the inductance can be improved, and the second magnetic layer can be prevented from falling off due to an external impact or internal stress due to temperature / humidity changes.

本発明の実施の形態について図面を用いて説明する。    Embodiments of the present invention will be described with reference to the drawings.

図1は、本発明による面実装インダクタを説明する図で、図1(a)は斜視図を、図1(b)は断面図をそれぞれ示す。   1A and 1B are diagrams for explaining a surface-mount inductor according to the present invention. FIG. 1A is a perspective view and FIG. 1B is a cross-sectional view.

図1に示したインダクタは、コイル5の空芯部を含む上面に、低透磁率の第1の磁性体1を配し、第1の磁性体1とコイル5とを挟み込むように、高透磁率の第2の磁性体2を上下面にそれぞれ配した、2つの異なる比透磁率を有する磁性体を3層積層した構造である。なお、前記第1の磁性体1、第2の磁性体2は、それぞれ自体が複数積層した多層体として配してもよく、その場合は4層以上積層した構造となる。また、上面側の前記第2の磁性体2には、貫通穴4を1つ形成しているが、複数でも、あるいは形成しなくてもよい。なお、下層側の前記第2の磁性体2についても同様とする。   The inductor shown in FIG. 1 has a high permeability so that the first magnetic body 1 having a low magnetic permeability is disposed on the upper surface including the air core portion of the coil 5 and the first magnetic body 1 and the coil 5 are sandwiched between them. This is a structure in which two magnetic bodies having different relative magnetic permeability are laminated in three layers, each having a second magnetic body 2 having a magnetic permeability arranged on the upper and lower surfaces. The first magnetic body 1 and the second magnetic body 2 may be arranged as a multilayer body in which a plurality of the first magnetic body 1 and the second magnetic body 2 are stacked. In that case, the first magnetic body 1 and the second magnetic body 2 have a structure in which four or more layers are stacked. In addition, although one through hole 4 is formed in the second magnetic body 2 on the upper surface side, it may be plural or may not be formed. The same applies to the second magnetic body 2 on the lower layer side.

図2は、本発明による他の面実装インダクタを説明する図で、図2(a)は斜視図を、図2(b)は断面図をそれぞれ示す。   2A and 2B are diagrams for explaining another surface mount inductor according to the present invention. FIG. 2A is a perspective view and FIG. 2B is a cross-sectional view.

図2に示したインダクタは、コイル5の空芯部を含む上下面に、低透磁率の第1の磁性体1をそれぞれ配し、更に前記第1の磁性体1を挟み込むように上下面に、高透磁率の第2の磁性体2をそれぞれ配した、2つの異なる比透磁率を有する磁性体を4層積層した構造である。なお、前記第1の磁性体1、第2の磁性体2は、それぞれ自体が複数積層した多層体として配してもよく、その場合は5層以上積層した構造となる。また、上面側の前記第2の磁性体2には、貫通穴4を1つ形成しているが、複数でも、あるいは形成しなくてもよい。なお、下層側の前記第2の磁性体2についても同様とする。   In the inductor shown in FIG. 2, the first magnetic body 1 having a low magnetic permeability is disposed on the upper and lower surfaces including the air core portion of the coil 5, and the first magnetic body 1 is sandwiched between the upper and lower surfaces. In this structure, the second magnetic body 2 having a high magnetic permeability is arranged, and four layers of magnetic bodies having different relative magnetic permeability are laminated. The first magnetic body 1 and the second magnetic body 2 may be arranged as a multilayer body in which a plurality of the first magnetic body 1 and the second magnetic body 2 are stacked. In that case, the first magnetic body 1 and the second magnetic body 2 have a structure in which five or more layers are stacked. In addition, although one through hole 4 is formed in the second magnetic body 2 on the upper surface side, it may be plural or may not be formed. The same applies to the second magnetic body 2 on the lower layer side.

図3は、本発明による他の面実装インダクタを説明する図で、図3(a)は斜視図を、図3(b)は断面図をそれぞれ示す。   3A and 3B are diagrams for explaining another surface mount inductor according to the present invention. FIG. 3A is a perspective view and FIG. 3B is a cross-sectional view.

図3に示したインダクタは、巻芯部3aと片側のみに鍔3bを有する、逆T字状の第3の磁性体3の巻芯部3aの外周にコイル5を形成し、コイル5の周囲全体を被覆するように、低透磁率の第1の磁性体1を配し、前記第1の磁性体1を上面から覆うように、高透磁率の第2の磁性体2を配した、3つの異なる比透磁率を有する磁性体を3層積層した構造である。ここで、第3の磁性体3の透磁率は、前記第1の磁性体1より高ければよく、前記第2の磁性体2より低い、高い、あるいは同等の何れでもよい。なお、前記第1の磁性体1、第2の磁性体2は、それぞれ自体が複数積層した多層体として配してもよく、その場合は4層以上積層した構造となる。また、前記第2の磁性体2には、貫通穴4を1つ形成しているが、複数でも、あるいは形成しなくてもよい。   The inductor shown in FIG. 3 has a coil 5 formed on the outer periphery of the core portion 3a of the inverted T-shaped third magnetic body 3 having a winding core portion 3a and a flange 3b only on one side. A low magnetic permeability first magnetic body 1 is disposed so as to cover the entire surface, and a high magnetic permeability second magnetic body 2 is disposed so as to cover the first magnetic body 1 from above. In this structure, three layers of magnetic materials having different relative magnetic permeability are stacked. Here, the magnetic permeability of the third magnetic body 3 only needs to be higher than that of the first magnetic body 1, and may be lower, higher, or equivalent than that of the second magnetic body 2. The first magnetic body 1 and the second magnetic body 2 may be arranged as a multilayer body in which a plurality of the first magnetic body 1 and the second magnetic body 2 are stacked. In that case, the first magnetic body 1 and the second magnetic body 2 have a structure in which four or more layers are stacked. In addition, although one through hole 4 is formed in the second magnetic body 2, a plurality or a plurality of through holes 4 may not be formed.

図4は、本発明による他の面実装インダクタを説明する図で、図4(a)は斜視図を、図4(b)は断面図をそれぞれ示す。   4A and 4B are diagrams for explaining another surface mount inductor according to the present invention. FIG. 4A is a perspective view and FIG. 4B is a cross-sectional view.

図4に示したインダクタは、図3で示したインダクタの構造において、鍔3bのみを高透磁率の第2の磁性体2に置き換え、巻芯部3aに第3の磁性体3を配した、3つの異なる比透磁率を有する磁性体を4層積層した構造である。ここで、第3の磁性体3の透磁率は、前記第1の磁性体1より高ければよく、前記第2の磁性体2より低い、高い、あるいは同等の何れでもよい。なお、前記第1の磁性体1、第2の磁性体2は、それぞれ自体が複数積層した多層体として配してもよく、その場合は5層以上積層した構造となる。また、上面側の前記第2の磁性体2には、貫通穴4を1つ形成しているが、複数でも、あるいは形成しなくてもよい。なお、下層側の前記第2の磁性体2についても同様とする。   In the inductor shown in FIG. 4, in the structure of the inductor shown in FIG. 3, only the flange 3 b is replaced with the second magnetic body 2 having a high magnetic permeability, and the third magnetic body 3 is arranged on the core portion 3 a. In this structure, four layers of magnetic materials having three different relative magnetic permeability are stacked. Here, the magnetic permeability of the third magnetic body 3 only needs to be higher than that of the first magnetic body 1, and may be lower, higher, or equivalent than that of the second magnetic body 2. The first magnetic body 1 and the second magnetic body 2 may be arranged as a multilayer body in which a plurality of the first magnetic body 1 and the second magnetic body 2 are stacked. In that case, the first magnetic body 1 and the second magnetic body 2 have a structure in which five or more layers are stacked. In addition, although one through hole 4 is formed in the second magnetic body 2 on the upper surface side, it may be plural or may not be formed. The same applies to the second magnetic body 2 on the lower layer side.

図5は、本発明による他の面実装インダクタを説明する図で、図5(a)は斜視図を、図5(b)は断面図をそれぞれ示す。   5A and 5B are diagrams for explaining another surface mount inductor according to the present invention. FIG. 5A is a perspective view and FIG. 5B is a cross-sectional view.

図5に示したインダクタは、図1で示したインダクタの構造において、最外層に配された2つの第2の磁性体2のうち、上面側の第2の磁性体2が四隅に切り欠き部2aを設け、この切り欠き部2aによって分割された外周の4つの凸部2bを下方に折り曲げて、第1の磁性体1を包囲するようにキャップ状に形成したもので、2つの異なる比透磁率を有する磁性体を3層積層した構造である。なお、前記第1の磁性体1、第2の磁性体2は、それぞれ自体が複数積層した多層体として配してもよく、その場合は4層以上積層した構造となる。また、上面側の前記第2の磁性体2には、貫通穴4を1つ形成しているが、複数でも、あるいは形成しなくてもよい。なお、下層側の前記第2の磁性体2についても同様とする。
上記切り欠き部2aにより、折り曲げ時のシート角部の重なりをなくし、折り曲げ工程を簡略化できる。
上記のキャップ状に成形するための他の方法として、磁性シートの面積より小さい内寸法を有する型枠冶具などを用いて、磁性シートの中央部を圧入した方法でもよい。
このような構成により、インダクタ外部への漏洩磁束を抑え、周囲の電子回路部品に与える悪影響を低減できると同時にインダクタンスも高めることができ、更に、前記第2の磁性体2が第1の磁性体1を囲み込むように配置しているので、衝撃などの外部応力や温度・湿度変化などの内部応力による第2の磁性体2の剥離、脱落を防止することができる。
The inductor shown in FIG. 5 has a structure in which the second magnetic body 2 on the upper surface side is cut out at the four corners of the two second magnetic bodies 2 arranged in the outermost layer in the structure of the inductor shown in FIG. 2a, and four convex portions 2b on the outer periphery divided by the notch portion 2a are bent downward to form a cap shape so as to surround the first magnetic body 1. This is a structure in which three layers of magnetic bodies having magnetic susceptibility are laminated. The first magnetic body 1 and the second magnetic body 2 may be arranged as a multilayer body in which a plurality of the first magnetic body 1 and the second magnetic body 2 are stacked. In that case, a structure in which four or more layers are stacked. In addition, although one through hole 4 is formed in the second magnetic body 2 on the upper surface side, it may be plural or may not be formed. The same applies to the second magnetic body 2 on the lower layer side.
The notch 2a eliminates the overlap of the sheet corners during folding, and the folding process can be simplified.
As another method for forming the cap shape, a method in which the center portion of the magnetic sheet is press-fitted using a mold jig having an inner dimension smaller than the area of the magnetic sheet may be used.
With such a configuration, magnetic flux leakage to the outside of the inductor can be suppressed, adverse effects on surrounding electronic circuit components can be reduced, and at the same time the inductance can be increased. Further, the second magnetic body 2 can be used as the first magnetic body. 1 is surrounded so that the second magnetic body 2 can be prevented from peeling off or falling off due to external stress such as impact or internal stress such as temperature and humidity changes.

第1の磁性体1は、材質が比透磁率が約40以下(零を含まず)とするのが好ましい。また形態は、磁性粉末と樹脂を適宜配合比を容易に調整できて、加工性も良いペースト状または圧粉状の磁性樹脂を用いて厚膜法によりコイル5を覆うように塗布、または充填し、硬化するのが好ましい。
磁性粉末は、フェライト粉末、金属粉末のいずれでも良く、直流重畳特性を向上させる、すなわち大電流に対して磁気飽和を起こしにくくするためには、飽和磁束密度の高いFe−Si−Al系合金(センダスト)、Fe−Si系合金、Fe−Si−Cr系合金、並びにFe−Si−B−Nb−Al−C系合金(金属ガラス)などの鉄系合金粉末を用いるのが好適である。
また、樹脂は、エポキシ系などの熱硬化性や紫外線硬化性等のペースト状の樹脂が好適であり、耐熱性、塗布性、作業性を考慮し、適宜、材質や粘度を選定するのが望ましい。また、例えばシリカなどのフィラーを添加して樹脂自身の熱膨張係数を制御するなど、適宜目的に応じて添加物を配合したものを用いてもよい。
The first magnetic body 1 is preferably made of a material having a relative magnetic permeability of about 40 or less (excluding zero). As for the form, a magnetic powder and a resin can be easily adjusted as appropriate, and a paste or powdery magnetic resin having good processability is applied or filled so as to cover the coil 5 by a thick film method. It is preferable to cure.
The magnetic powder may be either a ferrite powder or a metal powder. In order to improve the DC superposition characteristics, that is, to make it difficult for magnetic saturation to occur with respect to a large current, an Fe—Si—Al-based alloy having a high saturation magnetic flux density ( It is preferable to use iron-based alloy powders such as Sendust), Fe-Si-based alloys, Fe-Si-Cr-based alloys, and Fe-Si-B-Nb-Al-C-based alloys (metallic glass).
In addition, the resin is preferably a paste-like resin such as an epoxy-based thermosetting or ultraviolet curable resin, and it is desirable to select the material and viscosity as appropriate in consideration of heat resistance, applicability, and workability. . In addition, for example, a filler such as silica may be added to control the thermal expansion coefficient of the resin itself, and an additive appropriately blended depending on the purpose may be used.

第2の磁性体2は、材質が比透磁率が約50以上とするのが好ましい。また形態は、Mn−Zn系やNi−Zn系のフェライト焼結体や、飽和磁束密度の高いFe−Si−Al合金(センダスト)、Fe−Ni合金、Fe−Si合金、Fe−Si−Cr合金、Fe−Si−B−Nb−Al−C合金(金属ガラス)などの鉄系合金からなる磁性粉末やそれらの合金粉末からなる圧粉体、またはそれらの磁性粉末と樹脂を適宜配合比を調整して混合させた磁性樹脂からなるシート状の何れでもよい。
上記の磁性粉末を用いれば、磁性粉末と樹脂を混合した磁性樹脂における磁性粉末の体積充填率を60%としても、飽和磁束密度が4000G以上の磁性体層を形成することができる。フェライト焼結体の飽和磁束密度が4000G程度であることから、フェライトのみを用いた従来のインダクタと比較して、更に大きな直流重畳電流に対しても磁気飽和を回避することができる。
また、透磁率を高める他の方法として、前記磁性粉末は扁平形状や針状形状を有し、シート面内に磁化容易方向を有するように配向させるなど、粒径、アスペクト比を含めて適宜調整して成形するのが好ましい。
また、外観形状は方形状や多角形状、または円形、楕円形、長円形等の板状であれば、何れの形状でもよい。
The second magnetic body 2 is preferably made of a material having a relative permeability of about 50 or more. Also, the form is an Mn—Zn-based or Ni—Zn-based ferrite sintered body, a high saturation magnetic flux density Fe—Si—Al alloy (Sendust), Fe—Ni alloy, Fe—Si alloy, Fe—Si—Cr. Alloy, magnetic powder made of iron-based alloy such as Fe-Si-B-Nb-Al-C alloy (metal glass), green compact made of such alloy powder, or the mixing ratio of these magnetic powder and resin appropriately Any of a sheet made of a magnetic resin adjusted and mixed may be used.
If the magnetic powder is used, a magnetic layer having a saturation magnetic flux density of 4000 G or more can be formed even when the volume filling rate of the magnetic powder in the magnetic resin in which the magnetic powder and the resin are mixed is 60%. Since the saturation magnetic flux density of the ferrite sintered body is about 4000 G, magnetic saturation can be avoided even for a larger DC superimposed current as compared with a conventional inductor using only ferrite.
Further, as another method for increasing the magnetic permeability, the magnetic powder has a flat shape or a needle shape, and is adjusted as appropriate including the particle size and aspect ratio, such as being oriented so as to have an easy magnetization direction in the sheet surface. It is preferable to mold it.
Further, the external shape may be any shape as long as it is a square shape, a polygonal shape, or a plate shape such as a circle, an ellipse, or an oval.

ここで、上記の比透磁率の範囲を規定する理由について詳述する。最も低い透磁率を有する磁性体層が40以上の比透磁率である場合は、磁路全体の比透磁率が高くなり、小さな直流重畳電流で磁気飽和が起き易くなるため、高い透磁率を有する磁性体層の比透磁率を約50程度まで下げる必要がある。すると、低い透磁率と高い透磁率の各々の磁性体層の比透磁率の差が小さくなるので、異なる比透磁率の磁性体を組み合わせて配置する効果が薄れてしまう。
このような場合には、比透磁率40〜50を有する単一の磁性体のみでコイルを覆い、インダクタンスを高く、かつ大きな直流重畳電流でも磁気飽和が起きにくい、理想的なインダクタが得られるが、比透磁率40〜50の比較的高い透磁率と、4000G以上の高い飽和磁束密度を共に持ち合わせた磁性材料は高価なため、低コスト化対応は困難である。従って、高インダクタンス・大電流対応、低コスト化のためには、上記の低い透磁率の磁性体層と高い透磁率の磁性体層を組み合わせ、適正箇所に配置する手法が有効となる。
Here, the reason for prescribing the range of the relative permeability will be described in detail. When the magnetic layer having the lowest magnetic permeability has a relative magnetic permeability of 40 or more, the relative magnetic permeability of the entire magnetic path is increased, and magnetic saturation is likely to occur with a small DC superimposed current. Therefore, the magnetic layer has a high magnetic permeability. It is necessary to lower the relative permeability of the magnetic layer to about 50. Then, the difference in the relative magnetic permeability of each magnetic material layer having a low magnetic permeability and a high magnetic permeability is reduced, so that the effect of arranging magnetic materials having different relative magnetic permeability in combination is reduced.
In such a case, an ideal inductor is obtained in which the coil is covered only with a single magnetic material having a relative permeability of 40 to 50, the inductance is high, and magnetic saturation does not easily occur even with a large DC superimposed current. A magnetic material having both a relatively high magnetic permeability of 40 to 50 and a high saturation magnetic flux density of 4000 G or more is expensive, so it is difficult to reduce the cost. Therefore, in order to cope with high inductance, large current, and low cost, a method of combining the low magnetic permeability magnetic layer and the high magnetic permeability magnetic layer and arranging them at appropriate locations is effective.

第3の磁性体3は、材質が前記第1の磁性体1の比透磁率より高い比透磁率を有する磁性体であればよく、Ni−Zn系やMn−Zn系のフェライト材や、Fe−Si−Al合金(センダスト)、Fe−Ni合金、Fe−Si合金、Fe−Si−Cr合金、Fe−Si−B−Nb−Al−C合金(金属ガラス)などの鉄系合金からなる磁性粉末やそれらの合金粉末等、何れでもよい。
また、形態は、焼結体、圧粉体、磁性粉末と樹脂の混合体のいずれでもよく、更に巻芯部3aと片側または両側に鍔3bを有し一体成形されたものでも、巻芯部3aと鍔3bが分離し、異なった比透磁率を有する磁性体でもよい。なお、低背化、低コスト化のため、実装側の鍔3bの底面には凹状や楔状の溝部を形成し、該溝部表面に直接銀ペーストを塗布・焼付けし電極部を形成して、コイル5の終端を前記電極部に収めて半田接合することで、外付けの電極端子が不要となり、部材コストを低減でき、また実装時の半田熱にも耐え、絶縁性の高いNi−Zn系フェライト焼結体が好適である。
形状は、巻芯部3a、鍔3bが共に断面が円形の円板状としているが、方形状や多角形状、または楕円や長円形等の断面を持つ板状であれば、何れの形状でもよいが、第3の磁性体3に直に巻線する構造であることから、巻線材の絶縁皮膜への機械的損傷を避けるために、特に巻芯部3aについては角部の無い円形、楕円形などの断面形状とするのが望ましい。
The third magnetic body 3 only needs to be a magnetic body having a relative permeability higher than that of the first magnetic body 1, such as a Ni—Zn-based or Mn—Zn-based ferrite material, Fe Magnetic properties comprising iron-based alloys such as -Si-Al alloy (Sendust), Fe-Ni alloy, Fe-Si alloy, Fe-Si-Cr alloy, Fe-Si-B-Nb-Al-C alloy (metallic glass) Any of powder and alloy powder thereof may be used.
Further, the form may be any of a sintered body, a green compact, and a mixture of magnetic powder and resin. Further, even if the core portion 3a and the flange 3b on one side or both sides are integrally formed, the core portion A magnetic material may be used in which 3a and ridge 3b are separated and have different relative magnetic permeability. In addition, in order to reduce the height and cost, a concave or wedge-shaped groove is formed on the bottom surface of the mounting side flange 3b, and a silver paste is directly applied and baked on the groove surface to form an electrode portion. By attaching the terminal end of 5 to the electrode portion and soldering, an external electrode terminal is not required, the cost of the member can be reduced, and it is resistant to soldering heat during mounting, and has a high insulating Ni-Zn ferrite. A sintered body is preferred.
As for the shape, both the core part 3a and the flange 3b are formed in a disk shape with a circular cross section, but any shape may be used as long as it is a square shape, a polygonal shape, or a plate shape having a cross section such as an ellipse or an oval shape. However, in order to avoid mechanical damage to the insulating film of the winding material, the winding core portion 3a has a circular or elliptical shape with no corners. It is desirable to have a cross-sectional shape such as

貫通穴4は、第2の磁性体2の面積内の任意の箇所に少なくとも1つ形成し、形状は方形状や多角形状、または円や楕円、長円形等のいずれの形状でもよく、また大きさはインダクタの外形面積に応じ適宜調整するのがよいが、0.5〜1mm程度とするのが好ましい。   At least one through hole 4 is formed at an arbitrary location within the area of the second magnetic body 2, and the shape may be any shape such as a square shape, a polygonal shape, a circle, an ellipse, or an oval, or a large size. The length is preferably adjusted according to the outer area of the inductor, but is preferably about 0.5 to 1 mm.

コイル5は、導体に天然樹脂または合成樹脂塗料を焼き付けたエナメル被覆導線等などの一般的な絶縁導線であればどんなものでもよく、安価で汎用的なポリウレタン被覆銅線(UEW線)を用いるのが好ましい。
また、断面形状は、一般的な円形断面のほか、方形や長円形の断面を持つ平角銅線等を用いてもよい。
更に、巻芯部3aに直に巻線しても、予め熱融着線などを用いて巻線後に固着した空芯コイルを巻芯部3aに挿配してもよく、またコイルの線径や巻回数は、要求仕様に応じて適宜設計・調整するのが好ましい。
The coil 5 may be any general insulated conductor such as enamel-coated conductor or the like in which a conductor is baked with a natural resin or synthetic resin paint, and an inexpensive and general-purpose polyurethane-coated copper wire (UEW wire) is used. Is preferred.
The cross-sectional shape may be a rectangular copper wire or the like having a square or oval cross section in addition to a general circular cross section.
Furthermore, even if it winds directly around the core part 3a, an air core coil fixed after winding using a heat-sealed wire or the like in advance may be inserted into the core part 3a. The number of windings and the number of windings are preferably designed and adjusted as appropriate according to the required specifications.

磁性樹脂6は、ペースト状の樹脂と、磁性粉末との配合比を適宜調整して混合するのが好ましい。
樹脂は、エポキシ系などの熱硬化性や紫外線硬化性等のペースト状の樹脂が好適であり、塗布性、作業性を考慮し、適宜、材質や粘度を選定するのが望ましい。また、例えばシリカなどのフィラーを添加物として配合し樹脂自身の熱膨張係数を制御したり、着色するなど、適宜目的に応じて添加物を混合してもよい。
また、磁性粉末は、Ni−Zn系やMn−Zn系のフェライト粉末、鉄、コバルト、ニッケル等の金属粉末、またそれらの配合比を適宜調整して混合したアモルファス、パーマロイ、センダスト等の合金粉末の何れでもよく、また透磁率や磁化方向を制御するため、扁平率(アスペクト比)、粒径を適宜調整したり、配向させたりするのが好ましい。
The magnetic resin 6 is preferably mixed by appropriately adjusting the blending ratio of the paste-like resin and the magnetic powder.
The resin is preferably a paste-like resin such as an epoxy-based thermosetting or ultraviolet curable resin, and it is desirable to select the material and viscosity as appropriate in consideration of applicability and workability. Further, for example, a filler such as silica may be blended as an additive to control the coefficient of thermal expansion of the resin itself, or may be colored appropriately according to the purpose.
Magnetic powders are Ni-Zn and Mn-Zn ferrite powders, metal powders such as iron, cobalt, and nickel, and alloy powders such as amorphous, permalloy, sendust, etc. mixed by appropriately adjusting their blending ratio. In order to control the magnetic permeability and the magnetization direction, it is preferable to appropriately adjust the flatness (aspect ratio) and particle diameter, or to align them.

図示しない電極部は、第3の磁性体3の底面、すなわち基板実装面に銀ペーストを印刷法などにより塗布し、焼付処理を行い、更に焼付部表面にはバレルめっき法などによりニッケル、錫めっきを施して形成するのが好ましい。また、底面には凹状または楔状などの溝部を形成し、コイル5の先端部を前記溝部に収めることで、更に低背化に対応できるようにするのがより好ましい。   The electrode portion (not shown) is coated with silver paste on the bottom surface of the third magnetic body 3, that is, the substrate mounting surface by a printing method, and baked, and the surface of the baked portion is plated with nickel or tin by a barrel plating method or the like. Is preferably formed. Further, it is more preferable to form a concave or wedge-shaped groove on the bottom surface and to accommodate the tip of the coil 5 in the groove so as to cope with a further reduction in height.

以下、実施例を用いて詳述する。   Hereinafter, it explains in full detail using an Example.

(実施例1)
第1の磁性体1として、Fe−Si−Cr系合金の水アトマイズ球状粉をエポキシ系樹脂に配合比6:4で分散させたペースト状の磁性樹脂(透磁率μ=12)を、第2の磁性体2として、Ni−Zn系フェライト平板(透磁率μ=500)を、第3の磁性体3として、巻芯部3aと片側のみに鍔3bを有する逆T字形のNi−Zn系フェライト焼結体(透磁率μ=500)をそれぞれ用いた例を説明する。
(Example 1)
As the first magnetic body 1, a paste-like magnetic resin (permeability μ = 12) in which water atomized spherical powder of Fe—Si—Cr alloy is dispersed in an epoxy resin at a mixing ratio of 6: 4 is used as the second magnetic body 1. Ni-Zn ferrite flat plate (permeability μ = 500) as the magnetic body 2 and inverted T-shaped Ni—Zn ferrite having the core 3a and the flange 3b only on one side as the third magnetic body 3 Examples using sintered bodies (permeability μ = 500) will be described.

まず、第1の磁性体1として、Fe―Si―Cr系合金の水アトマイズ球状の磁性粉末と、エポキシ系の樹脂を準備し、各々の体積比が磁性粉末60%、結合材であるエポキシ系樹脂40%となるように秤量混合したペースト状の磁性樹脂を用意した。この磁性樹脂は硬化後の比透磁率が12である。   First, as a first magnetic body 1, a water atomized spherical magnetic powder of an Fe—Si—Cr alloy and an epoxy resin are prepared, each having a volume ratio of 60% magnetic powder and an epoxy resin as a binder. A paste-like magnetic resin was prepared by weighing and mixing so that the resin would be 40%. This magnetic resin has a relative magnetic permeability of 12 after curing.

次に、第2の磁性体2として、Ni−Zn系フェライト粉末にポリビニルアルコール9%水溶液を10wt%混合し、この粉末を2000kg/cm2の圧力で加圧成形ののち、脱バインダー処理の上、大気雰囲気中1200℃で焼結した。このようにして得たフェライト焼結体の比透磁率は500を有する。焼結後、切削加工により平板状と、巻芯部と片側のみに鍔を有する逆T字状のものをそれぞれ準備した。
平板として、厚さ0.2mmで1辺3mmの正方形状とし、貫通穴4を設けないもの(平板a)と、平板中央部に直径0.5mmの貫通穴4を1つ設けたもの(平板b)をそれぞれ用意した。
Next, as the second magnetic body 2, 10 wt% of a 9% aqueous solution of polyvinyl alcohol is mixed with Ni—Zn ferrite powder, and this powder is subjected to pressure molding at a pressure of 2000 kg / cm 2 , and then subjected to binder removal treatment. Sintered at 1200 ° C. in an air atmosphere. The relative magnetic permeability of the ferrite sintered body thus obtained has 500. After sintering, a flat plate shape and an inverted T-shape having a ridge only on one side and the core portion were prepared by cutting.
A flat plate having a thickness of 0.2 mm and a side of 3 mm and having no through hole 4 (flat plate a) and one having a through hole 4 having a diameter of 0.5 mm in the center of the flat plate (flat plate) Each b) was prepared.

また、巻芯部3aと片側のみに鍔3bを有する逆T字状の第3の磁性体3として、鍔3bが厚さ0.25mmで1辺3mmの正方形状、巻芯部3aが巻幅0.4mmで巻芯径1.2mmの円形状とした。更に鍔3bの底面には、図示しない深さ0.1mm、幅0.2mmの楔状の溝部を2つ形成し、該溝部表面に銀ペーストを塗布し、焼付処理を行い、更に焼付部表面にはバレルめっき法によりニッケルめっきを施して電極部を形成した。   Further, as the third magnetic body 3 having an inverted T-shape having a flange 3b on only one side with the core 3a, the flange 3b is a 0.25 mm thick and 3 mm side square, and the core 3a is a winding width. The circular shape was 0.4 mm and the core diameter was 1.2 mm. Further, two wedge-shaped grooves (not shown) having a depth of 0.1 mm and a width of 0.2 mm are formed on the bottom surface of the flange 3b, a silver paste is applied to the surface of the groove, and a baking process is performed. Used nickel plating by barrel plating to form an electrode part.

次に、逆T字状の第3の磁性体3の巻芯部3aに、コイル5として線径0.12mmの被膜導線を7ターン巻回し、コイル5の両端部を前記電極部の2つの溝部にそれぞれ半田で接合した。   Next, a coated conductor having a wire diameter of 0.12 mm is wound as a coil 5 on the core portion 3a of the inverted T-shaped third magnetic body 3 for 7 turns, and both ends of the coil 5 are connected to the two electrode portions. Each groove was joined with solder.

続いて、内寸が3.2mm角、深さ1mmの型枠を用意し、該型枠内に、前記フェライト平板を敷き、その上に前記第1の磁性体1としての磁性樹脂を充填し、更にその上からコイル5と逆T字状の第3の磁性体3の鍔3bを上面にして挿入した。この状態で、150℃、30分で硬化させ、全体の高さが1mmのインダクタを作製した。   Subsequently, a mold having an inner size of 3.2 mm square and a depth of 1 mm is prepared, and the ferrite flat plate is laid in the mold and the magnetic resin as the first magnetic body 1 is filled thereon. Further, the coil 5 and an inverted T-shaped third magnetic body 3 having a flange 3b as the upper surface were inserted from above. In this state, it was cured at 150 ° C. for 30 minutes to produce an inductor having a total height of 1 mm.

以上の要領により、図1〜図4の各々に示した本発明のインダクタA〜D、及び図1、図2においては、それぞれ貫通穴4を設けないインダクタE、Fを得た。   By the above procedure, the inductors A to D of the present invention shown in each of FIGS. 1 to 4 and the inductors E and F without the through holes 4 were obtained in FIGS.

(実施例2)
上記実施例1の磁性体構成うち、第2の磁性体2のみを変更した場合で、第2の磁性体2として扁平形状を有するFe−Si−Al系合金(センダスト)粉末をポリアミドイミド系樹脂に配向分散させた磁性シート(透磁率μ=110)を用いた例を説明する。
(Example 2)
When only the second magnetic body 2 is changed in the magnetic body configuration of the first embodiment, a Fe-Si-Al-based alloy (Sendust) powder having a flat shape is used as the second magnetic body 2 as a polyamide-imide resin. An example in which a magnetic sheet (permeability μ = 110) oriented and dispersed in the film will be described.

上記第2の磁性体2を形成するため、まず磁性粉末としてSiが9.8wt%、アルミニウムが5.9wt%、残部が鉄という組成の、Fe−Si−Al系合金(センダスト)を準備した。また粉末形状を扁平化するために、アトライタを用いて、粗粉砕粉末に遠心および粉砕加工を施した。続いて、扁平化工程で生じる歪みを除くために、窒素雰囲気中、650℃で2時間、焼鈍処理を行った。   In order to form the second magnetic body 2, first, an Fe—Si—Al alloy (Sendust) having a composition of 9.8 wt% Si, 5.9 wt% aluminum, and the balance iron was prepared as a magnetic powder. . In order to flatten the powder shape, the coarsely pulverized powder was subjected to centrifugation and pulverization using an attritor. Subsequently, an annealing treatment was performed at 650 ° C. for 2 hours in a nitrogen atmosphere in order to remove distortion generated in the flattening step.

次に、前記扁平化した磁性粉末と、結合材であるポリアミドイミド系樹脂と、溶媒であるキシレンとを、それぞれ重量比で72対20対50で混合したスラリーを作製し、ドクターブレード法によって、離型剤を塗布したポリエチレンテレフタレート(以下、PETと称する)フィルム上に、0.3mmの厚さで塗布し、60℃に保持した乾燥炉内に2時間保持して溶媒を除去した。この磁性シートをPETフィルムから剥離した後、磁性シート内の磁性粉末を、シート面内に磁化容易方向を有するように配向させるため、温度100℃、圧力30MPaの条件で、熱プレスを施し、厚さ0.2mmの磁性シートを得た。その後、磁性シートを外径19mm、内径10mmのトロイダル形状に打ち抜き、該トロイダル形状の磁性シートを25枚積層し、10ターンの巻線を施してインダクタンスを測定し、面内の比透磁率を求めたところ、比透磁率は110であった。   Next, a slurry in which the flattened magnetic powder, the polyamide-imide resin as a binder, and xylene as a solvent are mixed at a weight ratio of 72:20:50, respectively, is prepared, by a doctor blade method, The film was coated on a polyethylene terephthalate (hereinafter referred to as PET) film coated with a release agent at a thickness of 0.3 mm, and kept in a drying furnace maintained at 60 ° C. for 2 hours to remove the solvent. After peeling this magnetic sheet from the PET film, in order to orient the magnetic powder in the magnetic sheet so that it has a direction of easy magnetization in the sheet surface, a hot press is performed at a temperature of 100 ° C. and a pressure of 30 MPa, and the thickness is increased. A 0.2 mm thick magnetic sheet was obtained. Thereafter, the magnetic sheet is punched into a toroidal shape having an outer diameter of 19 mm and an inner diameter of 10 mm, 25 sheets of the toroidal magnetic sheet are laminated, 10 turns of winding are applied, the inductance is measured, and the in-plane relative permeability is obtained. As a result, the relative permeability was 110.

この磁性シートを切断加工により、大きさ3mm角の正方形状のものと、外形3.6mm角の正方形状の4隅から0.5mm角の正方形状の切り欠き部2aを取り除いた略十字状のものを用意した。   This magnetic sheet is cut into a square shape having a size of 3 mm square and a substantially cross shape in which a square cutout portion 2 a of 0.5 mm square is removed from four corners of a square shape having an outer shape of 3.6 mm square. I prepared something.

実装面側に用いる、大きさ3mm角の正方形状の磁性シートの底面には、大きさ1mm角、厚さ0.05mmのリン青銅半田メッキ端子を対辺に配置し接着剤で固着し、図示しない外付け電極部を形成した。   A phosphor bronze solder-plated terminal with a size of 1 mm square and a thickness of 0.05 mm is arranged on the opposite side on the bottom surface of a 3 mm square magnetic sheet used on the mounting surface side, and is fixed with an adhesive, not shown. An external electrode part was formed.

次に、コイル5として線径0.12mmの被膜導線を7ターン巻回した空芯コイルを、実装面側の大きさ3mm角の正方形状の磁性シートに載置し、コイル5の両端部を前記電極部にそれぞれ半田で接合した。   Next, an air core coil in which a coated conductor having a wire diameter of 0.12 mm is wound as a coil 5 for 7 turns is placed on a 3 mm square square magnetic sheet on the mounting surface side, and both ends of the coil 5 are Each of the electrode parts was joined with solder.

続いて、前記実施例1と同様、内寸が3.2mm角、深さ1mmのステンレス製型枠を用意し、該型枠内に、上面側に用いる、大きさ3mm角の正方形状の磁性シートと、外形3.6mm角の正方形状の4隅から0.5mm角の正方形状の切り欠き部2aを取り除いた略十字状の磁性シートを敷き、その上に前記第1の磁性体1としての磁性樹脂を充填し、更にその上からコイル5と逆T字状の第3の磁性体3の鍔3bを上面にして挿入した。この状態で、150℃、30分硬化させ、全体の高さが1mmのインダクタを作製した。   Subsequently, as in Example 1, a stainless steel mold having an inner dimension of 3.2 mm square and a depth of 1 mm was prepared, and a square magnet having a size of 3 mm square used on the upper surface side in the mold. A sheet and a substantially cross-shaped magnetic sheet obtained by removing 0.5 mm square cutout portions 2 a from four corners of a square shape having a 3.6 mm square are spread, and the first magnetic body 1 is formed thereon. The magnetic resin was filled, and the coil 5 and the inverted T-shaped third magnetic body 3 with the flange 3b as the upper surface were inserted from above. In this state, it was cured at 150 ° C. for 30 minutes to produce an inductor having an overall height of 1 mm.

以上の要領により、図1〜図5の各々に示した本発明のインダクタG〜K、及び図5においては貫通穴4を設けないインダクタLを得た。   Through the above procedure, the inductors G to K of the present invention shown in each of FIGS. 1 to 5 and the inductor L without the through hole 4 in FIG. 5 were obtained.

上記の、本発明によるインダクタ(A〜L)と、比較例として上記実施例1の構成材料と、図6に示した従来の構造によるインダクタを作製し、各々のサンプル(n=10)において、電気的特性としてインダクタンスL、インダクタンス降下率が40%となる直流重畳電流値Imax、重畳特性L・Imaxを、また機械的特性として層間の接合強度、すなわちフェライト平板及び磁性シートの剥離状態を確認した。   The inductors (A to L) according to the present invention, the constituent material of Example 1 as a comparative example, and the inductor having the conventional structure shown in FIG. 6 are manufactured. In each sample (n = 10), As the electrical characteristics, the inductance L, the DC superimposed current value Imax at which the inductance drop rate is 40%, the superimposed characteristics L · Imax were confirmed, and the bonding strength between the layers, that is, the peeling state of the ferrite flat plate and the magnetic sheet was confirmed as the mechanical characteristics. .

上記剥離状態の確認方法は、鉛フリー半田を用い、最大温度270℃、10秒のリフロー条件を2回通過させた後、−40℃(30分)から+120℃(30分)を1サイクルとするヒートショック試験を24サイクル施した場合と、水中で10分間超音波洗浄した場合の2条件で行った。   The method for confirming the peeled state uses lead-free solder, a reflow condition of a maximum temperature of 270 ° C. and 10 seconds is passed twice, and then −40 ° C. (30 minutes) to + 120 ° C. (30 minutes) is one cycle. The heat shock test is performed under two conditions, that is, when 24 cycles are performed and when ultrasonic cleaning is performed in water for 10 minutes.

上記試験後、第2の磁性体2としてフェライト平板を用いたインダクタA〜Fについては、平板の面と平行方向に50g、1秒の荷重印加を100回実施し、フェライト平板の剥離・脱落発生状況を確認し、一方、第2の磁性体2として磁性シートを用いたインダクタG〜Lについては、水中で10分間超音波洗浄した後のシートの剥離発生状況(発生個数)を確認し、それぞれの結果を表1に纏めた。   After the above test, for inductors A to F using a ferrite flat plate as the second magnetic body 2, 50 g for 1 second was applied in a direction parallel to the plane of the flat plate, and the ferrite flat plate was peeled and dropped off 100 times. On the other hand, for the inductors G to L using the magnetic sheet as the second magnetic body 2, the occurrence state (number of occurrences) of the sheet after ultrasonic cleaning for 10 minutes in water is confirmed. The results are summarized in Table 1.

表1に示すように、電気的特性については、本発明によるインダクタA〜Lの全てにおいて、従来構造の比較例と比べ、インダクタンス値が約75%以上高くなり、またインダクタの重畳特性の優劣を判定する指標となるL・Imaxの値も約8%以上の大きな値を示すことがわかった。
特に、インダクタK、Lでは、上記L・Imaxの値が最も優れ、比較例に比べ約30%向上しており、更にシート剥離が発生せず、機械的特性も最も良好で、小型、低背型のインダクタの構成として非常に好適であることがわかった。
As shown in Table 1, regarding the electrical characteristics, in all of the inductors A to L according to the present invention, the inductance value is about 75% or more higher than that of the comparative example of the conventional structure, and the superiority or inferiority of the superposition characteristics of the inductor is improved. It was found that the value of L · Imax as an index for determination also showed a large value of about 8% or more.
In particular, in the inductors K and L, the above-mentioned L · Imax value is the most excellent, which is improved by about 30% compared with the comparative example, and further, the sheet peeling does not occur, the mechanical properties are the best, the small size and the low profile. It was found that the configuration of the type inductor is very suitable.

また、機械的特性については、フェライト平板に貫通穴を設け、貫通穴に比透磁率の低い磁性樹脂で充填したインダクタA〜Dの場合は、外部応力を受けた際のフェライト平板の剥離・脱落の可能性は著しく低下していることがわかった。また、フェライト平板で貫通穴のないインダクタE,Fの場合に、荷重印加時の脱落数が2〜3となっているが、この脱落は、リフロー並びにヒートショック試験後に熱膨張・収縮などの内部応力により既に発生していた剥離と考えられる。貫通穴を設けたインダクタA〜Dでは、このような剥離は発生せず、内部応力によるフェライト平板の脱落の可能性も低下していることが分かった。
一方、磁性シートに貫通穴を設け、貫通穴に比透磁率の低い磁性樹脂で充填したインダクタG〜K、及び磁性シートに貫通穴のないインダクタLの場合も、外部応力を受けた際の磁性シートの剥離・脱落の可能性は著しく低下していることがわかった。
In addition, regarding the mechanical characteristics, in the case of inductors A to D in which a through hole is provided in a ferrite flat plate and the through hole is filled with a magnetic resin having a low relative permeability, the ferrite flat plate is peeled off and dropped when subjected to external stress. It was found that the possibility of was significantly reduced. In addition, in the case of inductors E and F with a flat ferrite plate and no through-holes, the number of dropouts when applying a load is 2-3. This dropout is caused by internal expansion such as thermal expansion / contraction after reflow and heat shock tests. It is considered that the peeling has already occurred due to stress. It was found that in the inductors A to D provided with the through holes, such peeling does not occur, and the possibility of dropping the ferrite flat plate due to internal stress is reduced.
On the other hand, in the case of the inductors G to K in which a through hole is provided in the magnetic sheet and the through hole is filled with a magnetic resin having a low relative permeability, and the inductor L without the through hole in the magnetic sheet, the magnetism when subjected to external stress It was found that the possibility of sheet peeling / dropping was significantly reduced.

以上、実施例を用いて、この発明の実施の形態を説明したが、この発明は、これらの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。   The embodiments of the present invention have been described above using the embodiments. However, the present invention is not limited to these embodiments, and the present invention is not limited to the scope of the present invention. Included in the invention. That is, various changes and modifications that can be naturally made by those skilled in the art are also included in the present invention.

本発明のインダクタにより、携帯電話器等の小型電子機器の低電圧化、大電流化に対応できる小型・低背型、低コスト、高性能のインダクタ市場の構築にも寄与できる。   The inductor of the present invention can contribute to the construction of a small and low-profile, low-cost, high-performance inductor market that can cope with low voltage and large current of small electronic devices such as mobile phones.

本発明による面実装インダクタを説明する図、図1(a)は斜視図、図1(b)は断面図。FIG. 1A is a perspective view and FIG. 1B is a cross-sectional view illustrating a surface mount inductor according to the present invention. 本発明による面実装インダクタを説明する図、図2(a)は斜視図、図2(b)は断面図。FIG. 2A is a perspective view and FIG. 2B is a cross-sectional view illustrating a surface mount inductor according to the present invention. 本発明による面実装インダクタを説明する図、図3(a)は斜視図、図3(b)は断面図。FIG. 3A is a perspective view and FIG. 3B is a cross-sectional view illustrating a surface mount inductor according to the present invention. 本発明による面実装インダクタを説明する図、図4(a)は斜視図、図4(b)は断面図。FIG. 4A is a perspective view and FIG. 4B is a cross-sectional view illustrating a surface-mount inductor according to the present invention. 本発明による面実装インダクタを説明する図、図5(a)は斜視図、図5(b)は断面図。FIG. 5A is a perspective view and FIG. 5B is a cross-sectional view illustrating a surface mount inductor according to the present invention. 従来の面実装インダクタを説明する図、図6(a)は斜視図、図6(b)は断面図。FIG. 6A is a perspective view, and FIG. 6B is a cross-sectional view illustrating a conventional surface mount inductor.

符号の説明Explanation of symbols

1 第1の磁性体
2 第2の磁性体
2a 切り欠き部
2b 凸部
3 第3の磁性体
3a 巻芯部
3b 鍔
4 貫通穴
5 コイル
6 磁性樹脂
DESCRIPTION OF SYMBOLS 1 1st magnetic body 2 2nd magnetic body 2a Notch part 2b Protrusion part 3 3rd magnetic body 3a Core part 3b 鍔 4 Through-hole 5 Coil 6 Magnetic resin

Claims (4)

導電体を巻回したコイルと、前記コイルの空芯部を含む外周部に磁性体を配してなる面実装インダクタであって、前記磁性体は少なくとも2つの異なる比透磁率を有する複数の磁性体を、前記コイルの巻回中心軸と垂直方向に、かつ前記コイルを挟み、少なくとも3層積層して配し、前記複数の磁性体のうち最も低い比透磁率を有する磁性体は、前記コイルの表裏面の少なくとも一方に隣接して配し、かつ他の磁性体の間に位置するように配してなることを特徴とする面実装インダクタ。   A surface-mount inductor comprising a coil wound with a conductor and a magnetic body disposed on an outer peripheral portion including an air core portion of the coil, wherein the magnetic body has at least two different magnetic permeability. A magnetic body having a lowest relative permeability among the plurality of magnetic bodies, wherein the magnetic body is arranged in a direction perpendicular to the winding center axis of the coil and sandwiching the coil, and at least three layers are laminated. A surface-mount inductor characterized in that it is disposed adjacent to at least one of the front and back surfaces of the magnetic material and disposed between other magnetic bodies. 前記他の磁性体は、層面と垂直方向に少なくとも1つの貫通穴を有し、前記貫通穴が占める容積の少なくとも一部は、樹脂または樹脂と磁性粉末を混合した磁性樹脂または前記最も低い比透磁率を有する磁性体のいずれかによって占められていることを特徴とする請求項1記載の面実装インダクタ。   The other magnetic body has at least one through hole in a direction perpendicular to the layer surface, and at least a part of the volume occupied by the through hole is a resin or a resin mixed with resin and magnetic powder or the lowest relative permeability. 2. The surface mount inductor according to claim 1, wherein the surface mount inductor is occupied by any one of magnetic bodies having magnetic susceptibility. 前記他の磁性体の少なくとも1層は、層面と平行方向に磁化容易軸を設け、かつその外縁部には前記最も低い比透磁率を有する磁性体を包囲するように少なくとも1つの壁部を形成したことを特徴とする請求項1または2記載の面実装インダクタ。   At least one layer of the other magnetic material is provided with an easy axis in a direction parallel to the layer surface, and at least one wall portion is formed at the outer edge so as to surround the magnetic material having the lowest relative permeability. The surface-mount inductor according to claim 1 or 2, wherein 前記他の磁性体の外縁部は、少なくとも1つの切り欠き部を有し、前記切り欠き部によって分割される複数の凸部を、前記最も低い比透磁率を有する磁性体を包囲するように折り曲げ前記壁部としてなることを特徴とする請求項3記載の面実装インダクタ。   The outer edge of the other magnetic body has at least one notch, and a plurality of projections divided by the notch are bent so as to surround the magnetic body having the lowest relative permeability. 4. The surface mount inductor according to claim 3, wherein the surface mount inductor is the wall portion.
JP2008156814A 2008-06-16 2008-06-16 Surface-mounted inductor Pending JP2009302386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008156814A JP2009302386A (en) 2008-06-16 2008-06-16 Surface-mounted inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008156814A JP2009302386A (en) 2008-06-16 2008-06-16 Surface-mounted inductor

Publications (1)

Publication Number Publication Date
JP2009302386A true JP2009302386A (en) 2009-12-24

Family

ID=41548965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008156814A Pending JP2009302386A (en) 2008-06-16 2008-06-16 Surface-mounted inductor

Country Status (1)

Country Link
JP (1) JP2009302386A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102985985A (en) * 2010-04-23 2013-03-20 库柏技术公司 Laminated magnetic component and manufacture with soft magnetic powder polymer composite sheets
JP2014027094A (en) * 2012-07-26 2014-02-06 Dexerials Corp Coil module and power receiving device
KR101384250B1 (en) 2012-11-05 2014-04-09 주식회사 엠피코 Magnetic flexible sheet with dual materials and the method for manufacturing the same
RU2529673C2 (en) * 2012-06-13 2014-09-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Device of 3d scanning of electromagnetic emissions in near-field of electronic means
JP2017524254A (en) * 2014-08-07 2017-08-24 モダ−イノチップス シーオー エルティディー Power inductor
JP2017524256A (en) * 2014-08-07 2017-08-24 モダ−イノチップス シーオー エルティディー Power inductor
JP2017531316A (en) * 2014-09-11 2017-10-19 モダ−イノチップス シーオー エルティディー Power inductor
KR20170140720A (en) * 2016-06-13 2017-12-21 에이치엔에스파워텍 주식회사 Inductor
JP2018019062A (en) * 2016-07-27 2018-02-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. Inductor
JP2019029321A (en) * 2017-08-03 2019-02-21 株式会社日立製作所 Contactor
KR20190070868A (en) * 2017-12-13 2019-06-21 가부시키가이샤 무라타 세이사쿠쇼 Coil component

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136212A (en) * 1984-12-06 1986-06-24 Matsushita Electric Ind Co Ltd Shield case for transformer
JPH06342725A (en) * 1993-06-02 1994-12-13 Hitachi Ltd Wire transformer, its manufacture, and power supply equipment mounting wire transformer
JP2001110639A (en) * 1990-05-31 2001-04-20 Toshiba Corp Planar magnetic element
JP2001185421A (en) * 1998-12-28 2001-07-06 Matsushita Electric Ind Co Ltd Magnetic device and manufacuring method thereof
JP2003203813A (en) * 2001-08-29 2003-07-18 Matsushita Electric Ind Co Ltd Magnetic element, its manufacturing method and power source module provided therewith
JP2003282328A (en) * 2002-03-25 2003-10-03 Matsushita Electric Ind Co Ltd Thin magnetic element, its manufacturing method, and power source module using the same
JP2004266120A (en) * 2003-03-03 2004-09-24 Matsushita Electric Ind Co Ltd Choke coil and electronic apparatus employing the same
JP2005210010A (en) * 2004-01-26 2005-08-04 Tdk Corp Coil substrate, manufacturing method thereof, and surface-mounting coil element
JP2005317604A (en) * 2004-04-27 2005-11-10 Matsushita Electric Ind Co Ltd Inductance component and electronic apparatus using same
JP2006287093A (en) * 2005-04-04 2006-10-19 Matsushita Electric Ind Co Ltd Inductance component and its manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136212A (en) * 1984-12-06 1986-06-24 Matsushita Electric Ind Co Ltd Shield case for transformer
JP2001110639A (en) * 1990-05-31 2001-04-20 Toshiba Corp Planar magnetic element
JPH06342725A (en) * 1993-06-02 1994-12-13 Hitachi Ltd Wire transformer, its manufacture, and power supply equipment mounting wire transformer
JP2001185421A (en) * 1998-12-28 2001-07-06 Matsushita Electric Ind Co Ltd Magnetic device and manufacuring method thereof
JP2003203813A (en) * 2001-08-29 2003-07-18 Matsushita Electric Ind Co Ltd Magnetic element, its manufacturing method and power source module provided therewith
JP2003282328A (en) * 2002-03-25 2003-10-03 Matsushita Electric Ind Co Ltd Thin magnetic element, its manufacturing method, and power source module using the same
JP2004266120A (en) * 2003-03-03 2004-09-24 Matsushita Electric Ind Co Ltd Choke coil and electronic apparatus employing the same
JP2005210010A (en) * 2004-01-26 2005-08-04 Tdk Corp Coil substrate, manufacturing method thereof, and surface-mounting coil element
JP2005317604A (en) * 2004-04-27 2005-11-10 Matsushita Electric Ind Co Ltd Inductance component and electronic apparatus using same
JP2006287093A (en) * 2005-04-04 2006-10-19 Matsushita Electric Ind Co Ltd Inductance component and its manufacturing method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9589716B2 (en) 2006-09-12 2017-03-07 Cooper Technologies Company Laminated magnetic component and manufacture with soft magnetic powder polymer composite sheets
CN102985985A (en) * 2010-04-23 2013-03-20 库柏技术公司 Laminated magnetic component and manufacture with soft magnetic powder polymer composite sheets
JP2013526035A (en) * 2010-04-23 2013-06-20 クーパー テクノロジーズ カンパニー Manufacture with laminated magnetic parts and soft magnetic powder polymer composite sheet
TWI575541B (en) * 2010-04-23 2017-03-21 古柏科技公司 Laminated magnetic component, manufacture with soft magnetic powder polymer composite sheets and product formed by the manufacture method
RU2529673C2 (en) * 2012-06-13 2014-09-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Device of 3d scanning of electromagnetic emissions in near-field of electronic means
JP2014027094A (en) * 2012-07-26 2014-02-06 Dexerials Corp Coil module and power receiving device
KR101384250B1 (en) 2012-11-05 2014-04-09 주식회사 엠피코 Magnetic flexible sheet with dual materials and the method for manufacturing the same
JP2017524254A (en) * 2014-08-07 2017-08-24 モダ−イノチップス シーオー エルティディー Power inductor
JP2017524256A (en) * 2014-08-07 2017-08-24 モダ−イノチップス シーオー エルティディー Power inductor
US10573451B2 (en) 2014-08-07 2020-02-25 Moda-Innochips Co., Ltd. Power inductor
US10541075B2 (en) 2014-08-07 2020-01-21 Moda-Innochips Co., Ltd. Power inductor
US10541076B2 (en) 2014-08-07 2020-01-21 Moda-Innochips Co., Ltd. Power inductor
US10508189B2 (en) 2014-09-11 2019-12-17 Moda-Innochips Co., Ltd. Power inductor
US10308786B2 (en) 2014-09-11 2019-06-04 Moda-Innochips Co., Ltd. Power inductor and method for manufacturing the same
JP2017531316A (en) * 2014-09-11 2017-10-19 モダ−イノチップス シーオー エルティディー Power inductor
KR20170140720A (en) * 2016-06-13 2017-12-21 에이치엔에스파워텍 주식회사 Inductor
KR102357988B1 (en) 2016-06-13 2022-02-03 에이치엔에스파워텍 주식회사 Inductor
JP2018019062A (en) * 2016-07-27 2018-02-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. Inductor
JP2019029321A (en) * 2017-08-03 2019-02-21 株式会社日立製作所 Contactor
KR20190070868A (en) * 2017-12-13 2019-06-21 가부시키가이샤 무라타 세이사쿠쇼 Coil component
KR102115100B1 (en) * 2017-12-13 2020-05-25 가부시키가이샤 무라타 세이사쿠쇼 Coil component
US11276519B2 (en) 2017-12-13 2022-03-15 Murata Manufacturing Co., Ltd. Coil component

Similar Documents

Publication Publication Date Title
JP2009302386A (en) Surface-mounted inductor
JP6517764B2 (en) METHOD OF MANUFACTURING MAGNETIC COMPONENT ASSEMBLY AND MAGNETIC COMPONENT ASSEMBLY
KR101792281B1 (en) Power Inductor and Manufacturing Method for the Same
JP6447369B2 (en) Coil parts
JP4140632B2 (en) Multiple choke coil and electronic device using the same
US7675396B2 (en) Inductor and manufacture method thereof
KR102052770B1 (en) Power inductor and method for manufacturing the same
KR101994730B1 (en) Inductor
KR20140003056A (en) Power inductor and manufacturing method of the same
JP6355215B2 (en) Coil electronic component manufacturing method
KR20120015323A (en) Miniature shielded magnetic component and methods of manufacture
JP2008288370A (en) Surface mounting inductor, and manufacturing method thereof
US20140292460A1 (en) Inductor and method for manufacturing the same
JP7106724B2 (en) Wound coil parts
US20160225512A1 (en) Power inductor
KR101832554B1 (en) Chip electronic component and manufacturing method thereof
KR101338139B1 (en) Power inductor
WO2018235539A1 (en) Coil component
JP2015103588A (en) Inductor and method for manufacturing the same
US20180033544A1 (en) Laminated coil
JP2010141191A (en) Inductor and method of manufacturing the same
TWI719285B (en) Coil parts
JP2017199734A (en) Coil device
KR20140121809A (en) Inductor and method for manufacturing the same
JP6955382B2 (en) Laminated coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130306