JP3858978B2 - Evaluation method and apparatus - Google Patents

Evaluation method and apparatus Download PDF

Info

Publication number
JP3858978B2
JP3858978B2 JP2001327742A JP2001327742A JP3858978B2 JP 3858978 B2 JP3858978 B2 JP 3858978B2 JP 2001327742 A JP2001327742 A JP 2001327742A JP 2001327742 A JP2001327742 A JP 2001327742A JP 3858978 B2 JP3858978 B2 JP 3858978B2
Authority
JP
Japan
Prior art keywords
mechanical equipment
abnormality
frequency spectrum
peak
spectrum data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001327742A
Other languages
Japanese (ja)
Other versions
JP2003130763A (en
Inventor
孝範 宮坂
泰之 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2001327742A priority Critical patent/JP3858978B2/en
Priority to PCT/JP2001/009699 priority patent/WO2002037067A1/en
Priority to US10/415,931 priority patent/US20040030419A1/en
Priority to EP01982740A priority patent/EP1338873A1/en
Publication of JP2003130763A publication Critical patent/JP2003130763A/en
Application granted granted Critical
Publication of JP3858978B2 publication Critical patent/JP3858978B2/en
Priority to US11/896,022 priority patent/US20080010039A1/en
Priority to US11/896,020 priority patent/US7587299B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、1または複数の摺動部材を含む機械設備から発生する音又は振動を検出し、検出した信号を解析して、機械設備に起因する異常の有無を診断する評価方法及び装置に関するもので、詳しくは、検出した信号の解析作業時の負担を軽減して、診断作業の迅速化及び信頼性の向上を実現するための改良にかかるものである。
【0002】
【従来の技術】
これまで、回転体等の1または複数の摺動部材を含む機械設備の、摺動部材の摩耗や破損等の異常の有無を診断する評価方法として、機械設備から発生する音又は振動を検出し、検出した信号を適宜波形処理によって周波数スペクトルデータに変換し、機械設備の異常に起因した周波数成分と前記した周波数スペクトルデータとの比較照合により、異常の有無を診断する評価方法が知られている。
【0003】
摺動部材を含む機械設備の異常に起因した周波数成分は、摺動部材の設計諸元及び運用状況によって決まるもので、例えば、前記した回転体の設計諸元や運用状況等の条件から、演算処理によって求めることができる。
従って、機械設備の異常の有無を自動診断する評価装置では、コンピュータ等の演算処理手段を用い、予め、診断対象となる機械設備の異常に起因した周波数成分を算出処理すると共に、機械設備の発生する音又は振動の信号を適宜波形処理して周波数スペクトルデータに変換する演算処理を行い、更には、予め算出して記憶させた機械設備の異常に起因した周波数成分と前記した周波数スペクトルデータとを比較照合する演算処理を行う。
【0004】
【発明が解決しようとする課題】
ところで、従来の評価方法では、機械設備の特定部位毎に、異常時の周波数成分を1次から多次まで多数求め、これらの多数の周波数成分のそれぞれに対して、実測した機械設備の周波数スペクトルデータ上にピークが表出するか否かを診断する演算処理と、周波数スペクトルデータ上のピーク値が異常を示すピークレベルであるかを診断する演算処理とを繰り返す。
そのため、最終的な診断を下すまでの演算処理が膨大になり、演算処理手段に大きな負担がかかるために、演算処理能力が高い高価なコンピュータが必要となって装置コストの増大を招いたり、また演算処理の所要時間の長大化により診断作業の迅速化が困難になるという問題があった。
【0005】
本発明は上記事情に鑑みてなされたもので、1または複数の摺動部材を含む機械設備の異常の有無を診断する際の演算処理の負担を軽減して、診断作業の迅速化及び信頼性の向上を実現することのできる評価方法及び装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するための請求項1に記載した本発明に係る評価方法は、摺動部材を含む機械設備から発生する音又は振動を検出し、検出した信号を解析して、前記機械設備に起因する異常の有無を診断する評価方法であって、
前記機械設備から発生した音又は振動から実測周波数スペクトルデータを生成し、
該実測周波数スペクトルデータの実効値を算出すると共に、該実効値に基づいて閾値を設定し、前記機械設備の異常に起因した前記周波数成分の1次、2次、4次値に対する前記実測周波数スペクトルデータ上のピークは前記閾値を超える場合にのみ有効なピークとし、前記機械設備の異常に起因した周波数成分の1次、2次、4次値に対する前記実測周波数スペクトルデータ上の前記有効なピークの有無により、前記機械設備に対する異常の有無の診断を行うことを特徴とする。
【0007】
上記目的を達成するための請求項に記載した本発明に係る評価装置は、摺動部材を含む機械設備から発生する音又は振動を検出し、検出した信号を解析して前記機械設備に起因する異常の有無を診断する評価装置であって、
前記機械設備から発生した音又は振動から実測周波数スペクトルデータを生成後、該実測周波数スペクトルデータの実効値を算出し、該実効値に基づいて閾値を設定し、前記機械設備の異常に起因した前記周波数成分の1次、2次、4次値に対する前記実測周波数スペクトルデータ上のピークは前記閾値を超える場合にのみ有効なピークとし、且つ、前記機械設備の異常に起因した周波数成分の1次、2次、4次値に対する前記実測周波数スペクトルデータ上の前記有効なピークの有無により、前記機械設備に対する異常の有無の診断を行う演算処理手段とを備えたことを特徴とする。
【0008】
そして、請求項1及び請求項に記載した構成の評価方法及び装置によれば、機械設備の異常に起因した周波数成分に対応する実測周波数スペクトルデータ上の有効なピークの有無を調べる照合処理は、機械設備の異常に起因した周波数成分の1次、2次、4次値の3回に限定されているため、例えば1次から高次の周波成分まで多数の周波数成分に対して照合処理を繰り返す従来技術と比較すると、照合処理時の演算処理量が低減して、演算処理手段への負担が大幅に軽減される。更に、機械設備の異常に起因した周波数成分の1次、2次、4次値の3回に渡って照合処理を実施するため、周波数成分の1次のみで判断する場合と比較して、ノイズ等の影響による誤診断が発生し難く、信頼性の高い診断が可能になる。
【0012】
【発明の実施の形態】
以下、本発明に係る評価方法及び装置の好適な実施の形態を添付図面に基づいて詳細に説明する。
図1は本発明に係る評価方法及び装置の第1の実施の形態の概略構成を示すブロック図、図2は図1に示した評価装置の診断処理の手順を示すフローチャートである。
【0013】
先ず、第1の実施の形態の評価装置の概略構成を、図1に基づいて説明した後に、この評価装置による評価方法について詳述する。
本実施の形態の評価装置1は、診断対象となる1または複数の摺動部材を含む機械設備3の発生する音又は振動に応じたアナログ信号を出力する振動検出手段5と、この振動検出手段5の出力する信号を増幅する増幅手段7と、増幅手段7によって増幅されたアナログ信号をデジタル信号に変換して実測デジタルデータを生成するAD変換手段9と、このAD変換手段9が出力する実測デジタルデータに基づいて機械設備3の特定部位の異常の有無を診断する演算処理手段13とを備えた構成である。
【0014】
本実施の形態の場合、診断対象となる機械設備3の摺動部材としては転がり軸受が適用される。そして、転がり軸受を構成している内外輪、転動体、保持器等の摩耗や損傷を、転がり軸受の駆動時の音又は振動から診断する。
なお、本実施の形態において、転がり軸受の音又は振動とは、転がり軸受の駆動時に現れる超音波振動、所謂AE(Acoustic Emission )を含む意味である。
【0015】
演算処理手段13は、予め記憶させた処理用の諸データや、AD変換手段9から受ける実測デジタルデータを、診断用プログラムに基づいて演算処理する診断用コンピュータである。
この演算処理手段13は、AD変換手段9が出力する実測デジタルデータに対して周波数分析及びエンベロープ分析等の適宜解析処理を行って実測周波数スペクトルデータを生成すると共に、機械設備3の異常に起因した周波数成分の1次、2次、4次値に対する実測周波数スペクトルデータ上のピークの有無により、機械設備3に対する異常の有無の診断を行う。
【0016】
以上の評価装置1は、図2に示す手順で、処理を行う。
先ず、振動検出手段5により機械設備3の発生する音又は振動の検出を行い(ステップS101)、次いで、増幅手段7を経た信号をAD変換手段9によるAD変換によってデジタル信号化して(ステップS102)、演算処理手段13に渡す。
演算処理手段13は、AD変換手段9から受けた信号を、例えば、WAVファイル等のファイル形式でデジタルファイル化し(ステップS103)、必要ならば、フィルタ処理を行って、余分な信号の除去等を行って実測デジタルデータを生成する。
【0017】
本実施の形態の場合、フィルタ処理は、演算処理手段13に予め組み込んだフィルタ処理プログラムによって入力信号に所定の処理を行うもので、予めカットする周波数域等の設定を行うフィルタ帯域の選定工程(ステップS104)と、選定されたフィルタ帯域に従って余分な信号のカットを行うフィルタ処理工程(ステップS105)とで構成される。
ステップS104及びステップS105によるフィルタ処理は、収集してあるデータのS/N比を向上させるために行うもので、入力信号のS/N比が十分であれば、不要である。
【0018】
次いで、生成した実測デジタルデータに対して、周波数分析及びエンベロープ分析等の解析処理を行って(ステップS106、S107)、機械設備3から検出した音又は振動を具現した実測周波数スペクトルデータd1を得る(ステップS108)。
ここで得た実測周波数スペクトルデータd1は、図3に示す波形w1である。この波形w1は、摺動部材としての転がり軸受において、外輪固定で、毎分150回転で内輪を回転させた時のものである。
【0019】
更に、演算処理手段13は、機械設備3の特定部位の異常時に発生する周波数成分の1次、2次、4次値に対する実測周波数スペクトルデータd1上のピークの有無により、機械設備3の特定部位に対する異常の有無の診断を行う(ステップS109)。
摺動部材である軸受は、図4に示すように、設計諸元や使用条件に応じて、特定部位の異常時に発生する周波数成分値が決定される。
演算処理手段13は、機械設備3について、図4に示す特定部位の異常時に発生する周波数成分の1次、2次、4次値を予め基準値として記憶していて、これらの基準値に基づいて、ステップS109を行う。
【0020】
ステップS109では、具体的には、図5に示す手順で、機械設備3の特定部位の異常時に発生する周波数成分の1次、2次、4次値に対する実測周波数スペクトルデータd1上のピークの有無をチェックする照合処理を実施し、周波数成分の1次値、2次値の双方が実測周波数スペクトルデータd1上のピークに一致した場合(ステップS201、S202)、あるいは、周波数成分の1次値は実測周波数スペクトルデータd1上のピークに一致しないが、2次値、4次値の双方が実測周波数スペクトルデータd1上のピークに一致した場合(ステップS211、S212)など、二つ以上の周波数成分において実測周波数スペクトルデータd1上にピークが存在することが確認された場合には、その特定部位について異常有りの診断を下す(ステップS221)。
一方、実測周波数スペクトルデータd1上にピークが存在する周波数成分が一つ以下の場合には、他の部位の異常に起因する振動等がノイズとして影響して、たまたまピークを形成している可能性が高く、異常無しの診断を下す(ステップS231)。
【0021】
図6は、摺動部材としての転がり軸受において、外輪固定で、毎分150回転で内輪を回転させた時の波形w1に対して、特定部位である外輪の損傷に起因して発生する周波数成分の1次値Q1 、2次値Q2 、4次値Q4 の3つの周波数成分を、破線で付記したものである。
前述した図3の場合は、同様の波形w1に対して、外輪の損傷に起因して発生する周波数成分の一次値Q1 から高次Qn までの全てのものを、破線により付記している。
【0022】
以上の第1の実施の形態の評価装置1で行う評価方法では、機械設備3の特定部位の異常時に発生する周波数成分に対応する実測周波数スペクトルデータd1上のピークの有無を調べる照合処理は、機械設備3の異常に起因した周波数成分の1次、2次、4次値の3回に限定されているため、例えば、図3に示したように1次から高次の周波成分まで多数の周波数成分の全てに対して照合処理を繰り返す従来技術の場合と比較すると、照合処理時の演算処理量が大幅に低減する。
【0023】
そのため、機械設備3から検出した信号の解析作業時の演算処理手段13への負担が大幅に軽減され、診断作業の迅速化を図ることができる。また、演算処理量が低減したことで、演算処理手段13として使用するコンピュータに、演算処理能力が低い安価なコンピュータを使用することが可能になり、装置コストの低減を図ることも可能になる。
【0024】
更に、異常時に発生する周波数成分の1次のみで判断すると、たまたまノイズ等の影響で、対応する実測周波数スペクトル上のピークにずれが生じたり、逆にピークが増大しているために誤診断が生じる可能性がある。
しかし、上記のように、機械設備3の特定部位の異常時に発生する周波数成分の1次値、2次値、4次値の3回に渡って照合処理を実施する場合には、3回ともノイズの影響を受ける確率は殆どなく、従って、2回の照合処理を実施するだけで、診断に対する信頼性を向上させることができる。
【0025】
なお、好ましくは、演算処理手段13は、実測周波数スペクトルデータd1の生成後、この実測周波数スペクトルデータd1の実効値f1を算出すると共に、この実効値f1に基づいて閾値t1を設定し、機械設備3の特定部位の異常時に発生する周波数成分の1次値Q1 、2次値Q2 、4次値Q4 に対する実測周波数スペクトルデータd1上のピークは、閾値t1を超える場合にのみ有効なピークとして扱う構成とするとよい。
【0026】
図7は、摺動部材としての転がり軸受において、外輪固定で、毎分150回転で内輪を回転させた時の実測周波数スペクトルデータd1の波形w2に対して、実効値f1と、閾値t1とを書き込んだものである。また、摺動部材としての転がり軸受の転動体の傷に起因して発生する周波数成分の1次値q1 、2次値q2 、4次値q4 を波形w2上に点線で書き込んでいる。
この場合、実効値f1は、波形w2の振幅の平均レベルを算出したもので、−8.5dBである。
また、閾値t1は、t1=(f1+10dB) ……(1)
に設定したため、閾値t1は1.5dBとなった。
この例の場合は、転動体の傷に起因して発生する周波数成分(2fb)の1次値q1 、2次値q2 、4次値q4 のうち、2次値q2 が閾値t1より小さくノイズに埋もれていることから、閾値t1より大きな1次値q1 、4次値q4 のみについて照合処理が必要なことを示している。
【0027】
このように閾値t1によって有用なピークの選別を可能にすると、例えば、摺動部材の特定部位での異常に起因して発生する周波数成分の1次値、2次値、4次値に対応する実測周波数スペクトルデータ上のピークに対して照合のための演算処理を実施する前に、閾値t1によって有効なピークを抽出する抽出処理をすれば、有意でないピークに対して照合処理を実施する無駄を省くことができ、演算処理量による負担を更に軽減して、診断処理の迅速化を促進することができる。
【0028】
なお、以上の実施の形態では、特定部位の損傷の有無を診断する場合を示している。
しかし、前述したように、実測デジタルデータに対して周波数分析及びエンベロープ分析等の適宜解析処理を行って実測周波数スペクトルデータd1を生成した場合に、例えば、図8に示すように、この実測周波数スペクトルデータd1の実効値f1を算出して、算出した実効値f1を基準レベルL0 に設定し、機械設備3の特定部位の異常(本例では外輪損傷を示す)に起因して発生する周波数成分の1次値Q1 に対する実測周波数スペクトルデータd1上のレベルLh と基準レベルL0 とのレベル差lの大きさから、異常を起こしている外輪における損傷の大きさを推定できる。
なお、図8は摺動部材である回転体のエンベロープ波形を示す。
【0029】
図9は、摺動部材としての転がり軸受において、軌道輪の損傷である剥離が生じた場合に、剥離の大きさと、実測周波数スペクトルデータd1上に表れるピークと基準レベルとの間のレベル差との関係を示したものである。
このように、一般的に、レベル差は損傷の大きさに比例して増大するため、逆に、実測周波数スペクトルデータd1上のピークにおけるレベル差を求めることで、損傷の大きさを推定することが可能である。
しかも、機械設備3の損傷に起因する実測周波数スペクトルデータd1上でのピークレベルの増大は、異常に起因する周波数成分の1次値に対応するピークで一番顕著になる。
【0030】
そのため、既述したように、機械設備3の特定部位での異常に起因して発生する周波数成分の1次値に対する実測周波数スペクトルデータd1上のレベルLh とこの実測周波数スペクトルデータd1の実効値f1とのレベル差lを計算することで、最小限の演算処理で効率よく損傷の大きさを推定でき、推定した損傷の大きさから損傷部品の交換時期を決定することで、過剰な部品交換やメンテナンスを回避して、摺動部材を含む機器や設備における維持コストの削減が可能になる。
【0031】
なお、前記基準レベルL0 には、実効値f1の代わりに、実測周波数スペクトルデータd1の平均値を採用するようにしてもよい。
【0032】
なお、本発明の評価方法及び装置による診断対象となる摺動部材は、上記の実施の形態で示した転がり軸受に限らない。軸受以外の各種の摺動部材を診断対象とすることができ、例えば、ボールねじ、リニアガイド、モータ等を含めることができる。また、摺動部材は機器や設備に組み込んだ状態のままでも、摺動部材の駆動時に発生する音や振動が所定の振動検出手段によって検出できる状況であれば、機器や設備から取り外して、直接診断可能である。
【0033】
【発明の効果】
以上述べたように、請求項1及び請求項に記載の本発明の評価方法及び装置によれば、摺動部材を含む機械設備の特定部位の異常時に発生する周波数成分に対応する実測周波数スペクトルデータ上の有効なピークの有無を調べる照合処理は、異常に起因した周波数成分の1次値、2次値、4次値の3回に限定されているため、例えば、1次から高次の周波成分まで多数の周波数成分に対して照合処理を繰り返す従来技術の場合と比較すると、照合処理時の演算処理量が大幅に低減する。そのため、機械設備から検出した振動信号の解析作業時の演算処理手段への負担が大幅に軽減され、診断作業の迅速化を図ることができる。また、演算処理量が低減したことで、演算処理手段として使用するコンピュータに、演算処理能力が低い安価なコンピュータを使用することが可能になり、装置コストの低減を図ることも可能になる。
【0034】
更に、異常時に発生する周波数成分の1次値のみで判断すると、たまたまノイズ等の影響で、対応する実測周波数スペクトル上のピークにずれが生じたり、逆にピークが増大しているために誤診断を生じる可能性がある。
しかし、上記のように、異常に起因して発生する周波数成分の1次値、2次値、4次値の3回に渡って照合処理を実施する場合には、3回ともノイズの影響を受ける確率は殆どなく、診断に対する信頼性を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係る評価方法を実現する評価装置の第1の実施の形態の構成を示すブロック図である。
【図2】図1に示した評価装置による処理手順を示すフローチャートである。
【図3】転がり軸受の外輪の傷で異常振動が発生している時の実測周波数スペクトルを示す波形図である。
【図4】転がり軸受における傷の箇所と周波数との関係を示す図である。
【図5】異常時の周波数成分と実測周波数スペクトルデータのピーク箇所との照合処理の処理手順を示すフローチャートである。
【図6】外輪の傷により異常振動が発生している時の実測周波数スペクトル上の周波数成分の照合箇所を示す波形図である。
【図7】転動体の傷により異常振動が発生している時の実測周波数スペクトル上の周波数成分の照合箇所を示す波形図である。
【図8】異常に起因した周波数成分と実測周波数スペクトルとのエンベロープ波形図である。
【図9】転動体表面の剥離の大きさと実測周波数スペクトルに表れるピークの平均レベルのレベル差との相関図である。
【符号の説明】
1 評価装置
3 1または複数の摺動部材を含む機械設備
5 振動検出手段
7 増幅手段
9 AD変換手段
13 演算処理手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an evaluation method and apparatus for detecting sound or vibration generated from mechanical equipment including one or a plurality of sliding members, analyzing the detected signal, and diagnosing the presence or absence of abnormality caused by the mechanical equipment. More specifically, the present invention relates to an improvement for reducing the burden of analyzing the detected signal and realizing a quick diagnosis work and an improvement in reliability.
[0002]
[Prior art]
Up to now, as an evaluation method for diagnosing the presence or absence of abnormalities such as wear or breakage of a sliding member in a mechanical facility including one or more sliding members such as a rotating body, sound or vibration generated from the mechanical facility has been detected. An evaluation method is known in which a detected signal is appropriately converted into frequency spectrum data by waveform processing, and the presence / absence of an abnormality is diagnosed by comparing and comparing the frequency component resulting from the abnormality of the mechanical equipment with the frequency spectrum data described above. .
[0003]
The frequency component resulting from the abnormality of the mechanical equipment including the sliding member is determined by the design specifications and operation status of the sliding member. For example, it is calculated from the conditions such as the design specifications and operation status of the rotating body described above. It can be determined by processing.
Therefore, in an evaluation apparatus for automatically diagnosing the presence or absence of an abnormality in a mechanical facility, a calculation component such as a computer is used in advance to calculate and process a frequency component resulting from the abnormality of the mechanical facility to be diagnosed, and to generate a mechanical facility. The sound or vibration signal is appropriately waveform processed and converted into frequency spectrum data. Further, the frequency component resulting from the abnormality of the mechanical equipment calculated and stored in advance and the frequency spectrum data described above are stored. Computation processing for comparison and collation is performed.
[0004]
[Problems to be solved by the invention]
By the way, in the conventional evaluation method, for each specific part of the mechanical equipment, a large number of frequency components at the time of abnormality are obtained from the first order to the multi-order, and the frequency spectrum of the mechanical equipment measured for each of these many frequency components An arithmetic process for diagnosing whether or not a peak appears on the data and an arithmetic process for diagnosing whether or not the peak value on the frequency spectrum data is a peak level indicating abnormality are repeated.
For this reason, the calculation processing until final diagnosis is enormous, and the calculation processing means is heavily loaded. Therefore, an expensive computer with high calculation processing capability is required, resulting in an increase in apparatus cost. There is a problem that it is difficult to speed up the diagnostic work due to the length of time required for the arithmetic processing.
[0005]
The present invention has been made in view of the above circumstances, and reduces the burden of arithmetic processing when diagnosing the presence or absence of an abnormality in mechanical equipment including one or a plurality of sliding members, thereby speeding up and improving the reliability of diagnostic work. It is an object of the present invention to provide an evaluation method and apparatus capable of realizing the improvement of the above.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the evaluation method according to the present invention described in claim 1 detects sound or vibration generated from mechanical equipment including a sliding member, analyzes the detected signal, An evaluation method for diagnosing the presence or absence of an abnormality caused by
Generate measured frequency spectrum data from sound or vibration generated from the mechanical equipment,
An effective value of the actually measured frequency spectrum data is calculated, a threshold is set based on the effective value, and the actually measured frequency spectrum with respect to the first, second, and fourth values of the frequency component caused by the abnormality of the mechanical equipment. A peak on the data is an effective peak only when the threshold value is exceeded, and the effective peak on the measured frequency spectrum data with respect to the first, second, and fourth order values of the frequency component caused by the abnormality of the mechanical equipment is determined . The presence or absence of an abnormality in the mechanical equipment is diagnosed based on the presence or absence.
[0007]
In order to achieve the above object, the evaluation apparatus according to the present invention described in claim 5 detects sound or vibration generated from mechanical equipment including a sliding member, analyzes the detected signal, and originates from the mechanical equipment. An evaluation device for diagnosing the presence or absence of abnormalities,
After generating the measured frequency spectrum data from the sound or vibration generated from the mechanical equipment , calculate the effective value of the measured frequency spectrum data, set a threshold based on the effective value, the said attributed to the abnormality of the mechanical equipment The peak on the actually measured frequency spectrum data for the first, second, and fourth order values of the frequency component is an effective peak only when the threshold value is exceeded, and the first order of the frequency component due to the abnormality of the mechanical equipment, Computational processing means for diagnosing whether there is an abnormality in the mechanical equipment based on the presence / absence of the effective peak on the measured frequency spectrum data with respect to secondary and quaternary values is provided.
[0008]
And according to the evaluation method and apparatus of the structure described in Claim 1 and Claim 5 , the collation process which investigates the presence or absence of the effective peak on the measured frequency spectrum data corresponding to the frequency component resulting from abnormality of a mechanical installation is Because the frequency component is limited to three times, the first, second, and fourth values of the frequency component due to the abnormality of the machine equipment, for example, the verification processing is performed on a large number of frequency components from the first to the higher order frequency components. Compared with the conventional technique to be repeated, the amount of calculation processing at the time of collation processing is reduced, and the burden on the calculation processing means is greatly reduced. Furthermore, since the verification process is performed three times, the primary, secondary, and quaternary values of the frequency component due to the abnormality of the mechanical equipment, the noise is compared with the case where the determination is made only with the primary of the frequency component. It is difficult for misdiagnosis due to the influence of the above and the like, and a highly reliable diagnosis is possible.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of an evaluation method and apparatus according to the invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a block diagram showing a schematic configuration of a first embodiment of an evaluation method and apparatus according to the present invention, and FIG. 2 is a flowchart showing a procedure of diagnostic processing of the evaluation apparatus shown in FIG.
[0013]
First, after describing the schematic configuration of the evaluation apparatus according to the first embodiment with reference to FIG. 1, the evaluation method using the evaluation apparatus will be described in detail.
The evaluation apparatus 1 according to the present embodiment includes a vibration detection unit 5 that outputs an analog signal corresponding to sound or vibration generated by the mechanical equipment 3 including one or a plurality of sliding members to be diagnosed, and the vibration detection unit. 5, an amplifying means 7 for amplifying the signal output, an AD converting means 9 for converting the analog signal amplified by the amplifying means 7 into a digital signal and generating measured digital data, and an actual measurement output from the AD converting means 9 It is the structure provided with the arithmetic processing means 13 which diagnoses the presence or absence of the abnormality of the specific site | part of the mechanical equipment 3 based on digital data.
[0014]
In the case of the present embodiment, a rolling bearing is applied as a sliding member of the mechanical equipment 3 to be diagnosed. Then, the wear and damage of the inner and outer rings, rolling elements, cages, and the like constituting the rolling bearing are diagnosed from sound or vibration during driving of the rolling bearing.
In the present embodiment, the sound or vibration of the rolling bearing includes ultrasonic vibration that appears when the rolling bearing is driven, so-called AE (Acoustic Emission).
[0015]
The arithmetic processing means 13 is a diagnostic computer that performs arithmetic processing on various processing data stored in advance and actually measured digital data received from the AD conversion means 9 based on a diagnostic program.
This arithmetic processing means 13 generates measured frequency spectrum data by performing appropriate analysis processing such as frequency analysis and envelope analysis on the measured digital data output from the AD conversion means 9, and is caused by an abnormality in the mechanical equipment 3. The presence / absence of an abnormality in the mechanical equipment 3 is diagnosed based on the presence / absence of a peak on the actually measured frequency spectrum data for the first, second, and fourth order values of the frequency component.
[0016]
The above evaluation apparatus 1 performs processing in the procedure shown in FIG.
First, the vibration detection means 5 detects the sound or vibration generated by the mechanical equipment 3 (step S101), and then the signal passed through the amplification means 7 is converted into a digital signal by AD conversion by the AD conversion means 9 (step S102). To the arithmetic processing means 13.
The arithmetic processing unit 13 converts the signal received from the AD conversion unit 9 into a digital file in a file format such as a WAV file (step S103), and performs a filtering process to remove an extra signal if necessary. Go to generate measured digital data.
[0017]
In the case of the present embodiment, the filter process is a process for performing a predetermined process on the input signal by a filter processing program incorporated in advance in the arithmetic processing means 13, and a filter band selecting step for setting a frequency band to be cut in advance ( Step S104) and a filter processing step (Step S105) for cutting off an extra signal in accordance with the selected filter band.
The filtering process in steps S104 and S105 is performed to improve the S / N ratio of the collected data, and is unnecessary if the S / N ratio of the input signal is sufficient.
[0018]
Next, analysis processing such as frequency analysis and envelope analysis is performed on the generated actual measurement digital data (steps S106 and S107) to obtain actual frequency spectrum data d1 that embodies the sound or vibration detected from the mechanical equipment 3 ( Step S108).
The actually measured frequency spectrum data d1 obtained here is a waveform w1 shown in FIG. This waveform w1 is obtained when the inner ring is rotated at 150 revolutions per minute with the outer ring fixed in the rolling bearing as the sliding member.
[0019]
Further, the arithmetic processing means 13 determines the specific part of the mechanical equipment 3 based on the presence or absence of a peak on the measured frequency spectrum data d1 with respect to the first, second, and fourth order values of the frequency component generated when the specific part of the mechanical equipment 3 is abnormal. The presence or absence of abnormality is diagnosed (step S109).
As shown in FIG. 4, the frequency component value generated when a specific part is abnormal is determined for a bearing that is a sliding member according to design specifications and use conditions.
The arithmetic processing means 13 stores the primary, secondary, and quaternary values of the frequency components generated when the specific part shown in FIG. 4 is abnormal for the mechanical equipment 3 as reference values in advance, and based on these reference values. Then, step S109 is performed.
[0020]
In step S109, specifically, the presence or absence of a peak on the measured frequency spectrum data d1 with respect to the primary, secondary, and quadratic values of the frequency component generated when the specific part of the mechanical equipment 3 is abnormal is performed according to the procedure shown in FIG. In the case where both the primary value and the secondary value of the frequency component coincide with the peak on the actually measured frequency spectrum data d1 (steps S201 and S202), or the primary value of the frequency component is In two or more frequency components, such as when the peak on the measured frequency spectrum data d1 does not match the peak on the measured frequency spectrum data d1, but both the quadratic value and the quaternary value match the peak on the measured frequency spectrum data d1 (steps S211, S212). If it is confirmed that a peak exists in the measured frequency spectrum data d1, a diagnosis of abnormality is made for the specific part. (Step S221).
On the other hand, when the frequency component having a peak on the actually measured frequency spectrum data d1 is less than one, vibrations caused by abnormalities in other parts may be affected as noise and may form a peak by chance. Is high and a diagnosis of no abnormality is made (step S231).
[0021]
FIG. 6 shows a frequency component generated due to damage to the outer ring, which is a specific part, with respect to the waveform w1 when the inner ring is rotated at 150 rotations per minute with the outer ring fixed in a rolling bearing as a sliding member. The three frequency components of the primary value Q 1 , the secondary value Q 2 , and the quaternary value Q 4 are appended with broken lines.
In the case of FIG. 3 described above, all the components from the primary value Q 1 to the high-order Q n of the frequency components generated due to the damage of the outer ring are appended to the same waveform w1 by broken lines. .
[0022]
In the evaluation method performed by the evaluation apparatus 1 according to the first embodiment described above, the verification process for examining the presence or absence of a peak on the measured frequency spectrum data d1 corresponding to the frequency component generated when the specific part of the mechanical equipment 3 is abnormal is as follows: Since the frequency component is limited to three times of the primary, secondary, and quaternary values due to the abnormality of the mechanical equipment 3, for example, as shown in FIG. Compared to the case of the prior art in which the matching process is repeated for all frequency components, the amount of calculation processing during the matching process is greatly reduced.
[0023]
Therefore, the burden on the arithmetic processing means 13 at the time of the analysis work of the signal detected from the mechanical equipment 3 is greatly reduced, and the diagnosis work can be speeded up. In addition, since the amount of arithmetic processing is reduced, it is possible to use an inexpensive computer with low arithmetic processing capability as the computer used as the arithmetic processing means 13, and it is also possible to reduce the apparatus cost.
[0024]
Further, if only the first order of the frequency component generated at the time of abnormality is determined, the peak on the corresponding actually measured frequency spectrum is shifted due to the influence of noise or the like. Can occur.
However, as described above, in the case where the verification process is performed over three times of the primary value, the secondary value, and the quaternary value of the frequency component generated when the specific part of the mechanical equipment 3 is abnormal, all three times There is almost no probability of being affected by noise, and therefore the reliability for diagnosis can be improved by performing only two matching processes.
[0025]
Preferably, the arithmetic processing means 13 calculates the effective value f1 of the actually measured frequency spectrum data d1 after generating the actually measured frequency spectrum data d1, and sets a threshold value t1 based on the effective value f1, The peak on the measured frequency spectrum data d1 with respect to the primary value Q 1 , the secondary value Q 2 , and the quaternary value Q 4 of the frequency component generated when the specific part 3 is abnormal is a peak that is effective only when the threshold value t1 is exceeded. It is good to have a configuration to handle as
[0026]
FIG. 7 shows an effective value f1 and a threshold value t1 for the waveform w2 of the actually measured frequency spectrum data d1 when the inner ring is rotated at 150 rotations per minute with the outer ring fixed in the rolling bearing as the sliding member. It is written. Further, the primary value q 1 , the secondary value q 2 , and the quaternary value q 4 of the frequency component generated due to scratches on the rolling elements of the rolling bearing as the sliding member are written on the waveform w2 by dotted lines. .
In this case, the effective value f1 is obtained by calculating the average level of the amplitude of the waveform w2, and is −8.5 dB.
The threshold t1 is t1 = (f1 + 10 dB) (1)
Therefore, the threshold value t1 is 1.5 dB.
In this example, rolling primary value q 1 wound on due to generate frequency components of the moving object (2 fb), of the secondary value q 2, 4-order value q 4, secondary value q 2 is the threshold t1 Since it is smaller and buried in noise, it indicates that the collation process is necessary only for the primary value q 1 and the quaternary value q 4 which are larger than the threshold value t1.
[0027]
When the useful peak can be selected based on the threshold value t1, the frequency component primary value, the secondary value, and the quaternary value that are generated due to an abnormality in a specific portion of the sliding member can be used. If an extraction process for extracting an effective peak with the threshold value t1 is performed before performing the calculation process for matching on the peak on the actually measured frequency spectrum data, the waste of performing the matching process on the insignificant peak is eliminated. It can be omitted, and the burden due to the amount of calculation processing can be further reduced, and the speeding up of the diagnostic processing can be promoted.
[0028]
In the above embodiment, the case where the presence or absence of damage of a specific part is diagnosed is shown.
However, as described above, when the measured frequency spectrum data d1 is generated by performing appropriate analysis processing such as frequency analysis and envelope analysis on the measured digital data, for example, as shown in FIG. The effective value f1 of the data d1 is calculated, the calculated effective value f1 is set to the reference level L 0, and a frequency component generated due to an abnormality in a specific part of the mechanical equipment 3 (indicating outer ring damage in this example) From the magnitude of the level difference l between the level L h and the reference level L 0 on the actually measured frequency spectrum data d1 with respect to the primary value Q 1 , the magnitude of damage in the outer ring causing the abnormality can be estimated.
FIG. 8 shows an envelope waveform of a rotating body that is a sliding member.
[0029]
FIG. 9 shows the magnitude of separation and the level difference between the peak appearing on the actually measured frequency spectrum data d1 and the reference level when separation, which is damage to the raceway ring, occurs in a rolling bearing as a sliding member. This shows the relationship.
Thus, since the level difference generally increases in proportion to the magnitude of damage, conversely, the magnitude of damage is estimated by obtaining the level difference at the peak on the actually measured frequency spectrum data d1. Is possible.
Moreover, the increase in the peak level on the actually measured frequency spectrum data d1 due to the damage of the mechanical equipment 3 becomes most significant at the peak corresponding to the primary value of the frequency component due to the abnormality.
[0030]
Therefore, as described above, mechanical equipment 3 of the effective value of the measured frequency spectrum data d1 level L h Toko on the measured frequency spectrum data d1 to the primary value of the abnormality due to occurrence frequency components at a specific site By calculating the level difference l from f1, it is possible to efficiently estimate the magnitude of damage with a minimum of arithmetic processing, and by determining the replacement timing of damaged parts from the estimated magnitude of damage, excessive parts replacement And maintenance can be avoided, and the maintenance cost of equipment and facilities including sliding members can be reduced.
[0031]
Note that the average value of the actually measured frequency spectrum data d1 may be adopted as the reference level L 0 instead of the effective value f1.
[0032]
The sliding member to be diagnosed by the evaluation method and apparatus of the present invention is not limited to the rolling bearing shown in the above embodiment. Various sliding members other than the bearing can be targeted for diagnosis, and for example, a ball screw, a linear guide, a motor, and the like can be included. In addition, even if the sliding member is in the state where it is incorporated in the device or equipment, if the sound or vibration generated when the sliding member is driven can be detected by a predetermined vibration detecting means, it can be removed from the device or equipment and directly Diagnosis is possible.
[0033]
【The invention's effect】
As described above, according to the evaluation method and apparatus of the present invention described in claims 1 and 5 , the actually measured frequency spectrum corresponding to the frequency component generated at the time of abnormality of a specific part of the mechanical equipment including the sliding member. The verification process for checking the presence or absence of a valid peak on the data is limited to three times of the primary value, the secondary value, and the quaternary value of the frequency component caused by the abnormality. compared to the prior art to repeat the verification process to a number of frequency components to frequency components, the arithmetic processing amount at the time of collation processing can be greatly reduced. Therefore, the burden on the arithmetic processing means at the time of the analysis work of the vibration signal detected from the mechanical equipment is greatly reduced, and the diagnosis work can be speeded up. In addition, since the amount of calculation processing is reduced, it is possible to use an inexpensive computer with low calculation processing capability as the computer used as the calculation processing means, and it is also possible to reduce the apparatus cost.
[0034]
Furthermore, if only the primary value of the frequency component generated at the time of abnormality is judged, it will happen that the peak on the corresponding measured frequency spectrum is shifted due to the influence of noise, etc. May occur.
However, as described above, when the verification process is performed three times, ie, the primary value, the secondary value, and the quaternary value of the frequency component generated due to the abnormality, the influence of noise is affected all three times. There is almost no probability of receiving, and the reliability for diagnosis can be improved.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a first embodiment of an evaluation apparatus that implements an evaluation method according to the present invention.
FIG. 2 is a flowchart showing a processing procedure performed by the evaluation apparatus shown in FIG.
FIG. 3 is a waveform diagram showing an actually measured frequency spectrum when abnormal vibration occurs due to scratches on the outer ring of the rolling bearing.
FIG. 4 is a diagram showing a relationship between a flawed location and a frequency in a rolling bearing.
FIG. 5 is a flowchart showing a processing procedure for collation processing between an abnormal frequency component and a peak portion of measured frequency spectrum data.
FIG. 6 is a waveform diagram showing a location where frequency components are compared on an actually measured frequency spectrum when abnormal vibration is generated due to scratches on the outer ring.
FIG. 7 is a waveform diagram showing a location where frequency components are compared on an actually measured frequency spectrum when abnormal vibration occurs due to scratches on rolling elements.
FIG. 8 is an envelope waveform diagram of a frequency component caused by an abnormality and an actually measured frequency spectrum.
FIG. 9 is a correlation diagram between the magnitude of peeling on the surface of a rolling element and the level difference of the average level of peaks appearing in the actually measured frequency spectrum.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Evaluation apparatus 3 Mechanical equipment 5 including one or more sliding members Vibration detection means 7 Amplification means 9 AD conversion means 13 Arithmetic processing means

Claims (8)

摺動部材を含む機械設備から発生する音又は振動を検出し、検出した信号を解析して、前記機械設備に起因する異常の有無を診断する評価方法であって、
前記機械設備から発生した音又は振動から実測周波数スペクトルデータを生成し、
該実測周波数スペクトルデータの実効値を算出すると共に、該実効値に基づいて閾値を設定し、前記機械設備の異常に起因した前記周波数成分の1次、2次、4次値に対する前記実測周波数スペクトルデータ上のピークは前記閾値を超える場合にのみ有効なピークとし、前記機械設備の異常に起因した周波数成分の1次、2次、4次値に対する前記実測周波数スペクトルデータ上の前記有効なピークの有無により、前記機械設備に対する異常の有無の診断を行うことを特徴とする評価方法。
It is an evaluation method for detecting sound or vibration generated from mechanical equipment including a sliding member, analyzing the detected signal, and diagnosing the presence or absence of an abnormality caused by the mechanical equipment,
Generate measured frequency spectrum data from sound or vibration generated from the mechanical equipment,
An effective value of the actually measured frequency spectrum data is calculated, a threshold is set based on the effective value, and the actually measured frequency spectrum with respect to the first, second, and fourth values of the frequency component caused by the abnormality of the mechanical equipment. A peak on the data is an effective peak only when the threshold value is exceeded, and the effective peak on the measured frequency spectrum data with respect to the first, second, and fourth order values of the frequency component caused by the abnormality of the mechanical equipment is determined . An evaluation method comprising diagnosing the presence / absence of an abnormality in the mechanical equipment based on presence / absence.
前記機械設備の異常に起因した周波数成分の1次、2次、4次値に、前記実測周波数スペクトルデータ上の前記有効なピークが二つ以上一致した場合に異常有りの診断を行うことを特徴とする請求項1に記載の評価方法。An abnormality diagnosis is performed when two or more of the effective peaks on the measured frequency spectrum data match the first, second, and fourth order values of the frequency component caused by the abnormality of the mechanical equipment. The evaluation method according to claim 1. 前記有効なピークは、前記閾値を越える前記実測周波数スペクトルデータ上のピークを抽出した後に、該抽出されたピークに対して前記機械設備の異常に起因した周波数成分の1次、2次、4次値を照合することを特徴とする請求項1又は2に記載の評価方法。The effective peak is obtained by extracting a peak on the measured frequency spectrum data exceeding the threshold value, and then, with respect to the extracted peak, the primary, secondary, and quadratic frequency components due to the abnormality of the mechanical equipment. 3. The evaluation method according to claim 1, wherein the values are collated. 前記摺動部材は、転がり軸受、ボールねじ、リニアガイドのいずれかであることを特徴とする請求項1〜3のいずれかに記載の評価方法。The evaluation method according to claim 1, wherein the sliding member is any one of a rolling bearing, a ball screw, and a linear guide. 摺動部材を含む機械設備から発生する音又は振動を検出し、検出した信号を解析して前記機械設備に起因する異常の有無を診断する評価装置であって、
前記機械設備から発生した音又は振動から実測周波数スペクトルデータを生成後、該実測周波数スペクトルデータの実効値を算出し、該実効値に基づいて閾値を設定し、前記機械設備の異常に起因した前記周波数成分の1次、2次、4次値に対する前記実測周波数スペクトルデータ上のピークは前記閾値を超える場合にのみ有効なピークとし、且つ、前記機械設備の異常に起因した周波数成分の1次、2次、4次値に対する前記実測周波数スペクトルデータ上の前記有効なピークの有無により、前記機械設備に対する異常の有無の診断を行う演算処理手段とを備えたことを特徴とする評価装置。
An evaluation device that detects sound or vibration generated from mechanical equipment including a sliding member, analyzes the detected signal, and diagnoses the presence or absence of an abnormality caused by the mechanical equipment,
After generating the measured frequency spectrum data from the sound or vibration generated from the mechanical equipment , calculate the effective value of the measured frequency spectrum data, set a threshold based on the effective value, the said attributed to the abnormality of the mechanical equipment The peak on the actually measured frequency spectrum data for the first, second, and fourth order values of the frequency component is an effective peak only when the threshold value is exceeded, and the first order of the frequency component due to the abnormality of the mechanical equipment, An evaluation apparatus comprising: arithmetic processing means for diagnosing the presence / absence of an abnormality in the mechanical equipment based on the presence / absence of the effective peak on the measured frequency spectrum data with respect to secondary and quaternary values.
前記機械設備の異常に起因した周波数成分の1次、2次、4次値に、前記実測周波数スペクトルデータ上の前記有効なピークが二つ以上一致した場合に異常有りの診断を行うことを特徴とする請求項5に記載の評価装置。An abnormality diagnosis is performed when two or more effective peaks on the measured frequency spectrum data coincide with the primary, secondary, and quaternary values of the frequency components caused by the abnormality of the mechanical equipment. The evaluation apparatus according to claim 5. 前記有効なピークは、前記閾値を越える前記実測周波数スペクトルデータ上のピークを抽出した後に、該抽出されたピークに対して前記機械設備の異常に起因した周波数成分の1次、2次、4次値を照合することを特徴とする請求項5又は6に記載の評価装置。The effective peak is obtained by extracting a peak on the measured frequency spectrum data exceeding the threshold value, and then, with respect to the extracted peak, the primary, secondary, and quadratic frequency components due to the abnormality of the mechanical equipment. The evaluation device according to claim 5 or 6, wherein values are collated. 前記摺動部材は、転がり軸受、ボールねじ、リニアガイドのいずれかであることを特徴とする請求項5〜7のいずれかに記載の評価装置。The evaluation apparatus according to claim 5, wherein the sliding member is one of a rolling bearing, a ball screw, and a linear guide.
JP2001327742A 2000-11-06 2001-10-25 Evaluation method and apparatus Expired - Fee Related JP3858978B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001327742A JP3858978B2 (en) 2001-10-25 2001-10-25 Evaluation method and apparatus
PCT/JP2001/009699 WO2002037067A1 (en) 2000-11-06 2001-11-06 Abnormality diagnosing device and method for mechanical equipment
US10/415,931 US20040030419A1 (en) 2000-11-06 2001-11-06 Abnormality diagnosing device and method for mechanical equipment
EP01982740A EP1338873A1 (en) 2000-11-06 2001-11-06 Abnormality diagnosing device and method for mechanical equipment
US11/896,022 US20080010039A1 (en) 2000-11-06 2007-08-29 Anomaly diagnosis apparatus and method of machine installation
US11/896,020 US7587299B2 (en) 2000-11-06 2007-08-29 Anomaly diagnosis apparatus and method of machine installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001327742A JP3858978B2 (en) 2001-10-25 2001-10-25 Evaluation method and apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006214501A Division JP4003086B2 (en) 2006-08-07 2006-08-07 Evaluation method and apparatus

Publications (2)

Publication Number Publication Date
JP2003130763A JP2003130763A (en) 2003-05-08
JP3858978B2 true JP3858978B2 (en) 2006-12-20

Family

ID=19143921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001327742A Expired - Fee Related JP3858978B2 (en) 2000-11-06 2001-10-25 Evaluation method and apparatus

Country Status (1)

Country Link
JP (1) JP3858978B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7640139B2 (en) 2004-10-18 2009-12-29 Nsk Ltd. Abnormality diagnosing system for mechanical equipment
JP6733838B1 (en) 2018-08-23 2020-08-05 日本精工株式会社 Rolling bearing abnormality diagnosis method and abnormality diagnosis device

Also Published As

Publication number Publication date
JP2003130763A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
US7587299B2 (en) Anomaly diagnosis apparatus and method of machine installation
JP6038347B2 (en) Abnormal sound diagnosis device
JP2002022617A (en) Apparatus for diagnosing bearing
JP2003528292A (en) State-based monitoring of bearings by vibration analysis
JP2006322947A (en) Vibration peak value extraction method, and peak value extractor for machinery facility
JP4003086B2 (en) Evaluation method and apparatus
JP3829924B2 (en) Evaluation device
WO2021049068A1 (en) Vibration detection device, vibration detection method, and abnormality determination system
JP2000146762A (en) Abnormality diagnostic system for rolling bearing
JP4997936B2 (en) Rolling bearing abnormality diagnosis device and vehicle
JP3858978B2 (en) Evaluation method and apparatus
WO2019163433A1 (en) Signal analysis system, method and program
JP3846560B2 (en) Abnormality diagnosis method and abnormality diagnosis apparatus for mechanical equipment or equipment
JP3920715B2 (en) Vibration signal processing method
JPH0743259A (en) Method and apparatus for detecting abnormality
US6281814B1 (en) Data conversion method, data converter, and program storage medium
JP6815489B2 (en) Vibration detection device and abnormality judgment system
JP5428994B2 (en) Anomaly diagnosis method, apparatus and program for machine equipment
JP2006313169A (en) Abnormality diagnostic method and abnormality diagnostic device of machine or equipment
JPH10174373A (en) Deterioration diagnostic device for electric apparatus
JP2012177653A (en) Acoustic diagnosis method, program, and device
US11002707B2 (en) Hammering sound diagnostic device and method usable with a robot
WO2020202567A1 (en) Vibro-acoustic analysis method and device and equipment-abnormality-location estimation method and device
JP2007263639A (en) Method and apparatus for fault diagnosis of equipment
JP2918683B2 (en) Method for specifying AE signal due to bearing fatigue and method for predicting bearing destruction using this method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041025

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060912

R150 Certificate of patent or registration of utility model

Ref document number: 3858978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees