WO2019163433A1 - Signal analysis system, method and program - Google Patents

Signal analysis system, method and program Download PDF

Info

Publication number
WO2019163433A1
WO2019163433A1 PCT/JP2019/002723 JP2019002723W WO2019163433A1 WO 2019163433 A1 WO2019163433 A1 WO 2019163433A1 JP 2019002723 W JP2019002723 W JP 2019002723W WO 2019163433 A1 WO2019163433 A1 WO 2019163433A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
threshold voltage
voltage
dfa
voltage value
Prior art date
Application number
PCT/JP2019/002723
Other languages
French (fr)
Japanese (ja)
Inventor
徹 矢澤
Original Assignee
徹 矢澤
霜田 幸雄
株式会社シンフォディアフィル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徹 矢澤, 霜田 幸雄, 株式会社シンフォディアフィル filed Critical 徹 矢澤
Publication of WO2019163433A1 publication Critical patent/WO2019163433A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a signal analysis system, and more particularly to a signal analysis system suitable for detecting an abnormality of a vibrating body.
  • an acoustic emission method (Acoustic Emission, AE) is known as a method for diagnosing a damaged state of a rolling bearing.
  • AE Acoustic Emission
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-159151 (Patent Document 1) measures the ultrasonic wave generated from a bearing with a microphone and compares the component intensity of the frequency of interest of the acoustic signal with a master curve prepared in advance.
  • a bearing diagnosis method for predicting the damage state and estimating the remaining life.
  • the present invention has been made in view of the above prior art, and an object thereof is to provide a novel signal analysis system suitable for detecting the state of a vibrating body.
  • the present inventor In the process of examining the configuration for detecting the state of the vibrating body, the present inventor has a scaling index obtained by analyzing the fluctuation of the peak interval of the vibration waveform generated by the vibrating body by DFA (Detrended Fluctuation Analysis). We found that it can be used as an indicator of the state of Based on this discovery, the present inventor succeeded in developing an apparatus that automatically obtains a peak interval from a vibration waveform and outputs a scaling index, and arrived at the present invention.
  • DFA Detrended Fluctuation Analysis
  • the voltage value of the analysis target signal is sampled for a predetermined period to obtain time-series data of the voltage value, and the appearance frequency of the positive voltage value constituting the time-series data is represented.
  • a threshold voltage setting unit that creates a frequency distribution and sets a threshold voltage on the basis of a voltage value at which the appearance frequency rapidly decreases, and compares each voltage value constituting the time series data with the threshold voltage in time series order.
  • a peak time acquiring unit that samples a voltage value exceeding the voltage and samples a maximum value among the voltage values sampled in the first minute period thereafter as a peak time; and a DFA based on the peak time
  • a DFA target data generation unit that generates target data; a DFA execution unit that executes a DFA based on the DFA target data and obtains a scaling index;
  • Signal analysis system comprising provided.
  • a novel signal analysis system suitable for detecting the state of a vibrating body is provided.
  • FIG. 1 shows a signal analysis system 100 according to an embodiment of the present invention.
  • the signal analysis system 100 uses a vibrating body as an analysis target, and includes a vibration sensor 10 and a computer 20.
  • the analysis target here includes a moving body that emits periodic vibrations as well as a moving body that emits periodic vibrations (for example, a rotating body such as a rolling bearing).
  • the vibration sensor 10 is means for converting the vibration generated by the vibration body to be analyzed into a voltage waveform signal and outputting the voltage waveform signal. It may be a type sensor.
  • the computer 20 is an information processing apparatus for executing DFA (Detrended Fluctuation Analysis) based on the voltage waveform signal input from the vibration sensor 10, and includes a signal sampling unit 21, a moving average processing unit 22, The threshold voltage setting unit 23, the peak time acquisition unit 24, the storage unit 25, the DFA target data generation unit 26, the DFA execution unit 27, and the analysis result output unit 28 are configured.
  • DFA Detrended Fluctuation Analysis
  • the signal sampling unit 21 is a unit that samples a voltage waveform signal (hereinafter referred to as an analysis target signal) input from the vibration sensor 10 over a predetermined period and acquires time-series data of voltage values.
  • the moving average processing unit 22 is means for performing a moving average process on the time-series data of the voltage values acquired by the signal sampling unit 21.
  • the threshold voltage setting unit 23 is a means for setting a threshold voltage for detecting the peak of the analysis target signal.
  • the peak time acquisition unit 24 is a means for acquiring the occurrence time of the peak of the analysis target signal.
  • the DFA target data generation unit 26 is means for generating DFA (Detrended Fluctuation Analysis) target data (hereinafter referred to as DFA target data) based on the peak time acquired by the peak time acquisition unit 24.
  • DFA target data DFA (Detrended Fluctuation Analysis) target data
  • the DFA execution unit 27 is a means for executing the DFA based on the DFA target data and acquiring the scaling index.
  • the analysis result output unit 28 is a means for outputting the scaling index acquired by the DFA execution unit 27 as an analysis result.
  • the computer 20 functions as the above-described units by executing a predetermined program.
  • FIG. 1 will be referred to as appropriate.
  • step 101 the signal sampling unit 21 samples the analysis target signal input from the vibration sensor 10 for a predetermined period to obtain time-series data (discrete data) of voltage values.
  • the moving average processing unit 22 performs moving average processing on the time-series data of the voltage values acquired by the signal sampling unit 21 to smooth the data, thereby reducing noise.
  • the threshold voltage setting unit 23 executes the threshold voltage setting process based on the time-series data of the voltage value after the moving average process.
  • FIG. 3 shows time-series data of voltage values after the moving average process.
  • the threshold voltage VTh With reference to a voltage value at which the frequency of appearance of data decreases rapidly in detecting a positive peak of a signal.
  • a threshold voltage V Th for detecting a signal peak is set based on this concept.
  • the threshold voltage setting process executed by the threshold voltage setting unit 23 will be described based on the flowchart shown in FIG.
  • a case where a positive threshold voltage is set will be described as an example.
  • a frequency distribution representing the frequency of appearance is created for a plurality of voltage values constituting time-series data of voltage values. Specifically, after defining a class of positive voltage values having an appropriate class width, the positive voltage value among the acquired voltage values is assigned to each class to obtain the frequency.
  • step 202 for each class of the frequency distribution created in the previous step 201, a frequency difference between the class adjacent to the class is obtained, and this is associated with the class. For the last class, there is no adjacent class, so the frequency difference value is blank.
  • the “adjacent class” here is either “adjacent class in ascending order” or “adjacent class in descending order” (hereinafter the same).
  • the frequency difference associated with the class and the "frequency difference" difference associated with the adjacent class ie, the class
  • difference of “frequency difference” between other classes adjacent to and associate this with the class.
  • the difference of “frequency difference” obtained here has the same meaning as the change rate of change in the appearance frequency of data. For the classes adjacent in the last order, since the frequency difference value of the last order is blank, the difference value of “frequency difference” is blank.
  • step 204 the class associated with the maximum value of the “frequency difference” is specified, and the threshold voltage V Th is set based on the class value of the class.
  • the class specified in step 204 is a voltage value range in which the change rate of the change in the appearance frequency of data is maximized, and the class value of the class is a voltage value slightly higher than the noise level.
  • “setting the threshold voltage V Th based on the class value” here means that the class value is set as the threshold voltage V Th as it is, and a value obtained by adding an appropriate margin to the class value is the threshold voltage. This is a concept including both setting as VTh .
  • the frequency of appearance of the negative voltage value among the plurality of sampled voltage values in the previous step 201 is set.
  • the frequency distribution to be expressed is created, and the threshold voltage V Th (negative value) may be set in the previous step 204 with reference to the class value of the class associated with the maximum value of the “frequency difference”.
  • the graph shown in FIG. 5 is referred to.
  • the graph shown in FIG. 5 is a line graph ( ⁇ ) showing the relationship between the class and the frequency difference on the histogram created based on the frequency distribution representing the frequency of occurrence of the voltage value, the class and the “frequency”.
  • This is a graph in which line graphs ( ⁇ ) showing the relationship of the difference of “no difference” are superimposed.
  • the threshold voltage setting process described above when a positive peak is extracted, the threshold voltage is set based on the class value of the class corresponding to the plot point P 1 of the line graph ( ⁇ ).
  • V Th positive value
  • V Th negative value
  • the threshold voltage V Th negative value
  • step 211 a frequency distribution representing the frequency of appearance of voltage values is created in the same procedure as in step 201, and a histogram representing the frequency of appearance of voltage values is created based on the frequency distribution.
  • a curve function indicating the relationship between the voltage value and the appearance frequency of data is obtained by curve fitting for the created histogram.
  • the curve function obtained here corresponds to the solid line f in the graph shown in FIG.
  • the second derivative is obtained by performing second order differentiation on the obtained curve function.
  • the second derivative obtained here corresponds to a function indicating the relationship between the voltage value and the change rate of the change in the appearance frequency of the data.
  • step 214 a voltage value giving the maximum value of the obtained second derivative (that is, the maximum value of the change rate of the appearance frequency of data) is obtained, and the threshold voltage V Th is set based on the obtained voltage value. To do.
  • step 214 when a positive peak is extracted, a voltage value that gives the maximum value of the second derivative in the domain of the positive voltage value is obtained, and when a negative peak is extracted, a negative peak is obtained. Find the voltage value that gives the maximum value of the second derivative in the domain of the voltage value.
  • the threshold voltage V Th for detecting the peak of the analysis target signal is automatically set to an appropriate value by the procedure described above.
  • step 104 the peak time acquisition unit 24 executes a peak time acquisition process.
  • the peak time acquisition process executed by the peak time acquisition unit 24 will be described with reference to a flowchart shown in FIG. 6 and a conceptual diagram of time-series data of voltage values shown in FIG.
  • the analysis target signal has a positive peak and a negative peak.
  • a case where a positive peak is detected will be described as an example.
  • step 301 the counter [q] is set to the initial value “1”.
  • step 302 the first voltage value constituting the time-series data of the voltage value is compared with the threshold voltage VTh .
  • the value of the counter [q] is incremented by 1 (step 307), and the second voltage value is set as the threshold voltage VTh .
  • Compare step 302). Thereafter, until the voltage value exceeds the threshold voltage V Th, repeat the above process, when the voltage value exceeds the threshold voltage V Th (step 303, Yes), the process proceeds to step 304.
  • step 304 it identifies the maximum value V max among the sampled voltage value to the threshold voltage V Th subsequent minute period by sampling the voltage value exceeding T1, a time at which sample the maximum value V max acquired as the peak time t, stored in the storage unit 25 it in the form of time-series data ⁇ t i ⁇ .
  • the number r of data sampled in the minute period T2 continuous to the minute period T1 is added to the value of the counter [q].
  • r corresponds to a value obtained by multiplying the time length of T2 by the sampling rate of the analysis target signal.
  • the voltage value sampled in the minute period T2 is added in step 305 by adding the number of data r sampled in the minute period T2 to the value of the counter [q]. Sampling time is not acquired as peak time. As a result, it is possible to prevent noise generated during the minute period T2 from being erroneously counted as a peak.
  • the micro periods T1 and T2 have meaning as time window lengths, and may be set to appropriate values according to the frequency characteristics of the vibration to be analyzed.
  • a negative peak is detected, a negative value is set in advance as the threshold voltage VTh , and in the previous step 303, the q-th voltage is set. It is determined whether or not the value is lower than the threshold voltage V Th (negative value).
  • the voltage value sampled in the minute period T1 after sampling the voltage value lower than the threshold voltage V Th is calculated.
  • the minimum value V min is specified from the inside, and the time at which the minimum value V min is sampled may be acquired as the peak time t.
  • step 104 When the time series data ⁇ t i ⁇ at the peak time t is acquired in step 104, the process proceeds to step 105.
  • step 105 the DFA target data generation unit 26 executes DFA target data generation processing.
  • processing executed by the DFA target data generation unit 26 will be described based on a flowchart shown in FIG.
  • step 401 the time series data ⁇ t i ⁇ of the peak time t is loaded from the storage unit 25.
  • step 402 time-series data ⁇ t i ⁇ from the A-number of peak time t contained in (A-1) to calculate the number of the peak interval x, and elements (A-1) number of the peak interval x
  • Time series data ⁇ x i ⁇ of the peak interval x is generated.
  • FIG. 9A conceptually shows the time series data ⁇ x i ⁇ generated in step 402.
  • step 403 after calculating the average value x ave of the peak interval x constituting the series data ⁇ x i ⁇ time, by subtracting the average value x ave from the elements constituting the series data ⁇ x i ⁇ time, Time series data ⁇ (x i -x ave ) i ⁇ is generated.
  • FIG. 9B conceptually shows the time series data ⁇ (x i -x ave ) i ⁇ generated in step 403.
  • the time series data ⁇ (x i -x ave ) i ⁇ is integrated to generate time series data ⁇ y i ⁇ .
  • the following formula (1) shows a calculation formula of the time series data ⁇ y i ⁇ .
  • the time series data ⁇ y i ⁇ is generated by adding the elements of the time series data ⁇ (x i -x ave ) i ⁇ in time series order.
  • FIG. 9C conceptually shows the time series data ⁇ y i ⁇ generated in step 404.
  • the time series data ⁇ y i ⁇ generated by the above-described series of procedures is stored in the storage unit 25 as DFA target data, and the DFA target data generation process is terminated.
  • step 106 the DFA execution unit 27 executes DFA (Detrended Fluctuation Analysis) to obtain a scaling index.
  • DFA Detrended Fluctuation Analysis
  • time series data ⁇ y i ⁇ which is DFA target data, is loaded from the storage unit 25.
  • the box size data in the box size range set from the box size data stored in the storage unit 25 is loaded.
  • the box size data means a set of a plurality of box sizes (integers) used in the DFA
  • the box size means the number of data elements
  • the box size range is used in the DFA. It means the range that box size (integer) takes.
  • the first box size [N] (for example, [10]) is set from the loaded box size data (integer set).
  • the time series data ⁇ y i ⁇ loaded in step 501 is divided by the box size [N] set at that time.
  • the box size set at that time is [10]
  • the time-series data ⁇ y i ⁇ is divided into small sections (hereinafter referred to as boxes) including 10 elements.
  • the time series data ⁇ y i ⁇ is composed of M elements
  • the time series data ⁇ y i ⁇ is divided into M / N boxes.
  • FIG. 11A shows time-series data ⁇ y i ⁇ divided by the box size [10].
  • each box (BOX (1), BOX (2), BOX (3)). Includes 10 elements.
  • each of the boxes (BOX (1), BOX (2), BOX (3)%) Of the time series data ⁇ z i ⁇ is indicated by enclosing the box with the first element (dotted circle). ) And the value of the last element (indicated by a dotted square).
  • the root mean square [S] of the difference (difference between the beginning and the end) obtained for all boxes is calculated.
  • step 509 a set of numerical values (N, S) consisting of the root mean square [S] calculated in step 508 and the box size [N] set at that time is recorded.
  • step 510 it is determined whether or not a set (N, S) has been recorded for all box sizes [N] included in the box size data loaded in step 502. As a result, when the recording of the set (N, S) is not completed for all the box sizes [N] (step 510, No), the process proceeds to step 511.
  • step 511 the next box size [N] (for example, [11]) is newly set from the values included in the box size data loaded in step 502. Thereafter, the processing returns to step 504 again. Thereafter, until it is determined in step 510 that the set (N, S) has been recorded for all box sizes [N], the above-described series of processing (S504 to S504). S511) is repeated. As a result, finally, a set of numerical values (N, S) corresponding to the number of box sizes is recorded.
  • the relationship between the box size [N] and the root mean square [S] is defined as a function S (N) shown in the following equation (3).
  • M indicates the number of elements of the time series data ⁇ y i ⁇ that is the DFA target data
  • N indicates the box size
  • z jN + N ⁇ z jN + 1 indicates j
  • the difference (displacement) between the first element (z jN + 1 ) and the last element (z jN + N ) of the th box is shown.
  • step 510, Yes When the set (N, S) is recorded for all box sizes [N] (step 510, Yes), the process proceeds to step 512, and the recorded set (N, S) is plotted on a log-log scale. Fitting a linear function to
  • step 513 the slope of the fitted linear function is acquired as the scaling index ⁇ , and the process ends.
  • the DFA execution unit 27 may be configured to execute a conventional DFA.
  • the DFA execution unit 27 calculates the average F (N) of variance in each box of the time series data ⁇ y i ⁇ based on the following formulas (4) and (5), and the box size N and variance F May be plotted on a logarithmic scale, and the slope of the linear function fitted thereto may be obtained as the scaling index ⁇ .
  • N indicates the box size
  • M indicates the number of elements of the time series data ⁇ y i ⁇
  • y v (jN + k) indicates the location trend. The fitting function of is shown.
  • Step 106 When the scaling index ⁇ is acquired by the DFA process in Step 106, the process proceeds to Step 107.
  • the analysis result output unit 28 outputs the acquired scaling index ⁇ as the analysis result, and ends the process.
  • an abnormal state of the vibrating body it is possible to detect an abnormal state of the vibrating body to be analyzed using the output scaling index as an index. More precisely, by comparing the output scaling index with a reference value (scaling index obtained in a normal state), an abnormal state (ie, accompanied by the generation of abnormal noise) detected by the conventional acoustic emission method It is possible to detect a potential abnormal state occurring at a stage before the occurrence of the abnormal state.
  • FIG. 12 collectively shows scaling indices obtained under the above-described 28 conditions.
  • the scaling index for the three types of bearings (“normal”, “wear”, “foreign matter contamination”) is normal in an environment with a lot of natural vibration in any of the seven conditions related to the minute period. While the value stayed in the vicinity of the value (0.5), the scaling index related to the “insufficient grease” bearing maintained a value close to 0.8 higher than the normal value in any of the seven conditions related to the minute period.
  • This result shows that the “grease-deficient” bearing is in an abnormal state different from that of the other bearings (“normal”, “wear”, “foreign matter contamination”), and the signal analysis system of the present invention has detected it. Means that.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

[Problem] To provide a signal analysis system suitable for detecting a state of a vibration body. [Solution] According to the present invention, provided is a signal analysis system including: a signal sampling unit which samples, during a prescribed period, voltage values of a signal to be analyzed, and acquires time series data on the voltage values; a threshold voltage setting unit which creates a frequency distribution indicting the frequencies of appearance of positive voltage values composing the time series data, and sets a threshold voltage on the basis of a voltage value, the frequency of appearance of which is rapidly reduced; a peak time acquisition unit which compares each voltage value composing the time series data with the threshold voltage in time series order, and samples voltage values larger than the threshold voltage to thereby acquire, as a peak time, a time at which the maximum value is sampled among voltage values sampled during a subsequent first short period; a DFA target data generation unit which generates DFA target data on the basis of the peak time; and a DFA execution unit which executes a DFA on the basis of the DFA target data to acquire a scaling index.

Description

信号解析システム、方法およびプログラムSignal analysis system, method and program
 本発明は、信号解析システムに関し、より詳細には、振動体の異常を検知するのに適した信号解析システムに関する。 The present invention relates to a signal analysis system, and more particularly to a signal analysis system suitable for detecting an abnormality of a vibrating body.
 従来、転がり軸受の損傷状態を診断する方法として、アコースティック・エミッション法(Acoustic Emission, AE)が知られている。例えば、特開平8-159151号公報(特許文献1)は、軸受から発生する超音波をマイクロフォンで計測し、その音響信号の注目周波数の成分強度を予め用意したマスターカーブと比較することによって、軸受の損傷状態を予測し余寿命を推定する軸受診断方法を開示する。 Conventionally, an acoustic emission method (Acoustic Emission, AE) is known as a method for diagnosing a damaged state of a rolling bearing. For example, Japanese Patent Application Laid-Open No. 8-159151 (Patent Document 1) measures the ultrasonic wave generated from a bearing with a microphone and compares the component intensity of the frequency of interest of the acoustic signal with a master curve prepared in advance. Disclosed is a bearing diagnosis method for predicting the damage state and estimating the remaining life.
特開平8-159151号公報JP-A-8-159151
 本発明は、上記従来技術に鑑みてなされたものであり、振動体の状態を検知するのに適した新規な信号解析システムを提供することを目的とする。 The present invention has been made in view of the above prior art, and an object thereof is to provide a novel signal analysis system suitable for detecting the state of a vibrating body.
 本発明者は、振動体の状態を検知するための構成について検討する過程で、振動体が発する振動波形のピーク間隔のゆらぎをDFA(Detrended Fluctuation Analysis)で解析して得られるスケーリング指数が振動体の状態を示す指標として利用できることを発見した。この発見に基づき、本発明者は、振動波形から自動的にピーク間隔を取得してスケーリング指数を出力する装置の開発に成功し、本発明に至ったのである。 In the process of examining the configuration for detecting the state of the vibrating body, the present inventor has a scaling index obtained by analyzing the fluctuation of the peak interval of the vibration waveform generated by the vibrating body by DFA (Detrended Fluctuation Analysis). We found that it can be used as an indicator of the state of Based on this discovery, the present inventor succeeded in developing an apparatus that automatically obtains a peak interval from a vibration waveform and outputs a scaling index, and arrived at the present invention.
 すなわち、本発明によれば、解析対象信号の電圧値を所定期間サンプリングして電圧値の時系列データを取得する信号サンプリング部と、前記時系列データを構成する正の電圧値の出現頻度を表す度数分布を作成し、出現頻度が急減する電圧値を基準として閾値電圧を設定する閾値電圧設定部と、前記時系列データを構成する各電圧値を時系列順に前記閾値電圧と比較し、該閾値電圧を超える電圧値をサンプリングして以降の第1の微小期間にサンプリングされた電圧値の中の最大値をサンプリングした時刻をピーク時刻として取得するピーク時刻取得部と、前記ピーク時刻に基づいてDFA対象データを生成するDFA対象データ生成部と、前記DFA対象データに基づいてDFAを実行してスケーリング指数を取得するDFA実行部と、を含む信号解析システムが提供される。 That is, according to the present invention, the voltage value of the analysis target signal is sampled for a predetermined period to obtain time-series data of the voltage value, and the appearance frequency of the positive voltage value constituting the time-series data is represented. A threshold voltage setting unit that creates a frequency distribution and sets a threshold voltage on the basis of a voltage value at which the appearance frequency rapidly decreases, and compares each voltage value constituting the time series data with the threshold voltage in time series order. A peak time acquiring unit that samples a voltage value exceeding the voltage and samples a maximum value among the voltage values sampled in the first minute period thereafter as a peak time; and a DFA based on the peak time A DFA target data generation unit that generates target data; a DFA execution unit that executes a DFA based on the DFA target data and obtains a scaling index; Signal analysis system comprising provided.
 上述したように、本発明によれば、振動体の状態を検知するのに適した新規な信号解析システムが提供される。 As described above, according to the present invention, a novel signal analysis system suitable for detecting the state of a vibrating body is provided.
本実施形態の信号解析システムを示す図。The figure which shows the signal analysis system of this embodiment. 本実施形態の信号解析システムが実行する処理のフローチャート。The flowchart of the process which the signal analysis system of this embodiment performs. 本実施形態の閾値電圧設定処理を説明するための概念図。The conceptual diagram for demonstrating the threshold voltage setting process of this embodiment. 本実施形態の閾値電圧設定処理のフローチャート。The flowchart of the threshold voltage setting process of this embodiment. 本実施形態の閾値電圧設定処理を説明するための概念図。The conceptual diagram for demonstrating the threshold voltage setting process of this embodiment. 本実施形態のピーク時刻取得処理のフローチャート。The flowchart of the peak time acquisition process of this embodiment. 本実施形態のピーク時刻取得処理を説明するための概念図。The conceptual diagram for demonstrating the peak time acquisition process of this embodiment. 本実施形態のDFA対象データ生成処理のフローチャート。The flowchart of the DFA object data generation process of this embodiment. 本実施形態のDFA対象データ生成処理を説明するための概念図。The conceptual diagram for demonstrating the DFA object data generation process of this embodiment. 本実施形態のDFAのフローチャート。The flowchart of DFA of this embodiment. 実施形態のDFAを説明するための概念図。The conceptual diagram for demonstrating DFA of embodiment. 本実施例の結果を示すグラフ。The graph which shows the result of a present Example.
 以下、本発明を図面に示した実施の形態をもって説明するが、本発明は、図面に示した実施の形態に限定されるものではない。なお、以下に参照する各図においては、共通する要素について同じ符号を用い、適宜、その説明を省略するものとする。 Hereinafter, the present invention will be described with reference to embodiments shown in the drawings, but the present invention is not limited to the embodiments shown in the drawings. In the drawings referred to below, the same reference numerals are used for common elements, and the description thereof is omitted as appropriate.
 図1は、本発明の実施形態である信号解析システム100を示す。本実施形態の信号解析システム100は、振動体をその解析対象とするものであり、振動センサ10と、コンピュータ20とを含んで構成される。なお、ここでいう解析対象には、周期的な振動を発する運動体(例えば、転がり軸受のような回転体)の他、非周期的な振動を発する運動体が含まれる。 FIG. 1 shows a signal analysis system 100 according to an embodiment of the present invention. The signal analysis system 100 according to the present embodiment uses a vibrating body as an analysis target, and includes a vibration sensor 10 and a computer 20. The analysis target here includes a moving body that emits periodic vibrations as well as a moving body that emits periodic vibrations (for example, a rotating body such as a rolling bearing).
 振動センサ10は、解析対象となる振動体が発する振動を電圧波形信号に変換して出力する手段であり、ピエゾ素子などを用いた接触式センサであってもよく、レーザなどを用いた非接触式センサであってもよい。 The vibration sensor 10 is means for converting the vibration generated by the vibration body to be analyzed into a voltage waveform signal and outputting the voltage waveform signal. It may be a type sensor.
 一方、コンピュータ20は、振動センサ10から入力される電圧波形信号に基づいて、DFA(Detrended Fluctuation Analysis)を実行するための情報処理装置であり、信号サンプリング部21と、移動平均処理部22と、閾値電圧設定部23と、ピーク時刻取得部24と、記憶部25と、DFA対象データ生成部26と、DFA実行部27と、解析結果出力部28とを含んで構成されている。 On the other hand, the computer 20 is an information processing apparatus for executing DFA (Detrended Fluctuation Analysis) based on the voltage waveform signal input from the vibration sensor 10, and includes a signal sampling unit 21, a moving average processing unit 22, The threshold voltage setting unit 23, the peak time acquisition unit 24, the storage unit 25, the DFA target data generation unit 26, the DFA execution unit 27, and the analysis result output unit 28 are configured.
 信号サンプリング部21は、振動センサ10から入力される電圧波形信号(以下、解析対象信号という)を所定期間にわたってサンプリングして電圧値の時系列データを取得する手段である。 The signal sampling unit 21 is a unit that samples a voltage waveform signal (hereinafter referred to as an analysis target signal) input from the vibration sensor 10 over a predetermined period and acquires time-series data of voltage values.
 移動平均処理部22は、信号サンプリング部21が取得した電圧値の時系列データに対して移動平均処理を行う手段である。 The moving average processing unit 22 is means for performing a moving average process on the time-series data of the voltage values acquired by the signal sampling unit 21.
 閾値電圧設定部23は、解析対象信号のピークを検出するための閾値電圧を設定する手段である。 The threshold voltage setting unit 23 is a means for setting a threshold voltage for detecting the peak of the analysis target signal.
 ピーク時刻取得部24は、解析対象信号のピークの発生時刻を取得する手段である。 The peak time acquisition unit 24 is a means for acquiring the occurrence time of the peak of the analysis target signal.
 DFA対象データ生成部26は、ピーク時刻取得部24が取得したピーク時刻に基づいてDFA(Detrended Fluctuation Analysis)の対象データ(以下、DFA対象データという)を生成する手段である。 The DFA target data generation unit 26 is means for generating DFA (Detrended Fluctuation Analysis) target data (hereinafter referred to as DFA target data) based on the peak time acquired by the peak time acquisition unit 24.
 DFA実行部27は、DFA対象データに基づいてDFAを実行してスケーリング指数を取得する手段である。 The DFA execution unit 27 is a means for executing the DFA based on the DFA target data and acquiring the scaling index.
 解析結果出力部28は、DFA実行部27が取得したスケーリング指数を解析結果として出力する手段である。 The analysis result output unit 28 is a means for outputting the scaling index acquired by the DFA execution unit 27 as an analysis result.
 なお、本実施形態では、コンピュータ20が、所定のプログラムを実行することにより、上述した各手段として機能する。 In this embodiment, the computer 20 functions as the above-described units by executing a predetermined program.
 以上、本実施形態の信号解析システム100の機能構成について概説してきたが、続いて、信号解析システム100が実行する処理を図2に示すフローチャートに基づいて説明する。なお、以下の説明においては、適宜、図1を参照するものとする。 As described above, the functional configuration of the signal analysis system 100 of the present embodiment has been outlined. Next, processing executed by the signal analysis system 100 will be described based on the flowchart shown in FIG. In the following description, FIG. 1 will be referred to as appropriate.
 ステップ101では、信号サンプリング部21が、振動センサ10から入力される解析対象信号を所定期間サンプリングして電圧値の時系列データ(離散データ)を取得する。 In step 101, the signal sampling unit 21 samples the analysis target signal input from the vibration sensor 10 for a predetermined period to obtain time-series data (discrete data) of voltage values.
 続くステップ102では、移動平均処理部22が信号サンプリング部21が取得した電圧値の時系列データに対して移動平均処理を行ってデータを平滑化することにより、ノイズを低減する。 In subsequent step 102, the moving average processing unit 22 performs moving average processing on the time-series data of the voltage values acquired by the signal sampling unit 21 to smooth the data, thereby reducing noise.
 続くステップ103では、閾値電圧設定部23が、移動平均処理後の電圧値の時系列データに基づいて閾値電圧設定処理を実行する。 In subsequent step 103, the threshold voltage setting unit 23 executes the threshold voltage setting process based on the time-series data of the voltage value after the moving average process.
 図3は、移動平均処理後の電圧値の時系列データを示す。ここで、電圧値の時系列データの正の電圧値に着目すると、ノイズレベル以下のデータの数が多く、ノイズレベルを超えたあたりを境にデータ数が急減している。このことは、信号の正のピークを検出する上で、データの出現頻度が急減する電圧値を基準として閾値電圧VThを設定することが理に適っていることを意味している。本実施形態では、この考え方に基づいて、信号のピークを検出するための閾値電圧VThを設定する。 FIG. 3 shows time-series data of voltage values after the moving average process. Here, paying attention to the positive voltage value of the time-series data of voltage values, the number of data below the noise level is large, and the number of data sharply decreases around the noise level. This means that it is reasonable to set the threshold voltage VTh with reference to a voltage value at which the frequency of appearance of data decreases rapidly in detecting a positive peak of a signal. In the present embodiment, a threshold voltage V Th for detecting a signal peak is set based on this concept.
 以下、閾値電圧設定部23が実行する閾値電圧設定処理を図4(a)に示すフローチャートに基づいて説明する。なお、ここでは、正の閾値電圧を設定する場合を例にとって説明を行う。 Hereinafter, the threshold voltage setting process executed by the threshold voltage setting unit 23 will be described based on the flowchart shown in FIG. Here, a case where a positive threshold voltage is set will be described as an example.
 まず、ステップ201では、電圧値の時系列データを構成する複数の電圧値について、その出現頻度を表す度数分布を作成する。具体的には、適切な階級幅を持つ正の電圧値の階級を定義した上で、取得した電圧値のうち、正の電圧値を各階級に振り分けて度数を求める。 First, in step 201, a frequency distribution representing the frequency of appearance is created for a plurality of voltage values constituting time-series data of voltage values. Specifically, after defining a class of positive voltage values having an appropriate class width, the positive voltage value among the acquired voltage values is assigned to each class to obtain the frequency.
 続くステップ202では、先のステップ201で作成した度数分布の各階級について、当該階級に隣接する階級との間の度数の差分を求め、これを当該階級に対応付ける。なお、最後順の階級については、隣接する階級が存在しないので、度数の差分の値をブランクとする。また、ここでいう「隣接する階級」は、「昇順に隣接する階級」または「降順に隣接する階級」のいずれかとする(以下、同様)。 In the following step 202, for each class of the frequency distribution created in the previous step 201, a frequency difference between the class adjacent to the class is obtained, and this is associated with the class. For the last class, there is no adjacent class, so the frequency difference value is blank. The “adjacent class” here is either “adjacent class in ascending order” or “adjacent class in descending order” (hereinafter the same).
 続くステップ203では、先のステップ201で作成した度数分布の各階級について、当該階級に対応付けられた度数の差分と隣接する階級に対応付けられた「度数の差分」の差分(すなわち、当該階級に隣接する他の階級との間の「度数の差分」の差分)を求め、これを当該階級に対応付ける。ここで求められる「度数の差分」の差分は、データの出現頻度の変化の変化率と同様の意味を持つ。なお、最後順に隣接する階級については、最後順の階級の度数の差分の値がブランクとなっているので、「度数の差分」の差分の値をブランクとする。 In the subsequent step 203, for each class of the frequency distribution created in the previous step 201, the frequency difference associated with the class and the "frequency difference" difference associated with the adjacent class (ie, the class) (Difference of “frequency difference” between other classes adjacent to) and associate this with the class. The difference of “frequency difference” obtained here has the same meaning as the change rate of change in the appearance frequency of data. For the classes adjacent in the last order, since the frequency difference value of the last order is blank, the difference value of “frequency difference” is blank.
 最後に、ステップ204では、「度数の差分」の差分の最大値が対応付けられた階級を特定し、その階級の階級値を基準として閾値電圧VThを設定する。ここで、ステップ204で特定される階級は、データの出現頻度の変化の変化率が最大となる電圧値の範囲であり、その階級の階級値は、ノイズレベルより若干高い電圧値となる。なお、ここでいう「階級値を基準として閾値電圧VThを設定する」とは、階級値をそのまま閾値電圧VThとして設定すること、および、階級値に適切なマージンを加えた値を閾値電圧VThとして設定すること、の両方を含む概念である。 Finally, in step 204, the class associated with the maximum value of the “frequency difference” is specified, and the threshold voltage V Th is set based on the class value of the class. Here, the class specified in step 204 is a voltage value range in which the change rate of the change in the appearance frequency of data is maximized, and the class value of the class is a voltage value slightly higher than the noise level. Note that “setting the threshold voltage V Th based on the class value” here means that the class value is set as the threshold voltage V Th as it is, and a value obtained by adding an appropriate margin to the class value is the threshold voltage. This is a concept including both setting as VTh .
 以上、正の閾値電圧を設定する場合について説明してきたが、負の閾値電圧を設定する場合には、先のステップ201で、サンプリングした複数の電圧値のうち、負の電圧値の出現頻度を表す度数分布を作成し、先のステップ204で、「度数の差分」の差分の最大値が対応付けられた階級の階級値を基準として閾値電圧VTh(負の値)を設定すればよい。 As described above, the case where the positive threshold voltage is set has been described. However, when the negative threshold voltage is set, the frequency of appearance of the negative voltage value among the plurality of sampled voltage values in the previous step 201 is set. The frequency distribution to be expressed is created, and the threshold voltage V Th (negative value) may be set in the previous step 204 with reference to the class value of the class associated with the maximum value of the “frequency difference”.
 ここで、上述した閾値電圧設定処理の理解を深めるために、図5に示すグラフを参照する。ここで、図5に示すグラフは、電圧値の出現頻度を表す度数分布に基づいて作成されたヒストグラムの上に、階級と度数の差分の関係を示す折れ線グラフ(×)と、階級と「度数の差分」の差分の関係を示す折れ線グラフ(◆)を重ね合わせたグラフである。 Here, in order to deepen the understanding of the threshold voltage setting process described above, the graph shown in FIG. 5 is referred to. Here, the graph shown in FIG. 5 is a line graph (×) showing the relationship between the class and the frequency difference on the histogram created based on the frequency distribution representing the frequency of occurrence of the voltage value, the class and the “frequency”. This is a graph in which line graphs (♦) showing the relationship of the difference of “no difference” are superimposed.
 図5に示すグラフに照らして説明すれば、上述した閾値電圧設定処理では、正のピークを抽出する場合、折れ線グラフ(◆)のプロット点Pに対応する階級の階級値を基準として閾値電圧VTh(正の値)が設定され、負のピークを抽出する場合、折れ線グラフ(◆)のプロット点Pに対応する階級の階級値を基準として閾値電圧VTh(負の値)が設定されることになる。 Referring to the graph shown in FIG. 5, in the threshold voltage setting process described above, when a positive peak is extracted, the threshold voltage is set based on the class value of the class corresponding to the plot point P 1 of the line graph (♦). When V Th (positive value) is set and a negative peak is extracted, the threshold voltage V Th (negative value) is set on the basis of the class value corresponding to the plot point P 2 of the line graph (♦). Will be.
 続いて、閾値電圧設定処理の別法を図4(b)に示すフローチャートに基づいて説明する。について説明する。 Subsequently, another method of threshold voltage setting processing will be described based on the flowchart shown in FIG. Will be described.
 まず、ステップ211では、先のステップ201と同様の手順で、電圧値の出現頻度を表す度数分布を作成した上で、当該度数分布に基づいて電圧値の出現頻度を表すヒストグラムを作成する。 First, in step 211, a frequency distribution representing the frequency of appearance of voltage values is created in the same procedure as in step 201, and a histogram representing the frequency of appearance of voltage values is created based on the frequency distribution.
 続くステップ212では、作成したヒストグラムに対するカーブフィッティングにより、電圧値とデータの出現頻度の関係を示す曲線関数を求める。なお、ここで求まる曲線関数は、図5に示すグラフにおける実線fに相当する。 In the subsequent step 212, a curve function indicating the relationship between the voltage value and the appearance frequency of data is obtained by curve fitting for the created histogram. The curve function obtained here corresponds to the solid line f in the graph shown in FIG.
 続くステップ213では、求めた曲線関数について二階微分を行って二次導関数を求める。なお、ここで求まる二次導関数は、電圧値とデータの出現頻度の変化の変化率との関係を示す関数に相当する。 In the following step 213, the second derivative is obtained by performing second order differentiation on the obtained curve function. The second derivative obtained here corresponds to a function indicating the relationship between the voltage value and the change rate of the change in the appearance frequency of the data.
 続くステップ214では、求めた二次導関数の最大値(すなわち、データの出現頻度の変化の変化率の最大値)を与える電圧値を求め、求めた電圧値を基準として閾値電圧VThを設定する。なお、ステップ214では、正のピークを抽出する場合には、正の電圧値の定義域において二次導関数の最大値を与える電圧値を求め、負のピークを抽出する場合には、負の電圧値の定義域において二次導関数の最大値を与える電圧値を求める。 In the following step 214, a voltage value giving the maximum value of the obtained second derivative (that is, the maximum value of the change rate of the appearance frequency of data) is obtained, and the threshold voltage V Th is set based on the obtained voltage value. To do. In step 214, when a positive peak is extracted, a voltage value that gives the maximum value of the second derivative in the domain of the positive voltage value is obtained, and when a negative peak is extracted, a negative peak is obtained. Find the voltage value that gives the maximum value of the second derivative in the domain of the voltage value.
 以上、説明した手順により、解析対象信号のピークを検出するための閾値電圧VThが適切な値に自動的に設定される。 As described above, the threshold voltage V Th for detecting the peak of the analysis target signal is automatically set to an appropriate value by the procedure described above.
 再び、図2に戻って説明を続ける。 Again, returning to FIG.
 ステップ103の閾値電圧設定処理によって閾値電圧VThが設定されると、処理はステップ104に進む。続くステップ104では、ピーク時刻取得部24がピーク時刻取得処理を実行する。以下、ピーク時刻取得部24が実行するピーク時刻取得処理を図6に示すフローチャートおよび図7に示す電圧値の時系列データの概念図に基づいて説明する。なお、解析対象信号には正のピークと負のピークが存在するが、ここでは、正のピークを検出する場合を例にとって説明を行う。 When the threshold voltage V Th is set by the threshold voltage setting process in step 103, the process proceeds to step 104. In the following step 104, the peak time acquisition unit 24 executes a peak time acquisition process. Hereinafter, the peak time acquisition process executed by the peak time acquisition unit 24 will be described with reference to a flowchart shown in FIG. 6 and a conceptual diagram of time-series data of voltage values shown in FIG. The analysis target signal has a positive peak and a negative peak. Here, a case where a positive peak is detected will be described as an example.
 まず、ステップ301で、カウンタ[q]を初期値「1」にセットする。 First, in step 301, the counter [q] is set to the initial value “1”.
 続くステップ302で、電圧値の時系列データを構成する1番目の電圧値を閾値電圧VThと比較する。その結果、電圧値が閾値電圧VThを超えていない場合は(ステップ303、No)、カウンタ[q]の値を1増分して(ステップ307)、2番目の電圧値を閾値電圧VThと比較する(ステップ302)。以降、電圧値が閾値電圧VThを超えるまで、上記処理を繰り返し、電圧値が閾値電圧VThを超えた時点で(ステップ303、Yes)、処理はステップ304に進む。 In subsequent step 302, the first voltage value constituting the time-series data of the voltage value is compared with the threshold voltage VTh . As a result, when the voltage value does not exceed the threshold voltage VTh (step 303, No), the value of the counter [q] is incremented by 1 (step 307), and the second voltage value is set as the threshold voltage VTh . Compare (step 302). Thereafter, until the voltage value exceeds the threshold voltage V Th, repeat the above process, when the voltage value exceeds the threshold voltage V Th (step 303, Yes), the process proceeds to step 304.
 続くステップ304では、閾値電圧VThを超えた電圧値をサンプリングして以降の微小期間T1にサンプリングされた電圧値の中から最大値Vmaxを特定し、その最大値Vmaxをサンプリングした時刻をピーク時刻tとして取得して、これを時系列データ{t}の形で記憶部25に保存する。 Following step 304, it identifies the maximum value V max among the sampled voltage value to the threshold voltage V Th subsequent minute period by sampling the voltage value exceeding T1, a time at which sample the maximum value V max acquired as the peak time t, stored in the storage unit 25 it in the form of time-series data {t i}.
 続くステップ305では、カウンタ[q]の値に、微小期間T1に連続する微小期間T2にサンプリングされるデータ数rを加算する。ここで、rは、T2の時間長に解析対象信号のサンプリングレートを乗じた値に相当する。 In the subsequent step 305, the number r of data sampled in the minute period T2 continuous to the minute period T1 is added to the value of the counter [q]. Here, r corresponds to a value obtained by multiplying the time length of T2 by the sampling rate of the analysis target signal.
 以降、カウンタ[q]の値が電圧値の時系列データの総データ数Qを超えるまで(ステップ306、No)、上述した一連の処理を繰り返し、カウンタ[q]の値が総データ数Qを超えた時点で(ステップ306、Yes)、ピーク時刻取得処理を終了する。 Thereafter, the above-described series of processing is repeated until the value of the counter [q] exceeds the total data number Q of the time-series data of the voltage value (No in Step 306), and the value of the counter [q] When the time is exceeded (step 306, Yes), the peak time acquisition process is terminated.
 上述したピーク時刻取得処理では、先のステップ305で、カウンタ[q]の値に対して微小期間T2にサンプリングされるデータ数rが加算されることにより、微小期間T2にサンプリングされた電圧値のサンプリング時刻がピーク時刻として取得されることがない。その結果、微小期間T2に発生するノイズが誤ってピークとしてカウントされることが防止される。ここで、微小期間T1、T2は、時間窓長としての意味を持ち、解析対象となる振動の周波数特性に応じて適切な値を設定すればよい。 In the peak time acquisition process described above, the voltage value sampled in the minute period T2 is added in step 305 by adding the number of data r sampled in the minute period T2 to the value of the counter [q]. Sampling time is not acquired as peak time. As a result, it is possible to prevent noise generated during the minute period T2 from being erroneously counted as a peak. Here, the micro periods T1 and T2 have meaning as time window lengths, and may be set to appropriate values according to the frequency characteristics of the vibration to be analyzed.
 以上、正のピークを検出する場合について説明してきたが、負のピークを検出する場合には、予め閾値電圧VThとして負の値を設定しておき、先のステップ303では、q番目の電圧値が閾値電圧VTh(負の値)を下回るか否かを判断し、先のステップ304では、閾値電圧VThを下回る電圧値をサンプリングして以降の微小期間T1にサンプリングされた電圧値の中から最小値Vminを特定し、その最小値Vminをサンプリングした時刻をピーク時刻tとして取得すればよい。 The case where a positive peak is detected has been described above. However, when a negative peak is detected, a negative value is set in advance as the threshold voltage VTh , and in the previous step 303, the q-th voltage is set. It is determined whether or not the value is lower than the threshold voltage V Th (negative value). In the previous step 304, the voltage value sampled in the minute period T1 after sampling the voltage value lower than the threshold voltage V Th is calculated. The minimum value V min is specified from the inside, and the time at which the minimum value V min is sampled may be acquired as the peak time t.
 再び、図2に戻って説明を続ける。 Again, returning to FIG.
 ステップ104でピーク時刻tの時系列データ{t}が取得されると、処理はステップ105に進む。続くステップ105では、DFA対象データ生成部26がDFA対象データ生成処理を実行する。以下、DFA対象データ生成部26が実行する処理を図8に示すフローチャートに基づいて説明する。 When the time series data {t i } at the peak time t is acquired in step 104, the process proceeds to step 105. In the subsequent step 105, the DFA target data generation unit 26 executes DFA target data generation processing. Hereinafter, processing executed by the DFA target data generation unit 26 will be described based on a flowchart shown in FIG.
 ステップ401では、記憶部25からピーク時刻tの時系列データ{t}をロードする。 In step 401, the time series data {t i } of the peak time t is loaded from the storage unit 25.
 続くステップ402では、時系列データ{t}に含まれるA個のピーク時刻tから(A-1)個のピーク間隔xを算出し、(A-1)個のピーク間隔xを要素とするピーク間隔xの時系列データ{x}を生成する。図9(a)は、ステップ402で生成される時系列データ{x}を概念的に示す。 Subsequent step 402, time-series data {t i} from the A-number of peak time t contained in (A-1) to calculate the number of the peak interval x, and elements (A-1) number of the peak interval x Time series data {x i } of the peak interval x is generated. FIG. 9A conceptually shows the time series data {x i } generated in step 402.
 続くステップ403では、時系列データ{x}を構成するピーク間隔xの平均値xaveを算出した後、時系列データ{x}を構成する各要素から平均値xaveを差し引くことによって、時系列データ{(x-xave)}を生成する。図9(b)は、ステップ403で生成される時系列データ{(x-xave)}を概念的に示す。 In step 403, after calculating the average value x ave of the peak interval x constituting the series data {x i} time, by subtracting the average value x ave from the elements constituting the series data {x i} time, Time series data {(x i -x ave ) i } is generated. FIG. 9B conceptually shows the time series data {(x i -x ave ) i } generated in step 403.
 続くステップ404では、時系列データ{(x-xave)}を積分して時系列データ{y}を生成する。下記式(1)は、時系列データ{y}の算出式を示す。 In the subsequent step 404, the time series data {(x i -x ave ) i } is integrated to generate time series data {y i }. The following formula (1) shows a calculation formula of the time series data {y i }.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 具体的には、時系列データ{(x-xave)}の各要素を時系列順に足し合わせることによって時系列データ{y}を生成する。図9(c)は、ステップ404で生成される時系列データ{y}を概念的に示す。 Specifically, the time series data {y i } is generated by adding the elements of the time series data {(x i -x ave ) i } in time series order. FIG. 9C conceptually shows the time series data {y i } generated in step 404.
 続くステップ405では、上述した一連の手順で生成した時系列データ{y}をDFA対象データとして記憶部25に保存し、DFA対象データ生成処理を終了する。 In the subsequent step 405, the time series data {y i } generated by the above-described series of procedures is stored in the storage unit 25 as DFA target data, and the DFA target data generation process is terminated.
 再び、図2に戻って説明を続ける。 Again, returning to FIG.
 ステップ105で閾値電圧VThが設定されると、処理はステップ106に進む。続くステップ106では、DFA実行部27がDFA(Detrended Fluctuation Analysis)を実行してスケーリング指数を取得する。以下、DFA実行部27が実行する処理を図10に示すフローチャートに基づいて説明する。 When the threshold voltage V Th is set in step 105, the process proceeds to step 106. In subsequent step 106, the DFA execution unit 27 executes DFA (Detrended Fluctuation Analysis) to obtain a scaling index. Hereinafter, the processing executed by the DFA execution unit 27 will be described based on the flowchart shown in FIG.
 まずステップ501では、記憶部25からDFA対象データである時系列データ{y}をロードする。 First, in step 501, time series data {y i }, which is DFA target data, is loaded from the storage unit 25.
 続くステップ502では、記憶部25に格納されるボックスサイズ・データから設定されたボックスサイズ範囲のボックスサイズ・データをロードする。ここで、ボックスサイズ・データとは、DFAにおいて使用する複数のボックスサイズ(整数)のセットを意味し、ボックスサイズとは、データの要素数を意味し、ボックスサイズ範囲とは、DFAにおいて使用するボックスサイズ(整数)がとる範囲を意味する。 In the subsequent step 502, the box size data in the box size range set from the box size data stored in the storage unit 25 is loaded. Here, the box size data means a set of a plurality of box sizes (integers) used in the DFA, the box size means the number of data elements, and the box size range is used in the DFA. It means the range that box size (integer) takes.
 続くステップ503では、ロードしたボックスサイズ・データ(整数のセット)の中から最初のボックスサイズ[N](例えば[10])をセットする。 In the subsequent step 503, the first box size [N] (for example, [10]) is set from the loaded box size data (integer set).
 続くステップ504では、ステップ501でロードした時系列データ{y}をその時点でセットされているボックスサイズ[N]で分割する。例えば、その時点でセットされているボックスサイズが[10]であった場合、時系列データ{y}を10個の要素を含む小区間(以下、ボックスという)に分割する。この場合、時系列データ{y}はM個の要素からなるので、ステップ504において、時系列データ{y}は、M/N個のボックスに分割されることになる。図11(a)は、ボックスサイズ[10]で分割した時系列データ{y}を示す。この場合、各ボックス(BOX(1)、BOX(2)、BOX(3)…)は、10個の要素を含む。 In the following step 504, the time series data {y i } loaded in step 501 is divided by the box size [N] set at that time. For example, when the box size set at that time is [10], the time-series data {y i } is divided into small sections (hereinafter referred to as boxes) including 10 elements. In this case, since the time series data {y i } is composed of M elements, in step 504, the time series data {y i } is divided into M / N boxes. FIG. 11A shows time-series data {y i } divided by the box size [10]. In this case, each box (BOX (1), BOX (2), BOX (3)...) Includes 10 elements.
 続くステップ505では、分割後のボックス(BOX(1)、BOX(2)、BOX(3)…)のそれぞれにつき、当該ボックス内に存在するN個のデータに対して近似曲線をフィッティングし、当該近似曲線上の値を各ボックスの局所トレンドyとして決定する。ここで、近似曲線のフィッティングは1次関数から4次関数までを用いた最小二乗法によって行うことができる。なお、ここでいう近似曲線は、直線を含む概念である。図11(b)は、各ボックス(BOX(1)、BOX(2)、BOX(3)…)に対して近似曲線y(y(1)、y(2)、y(3)…)をフィッティングした状態を示している。 In the subsequent step 505, for each of the divided boxes (BOX (1), BOX (2), BOX (3)...), An approximate curve is fitted to N data existing in the box, The value on the approximate curve is determined as the local trend y v for each box. Here, fitting of the approximate curve can be performed by a least square method using a linear function to a quartic function. The approximate curve here is a concept including a straight line. FIG. 11B shows approximate curves y v (y v (1), y v (2), y v (3) for each box (BOX (1), BOX (2), BOX (3)...). ) ...) is shown in a fitted state.
 続くステップ506では、ボックス(BOX(1)、BOX(2)、BOX(3)…)のそれぞれにつき、ボックスを構成する各要素から当該ボックスについて決定した局所トレンドyを差し引くことにより、時系列データ{z}を生成する。下記式(2)は、時系列データ{z}の式を示し、図11(c)は、ステップ506で生成される時系列データ{z}のグラフを示す。 In the subsequent step 506, for each of the boxes (BOX (1), BOX (2), BOX (3)...), The local trend y v determined for the box is subtracted from each element constituting the box to obtain a time series. Data {z i } is generated. The following equation (2) shows an equation of time series data {z i }, and FIG. 11C shows a graph of the time series data {z i } generated in step 506.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 続くステップ507では、時系列データ{z}のボックス(BOX(1)、BOX(2)、BOX(3)…)のそれぞれにつき、ボックスを構成する先頭の要素(点線の丸で囲んで示す)の値と末尾の要素(点線の四角で囲んで示す)の値の差分を求める。 In the subsequent step 507, each of the boxes (BOX (1), BOX (2), BOX (3)...) Of the time series data {z i } is indicated by enclosing the box with the first element (dotted circle). ) And the value of the last element (indicated by a dotted square).
 続くステップ508では、全てのボックスについて求めた差分(先頭と末尾の差分)の二乗平均平方根[S]を算出する。 In the subsequent step 508, the root mean square [S] of the difference (difference between the beginning and the end) obtained for all boxes is calculated.
 続くステップ509では、ステップ508で算出した二乗平均平方根[S]とその時点でセットされているボックスサイズ[N]からなる数値の組(N,S)を記録する。 In the subsequent step 509, a set of numerical values (N, S) consisting of the root mean square [S] calculated in step 508 and the box size [N] set at that time is recorded.
 続くステップ510では、ステップ502でロードしたボックスサイズ・データに含まれる全てのボックスサイズ[N]について、組(N,S)を記録したか否かを判断する。その結果、全てのボックスサイズ[N]について組(N,S)の記録が完了していない場合には(ステップ510、No)、処理はステップ511に進む。 In subsequent step 510, it is determined whether or not a set (N, S) has been recorded for all box sizes [N] included in the box size data loaded in step 502. As a result, when the recording of the set (N, S) is not completed for all the box sizes [N] (step 510, No), the process proceeds to step 511.
 ステップ511では、ステップ502でロードしたボックスサイズ・データに含まれる値の中から次のボックスサイズ[N](例えば[11])を新たにセットする。その後、処理は、再びステップ504に戻り、以降、ステップ510において、全てのボックスサイズ[N]について組(N,S)を記録したと判断されるまでの間、上述した一連の処理(S504~S511)を繰り返す。その結果、最終的に、ボックスサイズの数だけ数値の組(N,S)が記録される。 In step 511, the next box size [N] (for example, [11]) is newly set from the values included in the box size data loaded in step 502. Thereafter, the processing returns to step 504 again. Thereafter, until it is determined in step 510 that the set (N, S) has been recorded for all box sizes [N], the above-described series of processing (S504 to S504). S511) is repeated. As a result, finally, a set of numerical values (N, S) corresponding to the number of box sizes is recorded.
 ここで、ボックスサイズ[N]と二乗平均平方根[S]の関係は、下記式(3)に示す関数S(N)として定義される。なお、下記式(3)において、“M”はDFA対象データである時系列データ{y}の要素数を示し、“N”はボックスサイズを示し、“zjN+N-zjN+1“は、j番目のボックスの先頭の要素(zjN+1)と末尾の要素(zjN+N)の差分(変位)を示す。 Here, the relationship between the box size [N] and the root mean square [S] is defined as a function S (N) shown in the following equation (3). In the following formula (3), “M” indicates the number of elements of the time series data {y i } that is the DFA target data, “N” indicates the box size, and “z jN + N −z jN + 1 ” indicates j The difference (displacement) between the first element (z jN + 1 ) and the last element (z jN + N ) of the th box is shown.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 全てのボックスサイズ[N]について組(N,S)が記録されると(ステップ510、Yes)、処理はステップ512に進み、記録した組(N,S)を両対数スケールでプロットし、これに1次関数をフィッティングする。 When the set (N, S) is recorded for all box sizes [N] (step 510, Yes), the process proceeds to step 512, and the recorded set (N, S) is plotted on a log-log scale. Fitting a linear function to
 最後に、ステップ513で、フィッティングした1次関数の傾きをスケーリング指数αとして取得して、処理を終了する。 Finally, in step 513, the slope of the fitted linear function is acquired as the scaling index α, and the process ends.
 以上、DFA実行部27がDFA対象データに基づいてスケーリング指数αを求める処理について説明してきたが、上述したDFAの手法は、スケーリング指数αが1を超える現象についても有効である点で優れている。なお、本発明者が独自に開発したこの改変DFA法の詳細については、「ゆらぎ解析のための改変DFA法、矢澤徹、第1版、株式会社めるくまーる、平成27年12月20日」を参照されたい。 As mentioned above, although the DFA execution part 27 has demonstrated the process which calculates | requires the scaling index | exponent α based on DFA object data, the method of DFA mentioned above is excellent at the point which is effective also about the phenomenon in which the scaling index | exponent α exceeds 1. . For details of the modified DFA method originally developed by the present inventor, see “Modified DFA Method for Fluctuation Analysis, Toru Yazawa, 1st Edition, MERCUMAR Co., Ltd., December 20, 2015 See "day".
 一方、スケーリング指数αが1を超えない現象のみを対象とする実施形態では、DFA実行部27が従来のDFAを実行するように構成してもよい。この場合は、DFA実行部27は、下記式(4)、(5)に基づいて時系列データ{y}の各ボックスにおける分散の平均F(N)を算出し、ボックスサイズNおよび分散Fを両対数スケールでプロットし、これにフィッティングした1次関数の傾きをスケーリング指数αとして求めてもよい。なお、下記式(4)、(5)において、“N”はボックスサイズ示し、“M”は時系列データ{y}の要素数を示し、“y(jN+k)”は居所トレンドのフィッティング関数を示す。 On the other hand, in an embodiment targeting only a phenomenon in which the scaling index α does not exceed 1, the DFA execution unit 27 may be configured to execute a conventional DFA. In this case, the DFA execution unit 27 calculates the average F (N) of variance in each box of the time series data {y i } based on the following formulas (4) and (5), and the box size N and variance F May be plotted on a logarithmic scale, and the slope of the linear function fitted thereto may be obtained as the scaling index α. In the following formulas (4) and (5), “N” indicates the box size, “M” indicates the number of elements of the time series data {y i }, and “y v (jN + k)” indicates the location trend. The fitting function of is shown.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 再び、図2に戻って説明を続ける。 Again, returning to FIG.
 ステップ106のDFA処理によってスケーリング指数αが取得されると、処理はステップ107に進む。続くステップ107では、解析結果出力部28が、取得したスケーリング指数αを解析結果として出力し、処理を終了する。 When the scaling index α is acquired by the DFA process in Step 106, the process proceeds to Step 107. In the subsequent step 107, the analysis result output unit 28 outputs the acquired scaling index α as the analysis result, and ends the process.
 本実施形態では、出力されたスケーリング指数を指標として解析対象である振動体の異常状態を検知することができる。より正確には、出力されたスケーリング指数を基準値(正常な状態で取得されるスケーリング指数)と比較することによって、従来のアコースティック・エミッション法が検知する異常状態(すなわち、異音の発生を伴う異常状態)が発生するよりも前の段階で発生している潜在的な異常状態を検知することが可能になる。 In this embodiment, it is possible to detect an abnormal state of the vibrating body to be analyzed using the output scaling index as an index. More precisely, by comparing the output scaling index with a reference value (scaling index obtained in a normal state), an abnormal state (ie, accompanied by the generation of abnormal noise) detected by the conventional acoustic emission method It is possible to detect a potential abnormal state occurring at a stage before the occurrence of the abnormal state.
 以上、本発明について実施形態をもって説明してきたが、本発明は上述した実施形態に限定されるものではなく、当業者が推考しうるその他の実施態様の範囲内において、本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。 As described above, the present invention has been described with the embodiment. However, the present invention is not limited to the above-described embodiment, and the functions and effects of the present invention are within the scope of other embodiments that can be considered by those skilled in the art. As long as it plays, it is included in the scope of the present invention.
 以下、本発明の信号解析システムについて、実施例を用いてより具体的に説明を行なうが、本発明は、後述する実施例に限定されるものではない。 Hereinafter, the signal analysis system of the present invention will be described more specifically using examples, but the present invention is not limited to the examples described later.
 本発明の信号解析システムの性能を検証する実験を行った。本実験では、下記表1に示す4種類のベアリングをモータで回転させながら、回転軸の垂直方向に40kgfの力を付勢した状態で、ハウジング(軸受箱)に取り付けた振動センサから出力される電圧波形信号をサンプリングレート100kHzでサンプリングした。 An experiment was conducted to verify the performance of the signal analysis system of the present invention. In this experiment, four types of bearings shown in Table 1 below are rotated by a motor, and output from a vibration sensor attached to a housing (bearing box) in a state where a force of 40 kgf is applied in a direction perpendicular to the rotation axis. The voltage waveform signal was sampled at a sampling rate of 100 kHz.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本実験では、微小期間T1と微小期間T2について、下記表2に示す7つの異なる条件を設定して、取得したサンプリングデータからピーク時刻を取得し、DFA対象データを生成した。なお、下記表2においては、各期間の時間長をデータ数で表している。 In this experiment, seven different conditions shown in Table 2 below were set for the micro period T1 and the micro period T2, the peak time was acquired from the acquired sampling data, and DFA target data was generated. In Table 2 below, the time length of each period is represented by the number of data.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 また、本実験では、28(4×7)の条件で生成したDFA対象データのそれぞれについて、ボックスサイズ範囲を30~270に設定してDFAを実行し、スケーリング指数を取得した。 Also, in this experiment, for each DFA target data generated under the condition of 28 (4 × 7), the DFA was executed with the box size range set to 30 to 270, and the scaling index was obtained.
 図12は、上述した28の条件下で取得されたスケーリング指数をまとめて示す。図12に示すように、3種類のベアリング(「正常」、「摩耗」、「異物混入」)に係るスケーリング指数が、微小期間に係る7条件のいずれにおいても、自然振動の多い環境下における正常値(0.5)近傍に留まったのに対し、「グリス不足」のベアリングに係るスケーリング指数は、微小期間に係る7条件のいずれにおいても、正常値よりも高い0.8近傍を維持した。この結果は、「グリス不足」のベアリングが、他のベアリング(「正常」、「摩耗」、「異物混入」)のそれとは異なる異常な状態にあり、本発明の信号解析システムがそれを検知したことを意味する。 FIG. 12 collectively shows scaling indices obtained under the above-described 28 conditions. As shown in FIG. 12, the scaling index for the three types of bearings (“normal”, “wear”, “foreign matter contamination”) is normal in an environment with a lot of natural vibration in any of the seven conditions related to the minute period. While the value stayed in the vicinity of the value (0.5), the scaling index related to the “insufficient grease” bearing maintained a value close to 0.8 higher than the normal value in any of the seven conditions related to the minute period. This result shows that the “grease-deficient” bearing is in an abnormal state different from that of the other bearings (“normal”, “wear”, “foreign matter contamination”), and the signal analysis system of the present invention has detected it. Means that.
10…振動センサ
20…コンピュータ
21…信号サンプリング部
22…移動平均処理部
23…閾値電圧設定部
24…ピーク時刻取得部
25…記憶部
26…DFA対象データ生成部
27…DFA実行部
28…解析結果出力部
100…信号解析システム
DESCRIPTION OF SYMBOLS 10 ... Vibration sensor 20 ... Computer 21 ... Signal sampling part 22 ... Moving average process part 23 ... Threshold voltage setting part 24 ... Peak time acquisition part 25 ... Storage part 26 ... DFA object data generation part 27 ... DFA execution part 28 ... Analysis result Output unit 100 ... signal analysis system

Claims (13)

  1.  解析対象信号の電圧値を所定期間サンプリングして電圧値の時系列データを取得する信号サンプリング部と、
     前記時系列データを構成する正の電圧値の出現頻度を表す度数分布を作成し、出現頻度が急減する電圧値を基準として閾値電圧を設定する閾値電圧設定部と、
     前記時系列データを構成する各電圧値を時系列順に前記閾値電圧と比較し、該閾値電圧を超える電圧値をサンプリングして以降の第1の微小期間にサンプリングされた電圧値の中の最大値をサンプリングした時刻をピーク時刻として取得するピーク時刻取得部と、
     前記ピーク時刻に基づいてDFA対象データを生成するDFA対象データ生成部と、
     前記DFA対象データに基づいてDFAを実行してスケーリング指数を取得するDFA実行部と、
    を含む信号解析システム。
    A signal sampling unit that samples the voltage value of the analysis target signal for a predetermined period to obtain time-series data of the voltage value;
    Creating a frequency distribution representing the frequency of appearance of positive voltage values constituting the time series data, and a threshold voltage setting unit for setting a threshold voltage with reference to a voltage value at which the frequency of appearance decreases rapidly;
    The voltage value constituting the time series data is compared with the threshold voltage in time series order, the voltage value exceeding the threshold voltage is sampled, and the maximum value among the voltage values sampled in the first minute period thereafter. A peak time acquisition unit that acquires the time at which sampling is performed as a peak time;
    A DFA target data generation unit that generates DFA target data based on the peak time;
    A DFA execution unit that acquires a scaling index by executing DFA based on the DFA target data;
    Including signal analysis system.
  2.  解析対象信号の電圧値を所定期間サンプリングして電圧値の時系列データを取得する信号サンプリング部と、
     前記時系列データを構成する負の電圧値の出現頻度を表す度数分布を作成し、出現頻度が急減する電圧値を基準として閾値電圧を設定する閾値電圧設定部と、
     前記時系列データを構成する各電圧値を時系列順に前記閾値電圧と比較し、該閾値電圧を下回る電圧値をサンプリングして以降の第1の微小期間にサンプリングされた電圧値の中の最小値をサンプリングした時刻をピーク時刻として取得するピーク時刻取得部と、
     前記ピーク時刻に基づいてDFA対象データを生成するDFA対象データ生成部と、
     前記DFA対象データに基づいてDFAを実行してスケーリング指数を取得するDFA実行部と、
    を含む信号解析システム。
    A signal sampling unit that samples the voltage value of the analysis target signal for a predetermined period to obtain time-series data of the voltage value;
    Creating a frequency distribution representing the frequency of appearance of negative voltage values constituting the time-series data, and a threshold voltage setting unit for setting a threshold voltage with reference to a voltage value at which the frequency of appearance decreases rapidly;
    The voltage value constituting the time series data is compared with the threshold voltage in time series order, the voltage value lower than the threshold voltage is sampled, and the minimum value among the voltage values sampled in the first minute period thereafter A peak time acquisition unit that acquires the time at which sampling is performed as a peak time;
    A DFA target data generation unit that generates DFA target data based on the peak time;
    A DFA execution unit that acquires a scaling index by executing DFA based on the DFA target data;
    Including signal analysis system.
  3.  前記閾値電圧設定部は、
     前記度数分布において隣接する他の階級との間の度数の差分の差分が最大となる階級の階級値を基準として前記閾値電圧を設定する、
    請求項1または2に記載の信号解析システム。
    The threshold voltage setting unit includes:
    The threshold voltage is set with reference to the class value of the class in which the difference in the frequency difference between the adjacent other classes in the frequency distribution is maximized,
    The signal analysis system according to claim 1 or 2.
  4.  前記閾値電圧設定部は、
     前記度数分布に基づいてヒストグラムを作成し、該ヒストグラムに対するカーブフィッティングにより、電圧値と出現頻度の関係を示す曲線関数を求め、該曲線関数について二階微分を行って二次導関数を求め、該二次導関数の最大値を与える電圧値を基準として前記閾値電圧を設定する、
    請求項1または2に記載の信号解析システム。
    The threshold voltage setting unit includes:
    A histogram is created based on the frequency distribution, a curve function indicating the relationship between the voltage value and the appearance frequency is obtained by curve fitting with respect to the histogram, a second derivative is obtained by performing second order differentiation on the curve function, and the second Setting the threshold voltage with reference to a voltage value giving the maximum value of the second derivative;
    The signal analysis system according to claim 1 or 2.
  5.  前記ピーク時刻取得部は、
     前記第1の微小期間に連続する第2の微小期間にサンプリングされた電圧値のサンプリング時刻をピーク時刻として取得しない、
    請求項1~4のいずれか一項に記載の信号解析システム。
    The peak time acquisition unit
    Do not acquire the sampling time of the voltage value sampled in the second minute period that is continuous with the first minute period as the peak time,
    The signal analysis system according to any one of claims 1 to 4.
  6.  前記時系列データに対して移動平均処理を行う移動平均処理部を含み、
     前記閾値電圧設定部は、移動平均処理後の前記時系列データに基づいて前記閾値電圧を設定し、
     前記ピーク時刻取得部は、移動平均処理後の前記時系列データに基づいて前記ピーク時刻を取得する、
    請求項1~5のいずれか一項に記載の信号解析システム。
    A moving average processing unit that performs a moving average process on the time-series data;
    The threshold voltage setting unit sets the threshold voltage based on the time series data after moving average processing,
    The peak time acquisition unit acquires the peak time based on the time series data after the moving average process,
    The signal analysis system according to any one of claims 1 to 5.
  7.  信号を解析する方法であって、
     解析対象信号の電圧値を所定期間サンプリングして電圧値の時系列データを取得するステップと、
     前記時系列データを構成する正の電圧値の出現頻度を表す度数分布を作成し、出現頻度が急減する電圧値を基準として閾値電圧を設定するステップと、
     前記時系列データを構成する各電圧値を時系列順に前記閾値電圧と比較し、該閾値電圧を超える電圧値をサンプリングして以降の第1の微小期間にサンプリングされた電圧値の中の最大値をサンプリングした時刻をピーク時刻として取得するステップと、
     前記ピーク時刻に基づいてDFA対象データを生成するステップと、
     前記DFA対象データに基づいてDFAを実行してスケーリング指数を取得するステップと、
    を含む方法。
    A method for analyzing a signal comprising:
    Sampling the voltage value of the signal to be analyzed for a predetermined period to obtain time-series data of the voltage value;
    Creating a frequency distribution representing the appearance frequency of positive voltage values constituting the time series data, and setting a threshold voltage with reference to a voltage value at which the appearance frequency suddenly decreases;
    The voltage value constituting the time series data is compared with the threshold voltage in time series order, the voltage value exceeding the threshold voltage is sampled, and the maximum value among the voltage values sampled in the first minute period thereafter. A step of acquiring the sampling time as a peak time;
    Generating DFA target data based on the peak time;
    Performing a DFA based on the DFA target data to obtain a scaling index;
    Including methods.
  8.  信号を解析する方法であって、
     解析対象信号の電圧値を所定期間サンプリングして電圧値の時系列データを取得するステップと、
     前記時系列データを構成する負の電圧値の出現頻度を表す度数分布を作成し、出現頻度が急減する電圧値を基準として閾値電圧を設定するステップと、
     前記時系列データを構成する各電圧値を時系列順に前記閾値電圧と比較し、該閾値電圧を下回る電圧値をサンプリングして以降の第1の微小期間にサンプリングされた電圧値の中の最小値をサンプリングした時刻をピーク時刻として取得するステップと、
     前記ピーク時刻に基づいてDFA対象データを生成するステップと、
     前記DFA対象データに基づいてDFAを実行してスケーリング指数を取得するステップと、
    を含む方法。
    A method for analyzing a signal comprising:
    Sampling the voltage value of the signal to be analyzed for a predetermined period to obtain time-series data of the voltage value;
    Creating a frequency distribution representing the frequency of appearance of negative voltage values constituting the time-series data, and setting a threshold voltage based on a voltage value at which the frequency of appearance decreases rapidly;
    The voltage value constituting the time series data is compared with the threshold voltage in time series order, the voltage value lower than the threshold voltage is sampled, and the minimum value among the voltage values sampled in the first minute period thereafter A step of acquiring the sampling time as a peak time;
    Generating DFA target data based on the peak time;
    Performing a DFA based on the DFA target data to obtain a scaling index;
    Including methods.
  9.  前記閾値電圧を設定するステップは、
     前記度数分布において隣接する他の階級との間の度数の差分の差分が最大となる階級の階級値を基準として前記閾値電圧を設定するステップを含む、
    請求項7または8に記載の方法。
    The step of setting the threshold voltage includes:
    Including the step of setting the threshold voltage with reference to a class value of a class in which a difference in frequency difference between adjacent classes in the frequency distribution is maximum.
    The method according to claim 7 or 8.
  10.  前記閾値電圧を設定するステップは、
     前記度数分布に基づいてヒストグラムを作成し、該ヒストグラムに対するカーブフィッティングにより、電圧値と出現頻度の関係を示す曲線関数を求め、該曲線関数について二階微分を行って二次導関数を求め、該二次導関数の最大値を与える電圧値を基準として前記閾値電圧を設定するステップを含む、
    請求項7または8に記載の方法。
    The step of setting the threshold voltage includes:
    A histogram is created based on the frequency distribution, a curve function indicating the relationship between the voltage value and the appearance frequency is obtained by curve fitting with respect to the histogram, a second derivative is obtained by performing second order differentiation on the curve function, and the second Setting the threshold voltage relative to a voltage value that gives a maximum value of the second derivative,
    The method according to claim 7 or 8.
  11.  前記ピーク時刻を取得するステップでは、
     前記第1の微小期間に連続する第2の微小期間にサンプリングされた電圧値のサンプリング時刻をピーク時刻として取得しない、
    請求項7~10のいずれか一項に記載の方法。
    In the step of obtaining the peak time,
    Do not acquire the sampling time of the voltage value sampled in the second minute period that is continuous with the first minute period as the peak time,
    The method according to any one of claims 7 to 10.
  12.  前記時系列データに対して移動平均処理を行うステップを含み、
     前記閾値電圧を設定するステップでは、移動平均処理後の前記時系列データに基づいて前記閾値電圧を設定し、
     前記ピーク時刻を取得するステップでは、移動平均処理後の前記時系列データに基づいて前記ピーク時刻を取得する、
    請求項7~11のいずれか一項に記載の方法。
    Performing a moving average process on the time-series data,
    In the step of setting the threshold voltage, the threshold voltage is set based on the time series data after the moving average process,
    In the step of acquiring the peak time, the peak time is acquired based on the time series data after the moving average process.
    The method according to any one of claims 7 to 11.
  13.  コンピュータに、請求項7~12のいずれか一項に記載の方法の各ステップを実行させるためのコンピュータ実行可能なプログラム。
     
    A computer-executable program for causing a computer to execute the steps of the method according to any one of claims 7 to 12.
PCT/JP2019/002723 2018-02-21 2019-01-28 Signal analysis system, method and program WO2019163433A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018028404A JP6935655B2 (en) 2018-02-21 2018-02-21 Signal analysis systems, methods and programs
JP2018-028404 2018-02-21

Publications (1)

Publication Number Publication Date
WO2019163433A1 true WO2019163433A1 (en) 2019-08-29

Family

ID=67688046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002723 WO2019163433A1 (en) 2018-02-21 2019-01-28 Signal analysis system, method and program

Country Status (2)

Country Link
JP (1) JP6935655B2 (en)
WO (1) WO2019163433A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7335154B2 (en) * 2019-12-17 2023-08-29 株式会社東芝 Information processing device, information processing method, and program
CN112597958B (en) * 2020-12-29 2023-04-07 哈工大机器人(合肥)国际创新研究院 Automatic identification method and system for rolling bearing fault
JP2022113521A (en) * 2021-01-25 2022-08-04 株式会社日本製鋼所 Anomaly detection system, molding machine system, anomaly detection device, anomaly detection method, and computer program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184041A (en) * 2009-02-12 2010-08-26 Tokyo Metropolitan Univ Method of analyzing fluctuation of heart rate
JP2016014617A (en) * 2014-07-03 2016-01-28 アズビル株式会社 Frequency transition measuring device and frequency transition measuring method
JP2016145763A (en) * 2015-02-09 2016-08-12 公立大学法人首都大学東京 Signal analysis system, method, and program
JP2016165383A (en) * 2015-03-10 2016-09-15 公立大学法人首都大学東京 Biological signal analysis system, method, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184041A (en) * 2009-02-12 2010-08-26 Tokyo Metropolitan Univ Method of analyzing fluctuation of heart rate
JP2016014617A (en) * 2014-07-03 2016-01-28 アズビル株式会社 Frequency transition measuring device and frequency transition measuring method
JP2016145763A (en) * 2015-02-09 2016-08-12 公立大学法人首都大学東京 Signal analysis system, method, and program
JP2016165383A (en) * 2015-03-10 2016-09-15 公立大学法人首都大学東京 Biological signal analysis system, method, and program

Also Published As

Publication number Publication date
JP6935655B2 (en) 2021-09-15
JP2019144102A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
WO2019163433A1 (en) Signal analysis system, method and program
CN108871647B (en) Method for measuring the axial force of a bolt
Mian et al. An efficient diagnosis approach for bearing faults using sound quality metrics
JP2010271073A (en) Diagnosis device of abnormality in equipment
US10368177B2 (en) Abnormality detecting device, abnormality detection method, and recording medium storing abnormality detection computer program
CN110779724B (en) Bearing fault diagnosis method based on frequency domain group sparse noise reduction
EP3575908A1 (en) State monitoring method and state monitoring device
Daems et al. Removal of non-stationary harmonics for operational modal analysis in time and frequency domain
CN112326245A (en) Rolling bearing fault diagnosis method based on variational Hilbert-Huang transform
US20200220525A1 (en) Method For Automatic Detection of Physical Modes In A Modal Analysis Model
JPWO2021049568A1 (en) Vibration detection device, vibration detection method and abnormality judgment system
JP2019045484A (en) State monitoring method, and state monitoring device
JPH1123411A (en) Strange sound judging apparatus and method therefor
US6281814B1 (en) Data conversion method, data converter, and program storage medium
JP5354174B2 (en) Abnormality diagnosis system for machinery
CN116226719A (en) Bearing fault diagnosis method based on multidimensional steady-state vibration characteristics and related components
Nikhar et al. Gear tooth fault detection by autoregressive modelling
JP6305303B2 (en) Vibration diagnosis apparatus, method and program for rotating equipment
WO2020202567A1 (en) Vibro-acoustic analysis method and device and equipment-abnormality-location estimation method and device
CN109635759A (en) Signal processing method and device and computer readable storage medium
JP7408519B2 (en) Condition monitoring device and condition monitoring method
CN112504441B (en) Vibration acceleration signal segmentation and integration method based on important information reconstruction
JP3130369B2 (en) Helicopter sound extraction and identification device
KR102651572B1 (en) Apparatus and method for predicting remaining life of an electric motor
JP7272631B2 (en) Sound or vibration determination method and information processing system for determination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757586

Country of ref document: EP

Kind code of ref document: A1