JP3858443B2 - Lens optical system - Google Patents

Lens optical system Download PDF

Info

Publication number
JP3858443B2
JP3858443B2 JP11061298A JP11061298A JP3858443B2 JP 3858443 B2 JP3858443 B2 JP 3858443B2 JP 11061298 A JP11061298 A JP 11061298A JP 11061298 A JP11061298 A JP 11061298A JP 3858443 B2 JP3858443 B2 JP 3858443B2
Authority
JP
Japan
Prior art keywords
lens
lenses
diffraction
power due
refraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11061298A
Other languages
Japanese (ja)
Other versions
JPH11305126A (en
Inventor
滋人 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP11061298A priority Critical patent/JP3858443B2/en
Publication of JPH11305126A publication Critical patent/JPH11305126A/en
Priority to US09/451,080 priority patent/US7295387B1/en
Priority to US10/096,370 priority patent/US6704149B2/en
Application granted granted Critical
Publication of JP3858443B2 publication Critical patent/JP3858443B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0037Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration with diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/005Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration for correction of secondary colour or higher-order chromatic aberrations
    • G02B27/0056Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration for correction of secondary colour or higher-order chromatic aberrations by using a diffractive optical element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4272Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
    • G02B27/4277Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path being separated by an air space
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • G02B9/14Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - +
    • G02B9/18Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - + only one component having a compound lens
    • G02B9/20Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - + only one component having a compound lens the rear component having the compound
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • G02B9/14Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - +
    • G02B9/30Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - + the middle component being a - compound meniscus having a + lens

Description

【0001】
【発明の属する技術分野】
本発明は、レンズ光学系に関するものであり、更に詳しくは、回折格子を有する接合レンズを用いたレンズ光学系に関するものである。
【0002】
【従来の技術】
回折格子による集光作用を有するレンズ(以下「回折レンズ」という。)には、従来より知られている屈折レンズには無い有用な特長がある。例えば以下のような特長が知られている。
・通常の屈折レンズの表面に回折レンズを付けることができるため、一つのレンズに回折作用と屈折作用の両方を持たせることができる。
・屈折レンズでいう分散特性に相当する量が、回折レンズでは逆の値を持つため、回折レンズで色収差を効果的に補正することができる。
【0003】
したがって、正・負2枚の屈折レンズの組み合わせで行っていた色収差補正を、屈折レンズの表面に回折レンズを付けることにより、1枚のレンズで行うことが可能である。回折レンズには、従来の屈折レンズには無い上記のような有用な特長がある反面、回折格子の回折効率が波長に依存するため問題もある。例えば、設計波長以外では設計次数以外の回折光の発生が顕著となるため、これにより発生するゴーストが像性能劣化の原因となる。特に使用波長域が広い白色光で使用する光学系では、これが大きな問題となる。
【0004】
この問題を解決することを目的とした回折光学素子が、特開平9-127321号公報とSteven M. Ebstein(1996.9.15 OPTICAL SOCIETY OF AMERICA)で提案されている。これらの回折光学素子は、互いに異なる光学材料の境界面に回折格子のレリーフパターンが形成された構成をとっている。そして、2材料の屈折率差が波長に依存することを利用して波長による位相差の変化を防ぐことにより、広い波長域で回折効率を高くすることを可能にしている。
【0005】
【発明が解決しようとする課題】
しかし、そのような回折格子の実現には以下のような制約がある。
▲1▼:回折効率を高くするために、材料の組み合わせを、相対的に屈折率が高く分散が小さな材料と、屈折率が低く分散が大きな材料と、の組み合わせにする必要がある。
▲2▼:ブレーズ頂角をできるだけ大きくする必要がある。回折格子のブレーズ形状を成形により作製する場合、回折格子高さと回折格子間隔とで決まるブレーズ頂角が大きいほど、材料がブレーズ頂角の先端まで充填されやすくなる。したがって、ブレーズ頂角が大きいほど、ブレーズ形状の転写性が良好になる。試作試験によれば、ブレーズ頂角は70°程度あれば転写性が良好であった。
【0006】
ブレーズ形状を表す図11に基づいて、上記制約▲2▼を更に詳しく説明する。図11において、Θはブレーズ頂角、h0は回折格子高さ、dは回折格子間隔である。設計波長λ0での入射側,射出側の光学材料の屈折率をそれぞれn0,n'0とすると、回折格子高さh0は式:h0=λ0/(n0−n'0)で表される。
【0007】
回折格子間隔(d)は回折作用の強さを表し、回折格子間隔(d)が小さいほど回折作用は強くなる。回折レンズについて考えた場合、回折格子間隔(d)が小さいことは回折作用によるパワーが強いことを意味する。したがって、分散が大きな硝種から成るレンズ又はパワーが大きなレンズの色収差を回折レンズで補正する場合には、回折作用によるパワーを強くする必要がある。また回折レンズでは、レンズの周辺に行くほど回折作用を強くする必要があるので、レンズの有効径が大きいほどレンズ周辺部での回折格子間隔(d)を小さくする必要がある。
【0008】
また、ブレーズ頂角(Θ)が大きいほど、材料がブレーズ頂角の先端まで充填されやすくなるため、ブレーズ形状の転写性は良好になる。回折格子高さ(h0)が低いほど、また、回折格子間隔(d)が大きいほど、ブレーズ頂角(Θ)を大きくすることができる。しかし、前述の制約▲1▼があるために、実現可能な回折格子高さ(h0)は6〜17μm程度に高くなってしまう。したがって、回折レンズのみで色収差補正を行った場合には、回折作用によるパワーを強くする必要から回折格子間隔(d)は小さなものになってしまい、ブレーズ頂角(Θ)も小さくなってしまうため、ブレーズ形状の転写性は悪化することになる。
【0009】
次に、回折レンズによる色収差補正について考える。一般的に、色収差補正はF線の波長の結像位置とC線の波長の結像位置とを一致させることで行う。しかし、その場合、F線の波長の結像位置とd線の波長の結像位置、及びd線の波長の結像位置とC線の波長の結像位置は、ズレを発生することになる。これを2次の色スペクトルと呼んでいる。回折レンズにより色収差を補正した場合、屈折レンズを用いた正・負2枚構成により色収差を補正した場合に比べて、2次の色スペクトルは大きくなる傾向がある。したがって、2次の色スペクトルも合わせて考えると、回折レンズによる色収差補正と、屈折レンズを用いた正・負2枚構成による色収差補正と、を組み合わせて用いることが望ましいといえる。
【0010】
本発明は、このような状況に鑑みてなされたものであって、広い波長域で回折効率を高くする回折レンズを効果的に用いて、色収差を良好に補正したレンズ光学系を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するために、第1の発明のレンズ光学系は、互いに異なる光学材料から成るとともに屈折作用によるパワーが正と負の2枚のレンズで構成された接合レンズを有するレンズ光学系であって、前記接合レンズが、前記2枚のレンズの密着面にレリーフパターンで構成された回折格子を有し、前記2枚のレンズの空気と接するレンズ面の曲率半径が、いずれも前記密着面の曲率半径とは異なり、前記接合レンズが以下の条件式を満足することを特徴とする。
0.1 ( φ p /ν d) ( φ DOE /ν DOE) 35
ただし、
φ p :密着している正と負の2枚のレンズのうち、屈折作用によるパワーが回折作用によるパワーとは逆の符号のレンズの屈折作用によるパワー ( ただし、φ p は回折作用によるパワーを含まない。 )
ν d :密着している正と負の2枚のレンズのうち、屈折作用によるパワーが回折作用によるパワーとは逆の符号のレンズを構成している光学材料のアッベ数、
φ DOE :密着面のレリーフパターンで発生する回折作用によるパワー、
ν DOE :密着面のレリーフパターンで発生する回折作用によるアッベ数相当値、
である。
【0012】
第2の発明のレンズ光学系は、互いに異なる光学材料から成るとともに屈折作用によるパワーが正と負の2枚のレンズで構成された接合レンズを有するレンズ光学系であって、前記接合レンズが、前記2枚のレンズの密着面にレリーフパターンで構成された回折格子を有し、前記2枚のレンズの空気と接するレンズ面の曲率半径が、いずれも前記密着面の曲率半径とは異なり、前記接合レンズが以下の条件式を満足することを特徴とする。
0.04 tp tg 5
ただし、
tp :密着している正と負の2枚のレンズのうち、屈折作用によるパワーが回折作用によるパワーと逆の符号のレンズの軸上面間隔、
tg :密着している正と負の2枚のレンズのうち、屈折作用によるパワーが回折作用によるパワーと同じ符号のレンズの軸上面間隔、
である。
【0014】
【発明の実施の形態】
以下、本発明を実施したレンズ光学系を、図面を参照しつつ説明する。図1〜図4は、第1〜第4の実施の形態のレンズ光学系にそれぞれ対応するレンズ構成図である。第1〜第3の実施の形態はズームレンズ、第4の実施の形態は単焦点レンズであり、第1〜第3の実施の形態(図1〜図3)については、広角端[W],ミドル(中間焦点距離状態)[M]及び望遠端[T]でのレンズ配置を示している。
【0015】
各レンズ構成図中の矢印mj(j=1,2,3)は、ズーミングにおける第j群(Gri)の移動をそれぞれ模式的に示しており、di(i=1,2,3,...)が付された軸上面間隔は、物体側から数えてi番目の軸上面間隔のうち、ズーミングにおいて変化する可変間隔を示している。また、各レンズ構成図中、ri(i=1,2,3,...)が付された面は物体側から数えてi番目の面{ただし最終面は像面(I)}であり、riに*印が付された面は非球面、riに#印が付された面は回折格子のレリーフパターンが形成された回折面である。回折格子を有する接合レンズについては、接合レンズを構成している回折レンズに「DOE」を付し、回折レンズと逆の符号のパワーを有する屈折レンズに「p」を付し、回折レンズと同じ符号のパワーを有する屈折レンズに「g」を付して示す。
【0016】
第1の実施の形態(図1)は、レンズ(L1)及び接合レンズ(L2)から成る第1群(Gr1)と、レンズ(L3)及び接合レンズ(L4)から成る第2群(Gr2)と、絞り(S),接合レンズ(L5)及びレンズ(L6)から成る第3群(Gr3)と、ローパスフィルター(LPF)と、で構成されている。第2の実施の形態(図2)は、接合レンズ(L1)から成る第1群(Gr1)と、レンズ(L2)及び接合レンズ(L3)から成る第2群(Gr2)と、絞り(S)及び2枚のレンズ(L4,L5)から成る第3群(Gr3)と、ローパスフィルター(LPF)と、で構成されている。第3の実施の形態(図3)は、レンズ(L1)及び接合レンズ(L2)から成る第1群(Gr1)と、絞り(S)及び接合レンズ(L3)から成る第2群(Gr2)と、ローパスフィルター(LPF)と、で構成されている。第4の実施の形態(図3)は、絞り(S)と、レンズ(L1)と、接合レンズ(L2)と、ローパスフィルター(LPF)と、で構成されている。
【0017】
上記のように第1〜第4の実施の形態は、互いに異なる光学材料から成る2枚のレンズで構成された接合レンズを有するレンズ光学系であって、接合レンズが、2枚のレンズの密着面(すなわち境界面)にレリーフパターンで構成された回折格子を有している。そして、2枚のレンズの空気と接するレンズ面の曲率半径が、いずれも密着面の曲率半径とは異なっている。このように、広い波長域で回折効率を高くする回折レンズが効果的に用いられているため、色収差を良好に補正することができる。
【0018】
第1〜第4の実施の形態のように、互いに異なる光学材料から成るとともに屈折作用によるパワーが正と負の2枚のレンズで構成された接合レンズを備えたレンズ光学系においては、2枚のレンズの密着面にレリーフパターンで構成された回折格子を有し、その接合レンズが以下の条件式(1)を満足することが望ましい。
0.1≦(φp/νd)/(φDOE/νDOE)≦35 …(1)
ただし、
φp:密着している正と負の2枚のレンズのうち、屈折作用によるパワーが回折作用によるパワーとは逆の符号のレンズの屈折作用によるパワー(ただし、φpは回折作用によるパワーを含まない。)、
νd:密着している正と負の2枚のレンズのうち、屈折作用によるパワーが回折作用によるパワーとは逆の符号のレンズを構成している光学材料のアッベ数、
φDOE:密着面のレリーフパターンで発生する回折作用によるパワー、
νDOE:密着面のレリーフパターンで発生する回折作用によるアッベ数相当値、
である。
【0019】
条件式(1)を満足するように、回折レンズによる色収差補正と、屈折レンズを用いた正・負2枚構成による色収差補正と、を組み合わせて用いることにより、以下の(A),(B)が可能なレンズ光学系を達成することができる。
(A):回折作用を弱くすることができるため、回折格子間隔(d)が大きくなり、回折格子のブレーズ頂角(Θ)を70°以上にすることが可能となる。
(B):色収差及び2次の色スペクトルを良好にすることが可能となる。
【0020】
条件式(1)の下限を超えた場合、回折レンズによる色収差補正の度合いが強くなるため、回折格子のブレーズ頂角が70°を下回ることになる。又は、2次の色スペクトルが大きくなる等の不具合が発生することになる。条件式(1)の上限を超えた場合、接合レンズの一方の屈折レンズのパワーにより発生する色収差を、接合レンズの他方の屈折レンズの逆のパワーで発生する色収差で補正する度合いが強くなるため、両方の屈折レンズのパワー偏在が大きくなる。したがって、各レンズの面曲率半径が小さくなるため、そこでの収差発生量が増大することになる。結果として、発生した収差を補正するために、レンズ枚数を増やすことが必要となり、光学系のコスト及び大きさの点で不適当なものとなる。
【0021】
第1〜第4の実施の形態のように、互いに異なる光学材料から成るとともに屈折作用によるパワーが正と負の2枚のレンズで構成された接合レンズを備えたレンズ光学系においては、2枚のレンズの密着面にレリーフパターンで構成された回折格子を有し、その接合レンズが以下の条件式(2)を満足することが望ましい。
0.04≦tp/tg≦5 …(2)
ただし、
tp:密着している正と負の2枚のレンズのうち、屈折作用によるパワーが回折作用によるパワーと逆の符号のレンズの軸上面間隔、
tg:密着している正と負の2枚のレンズのうち、屈折作用によるパワーが回折作用によるパワーと同じ符号のレンズの軸上面間隔、
である。
【0022】
条件式(2)を満足するように、回折レンズによる色収差補正と、屈折レンズを用いた正・負2枚構成による色収差補正と、を組み合わせて用いることにより、前記(A),(B)が可能なレンズ光学系を達成することができる。
【0023】
条件式(2)の下限を決めるのは、軸上面間隔(tp)のレンズが負のパワーを有する場合であり、条件式(2)の下限を下回った場合は、レンズのパワーを得るために面曲率半径が小さくなる。それにより、面で発生する収差量が大きくなるため、不適当なものとなる。したがって、条件式(2)の下限を超える場合は、結果として発生した収差を補正するためにレンズ枚数を増やすことが必要となり、光学系のコスト及び大きさの点で不適当なものとなる。
【0024】
条件式(2)の上限を決めるのは、軸上面間隔(tp)のレンズが正のパワーを有する場合であり、条件式(2)の上限を上回った場合は、レンズのパワーを得るために面曲率半径が小さくなる。それにより、面で発生する収差量が大きくなるため、不適当なものとなる。したがって、条件式(2)の上限を超える場合は、結果として発生した収差を補正するためにレンズ枚数を増やすことが必要となり、光学系のコスト及び大きさの点で不適当なものとなる。
【0025】
【実施例】
以下、本発明を実施したレンズ光学系の構成を、コンストラクションデータ,収差図等を挙げて、更に具体的に説明する。なお、以下に挙げる実施例1〜4は、前述した第1〜第4の実施の形態にそれぞれ対応しており、第1〜第4の実施の形態を表すレンズ構成図(図1〜図4)は、対応する実施例1〜4のレンズ構成をそれぞれ示している。また、実施例1等に対応する比較例を、そのレンズ構成を示す図5と共に併せて示す。
【0026】
各実施例のコンストラクションデータにおいて、ri(i=1,2,3,...)は物体側から数えてi番目の面の曲率半径、di(i=1,2,3,...)は物体側から数えてi番目の軸上面間隔を示しており、Ni(i=1,2,3,...),νi(i=1,2,3,...)は物体側から数えてi番目の光学要素のd線に対する屈折率(Nd),アッベ数(νd)を示している。また、コンストラクションデータ中、ズーミングにおいて変化する軸上面間隔(可変間隔)は、広角端(短焦点距離端)[W]〜ミドル(中間焦点距離状態)[M]〜望遠端(長焦点距離端)[T]での各群間の軸上空気間隔である。各焦点距離状態[W],[M],[T]に対応する全系の焦点距離f,半画角ω及びFナンバーFNOを併せて示す。
【0027】
曲率半径riに*印が付された面は、非球面で構成された面であることを示し、非球面の面形状を表わす以下の式(AS)で定義されるものとする。また、曲率半径riに#印が付された面は、回折格子のレリーフパターンで構成された回折面であることを示し、回折面のピッチの位相形状を表す以下の式(DS)で定義されるものとする。各非球面の非球面データ及び各回折面の回折面データを他のデータと併せて示す。
【0028】
Z(H)=(C0・H2)/{1+√(1-C02・H2)}+(A4・H4+A6・H6+A8・H8+A10・H10) …(AS)
ただし、式(AS)中、
Z(H):高さHの位置での光軸方向の変位量(面頂点基準)、
H :光軸に対して垂直な方向の高さ、
C0 :近軸曲率、
Ai :i次の非球面係数、
である。
【0029】
φ(H)=(2π/λ0)・(C1・H2+C2・H4) …(DS)
ただし、式(DS)中、
φ(H):位相関数、
H :光軸に対して垂直な方向の高さ、
Ci :2i次の位相係数、
λ0 :設計波長、
である。
【0030】

Figure 0003858443
Figure 0003858443
【0031】
[第1面(r1)の非球面データ]
A4= 2.93×10-6
A6= 1.3532×10-7
A8=-3.1×10-9
【0032】
[第3面(r3)の非球面データ]
A4=-1.3×10-5
A6=-5.051×10-7
A8= 5.5×10-9
A10= 9.26×10-13
【0033】
[第4面(r4)の非球面データ]
A4=-2.4×10-5
A6= 1.3231×10-7
A8= 6.85×10-9
A10=-2.4×10-11
【0034】
[第5面(r5)の非球面データ]
A4= 6.22×10-6
A6=-3.554×10-7
A8= 2.02×10-9
A10=-6.2×10-12
【0035】
[第6面(r6)の非球面データ]
A4= 0.000941
A6=-0.0001001
A8= 3.49×10-6
A10=-4.5×10-8
【0036】
[第7面(r7)の非球面データ]
A4= 0.001073
A6=-0.0001082
A8= 9.64×10-7
A10=-9.9×10-8
【0037】
[第8面(r8)の非球面データ]
A4=-0.00046
A6= 5.1001×10-5
A8=-3.9×10-6
A10=-1.4×10-8
【0038】
[第9面(r9)の非球面データ]
A4=-0.00147
A6= 1.3879×10-5
A8= 1.99×10-6
A10=-7.5×10-9
【0039】
[第10面(r10)の非球面データ]
A4=-0.00094
A6= 3.4959×10-5
A8=-3×10-6
【0040】
[第12面(r12)の非球面データ]
A4=-0.00018
A6=-6.571×10-6
A8= 1.16×10-7
A10= 1.25×10-8
【0041】
[第13面(r13)の非球面データ]
A4= 0.000544
A6= 1.7189×10-5
A8=-9.4×10-7
A10=-1.3×10-8
【0042】
[第14面(r14)の非球面データ]
A4= 0.000763
A6=-4.062×10-5
A8=-9.6×10-7
A10=3.36×10-8
【0043】
[第15面(r15)の非球面データ]
A4= 0.000348
A6=-7.975×10-6
A8=-3.3×10-6
【0044】
[第16面(r16)の非球面データ]
A4= 0.001374
A6= 6.2198×10-5
A8= 1.73×10-6
【0045】
[第4面(r4)の回折面データ]
C1=-0.00046
C2= 8.4405×10-7
【0046】
[第9面(r9)の回折面データ]
C1= 0.002731
C2=-8.219×10-5
【0047】
[第13面(r13)の回折面データ]
C1=-0.00169
C2= 5.6339×10-5
【0048】
Figure 0003858443
Figure 0003858443
【0049】
[第1面(r1)の非球面データ]
A4=-1×10-5
A6= 8.7235×10-7
A8=-1.5×10-8
A10= 1.67×10-10
【0050】
[第2面(r2)の非球面データ]
A4= 6.28×10-5
A6=-1.108×10-5
A8= 2.48×10-7
A10=-2.4×10-9
【0051】
[第3面(r3)の非球面データ]
A4= 3.15×10-5
A6= 9.6774×10-7
A8=-1.9×10-8
A10= 2.77×10-10
【0052】
[第4面(r4)の非球面データ]
A4= 0.000384
A6= 3.3912×10-5
A8=-1.5×10-6
A10= 1.75×10-8
【0053】
[第5面(r5)の非球面データ]
A4=-0.002
A6= 2.0385×10-5
A8= 6.47×10-6
A10=-2.2×10-7
【0054】
[第6面(r6)の非球面データ]
A4=-0.00436
A6= 1.3465×10-6
A8= 7.78×10-6
A10=-3.2×10-7
【0055】
[第7面(r7)の非球面データ]
A4=-0.00806
A6= 0.00028396
A8= 2.44×10-5
A10=-1.1×10-6
【0056】
[第8面(r8)の非球面データ]
A4=-0.00495
A6= 0.00018033
A8=-4.5×10-6
【0057】
[第9面(r9)の非球面データ]
A4=-0.00088
A6=-2.088×10-5
A8=-6.1×10-6
A10= 1.06×10-8
【0058】
[第11面(r11)の非球面データ]
A4= 0.000763
A6=-4.062×10-5
A8=-9.6×10-7
A10= 3.36×10-8
【0059】
[第12面(r12)の非球面データ]
A4= 0.000675
A6= 9.9201×10-6
A8= 2.94×10-6
【0060】
[第13面(r13)の非球面データ]
A4= 0.001621
A6= 9.5672×10-5
A8= 2.95×10-6
【0061】
[第2面(r2)の回折面データ]
C1=-0.00019
C2=-7.154×10-7
【0062】
[第7面(r7)の回折面データ]
C1= 0.000379
C2= 5.4451×10-5
【0063】
Figure 0003858443
【0064】
[第1面(r1)の非球面データ]
A4= 0.009071
A6=-0.0001235
A8=-4.4×10-6
【0065】
[第2面(r2)の非球面データ]
A4= 0.012871
A6= 0.00211106
A8= 9.85×10-5
【0066】
[第3面(r3)の非球面データ]
A4=-0.00584
A6= 0.00141341
A8=-0.00014
【0067】
[第4面(r4)の非球面データ]
A4= 0.036276
A6=-0.015181
A8= 0.002011
【0068】
[第5面(r5)の非球面データ]
A4=-0.01326
A6= 0.0018055
A8=-0.00037
【0069】
[第7面(r7)の非球面データ]
A4=-0.00695
A6=-0.0008778
A8= 0.000301
A10=-0.00013
【0070】
[第8面(r8)の非球面データ]
A4=-0.01369
A6= 0.0051316
A8=-0.00021
【0071】
[第9面(r9)の非球面データ]
A4= 0.000919
A6=-0.0003216
A8= 3.39×10-5
【0072】
[第4面(r4)の回折面データ]
C1= 0.003039
C2=-0.0007736
【0073】
[第8面(r8)の回折面データ]
C1=-0.00146
C2= 0.00030703
【0074】
Figure 0003858443
【0075】
[第3面(r3)の非球面データ]
A4= 0.006759
A6= 0.00076404
A8= 7.49×10-5
【0076】
[第4面(r4)の非球面データ]
A4= 0.005799
A6=-0.0001718
A8=-1.8×10-5
【0077】
[第6面(r6)の非球面データ]
A4= 0.002042
A6= 1.6469×10-6
A8= 2.4×10-6
【0078】
[第5面(r5)の回折面データ]
C1=-0.00151
C2= 6.3854×10-5
【0079】
Figure 0003858443
Figure 0003858443
【0080】
[第1面(r1)の非球面データ]
A4=-5.5×10-6
A6= 2.1002×10-7
A8=-2.7×10-9
【0081】
[第3面(r3)の非球面データ]
A4=-7.4×10-6
A6=-6.535×10-7
A8= 5.81×10-9
A10=-1.2×10-11
【0082】
[第4面(r4)の非球面データ]
A4=-2.9×10-6
A6=-3.052×10-7
A8= 2.75×10-9
A10=-1.3×10-11
【0083】
[第5面(r5)の非球面データ]
A4=-2.9×10-6
A6=-3.052×10-7
A8= 2.75×10-9
A10=-1.3×10-11
【0084】
[第6面(r6)の非球面データ]
A4= 0.001166
A6=-0.0001044
A8= 3.19×10-6
A10=-3.6×10-8
【0085】
[第7面(r7)の非球面データ]
A4= 0.00122
A6=-0.0001005
A8= 1.02×10-6
A10=-1.5×10-7
【0086】
[第8面(r8)の非球面データ]
A4=-0.00184
A6= 9.1967×10-5
A8=-2.4×10-6
A10=-7.5×10-8
【0087】
[第9面(r9)の非球面データ]
A4=-0.00184
A6= 9.1967×10-5
A8=-2.4×10-6
A10=-7.5×10-8
【0088】
[第10面(r10)の非球面データ]
A4=-0.00193
A6= 7.4375×10-5
A8=-3.6×10-6
【0089】
[第12面(r12)の非球面データ]
A4=-6×10-5
A6=-8.051×10-6
A8= 1.92×10-7
A10= 1.27×10-8
【0090】
[第13面(r13)の非球面データ]
A4= 0.000484
A6=-4.434×10-5
A8=-1.8×10-6
A10= 6.09×10-8
【0091】
[第14面(r14)の非球面データ]
A4= 0.000484
A6=-4.434×10-5
A8=-1.8×10-6
A10= 6.09×10-8
【0092】
[第15面(r15)の非球面データ]
A4= 0.000242
A6=-2.076×10-5
A8=-3.3×10-6
【0093】
[第16面(r16)の非球面データ]
A4= 0.001559
A6= 5.5353×10-5
A8= 2.83×10-6
【0094】
[第4面(r4)の回折面データ]
C1=-0.0009
C2= 1.8993×10-6
【0095】
[第9面(r9)の回折面データ]
C1= 0.005716
C2=-2.475×10-5
【0096】
[第13面(r13)の回折面データ]
C1=-0.00269
C2= 5.7229×10-5
【0097】
図6は実施例1の収差図、図7は実施例2の収差図、図8は実施例3の収差図、図9は実施例4の収差図、図10は比較例の収差図である。実施例1〜3及び比較例の収差図については、それぞれ広角端[W],ミドル(中間焦点距離状態)[M],望遠端[T]での諸収差を示している。各焦点距離状態での収差図は、左から順に、(A)球面収差,(B)非点収差,(C)歪曲収差を表しており、破線はC線(波長:λC=656.3nm)に対する収差、実線はd線(波長:λd=587.6nm)に対する収差、一点鎖線はg線(波長:λg=435.8nm)に対する収差を表している。球面収差{横軸:近軸像面からの光軸方向のズレ量(mm)}の縦軸は、入射高さ(H)をその最大高さ(H0)で規格化した値(すなわち入射瞳平面を切る相対高さ)H/H0を表しており、非点収差{横軸:近軸像面からの光軸方向のズレ量(mm)}及び歪曲収差{横軸(%)}の縦軸は像高Y'(mm)を表している。また、実線Xはサジタル面での非点収差を表しており、実線Yはメリディオナル面での非点収差を表している。
【0098】
表1に、各実施例に用いられている回折格子の回折格子高さ(h0)及び最小格子間隔(dmin)を、最小格子間隔(dmin)でのブレーズ頂角(Θ)と併せて示す。実施例1〜4では、回折レンズによる色収差補正と、回折作用とは逆符号のパワーを有する屈折レンズによる色収差補正と、を組み合わせて行うことにより、回折作用を小さくしている。このため、最小格子間隔(dmin)は比較的大きくなっており、またブレーズ頂角(Θ)も大きくなっている。これに対して比較例では、回折レンズによる色収差補正の割合が大きくなっているため、回折作用を大きくする必要から回折格子の最小格子間隔(dmin)が比較的小さくなっており、またブレーズ頂角(Θ)も小さくなっている。
【0099】
【表1】
Figure 0003858443
【0100】
表2に、回折レンズによる色収差補正の度合いと、回折作用とは逆符号のパワーを有する屈折レンズによる色収差補正の度合いと、を示す。屈折レンズの(φp/νd)と回折レンズの(φDOE/νDOE)との比{すなわち条件式(1)の対応値}が大きいほど、屈折レンズによる色収差補正の度合いが大きいので、実施例1は比較例に比べて屈折レンズの色収差補正の度合いが大きいことが分かる。そのため、両者の球面収差を比較すると、g線(436nm)又はC線(656nm)の球面収差量は実施例1の方が小さい(すなわち2次の色スペクトルが小さい)ことが分かる。
【0101】
【表2】
Figure 0003858443
【0102】
表3に、回折格子を有する接合レンズの、回折レンズとは逆符号のパワーを有する屈折レンズの軸上面間隔と、回折レンズと同じ符号のパワーを有する屈折レンズの軸上面間隔と、の比を示す。この比{すなわち条件式(2)の対応値}が適当であれば、回折レンズによる色収差補正の度合いと、回折作用とは逆符号のパワーを有する屈折レンズの色収差補正の度合いと、のバランスが、2次の色スペクトル及び色収差以外の収差の点で良好となる。実施例2と比較例とを比較すると、両者の収差性能はほぼ同等であるが、実施例2のレンズ構成枚数が比較例に比べて減少していることが分かる。
【0103】
【表3】
Figure 0003858443
【0104】
【発明の効果】
以上説明したように第1又はの発明によれば、広い波長域で回折効率を高くする回折レンズを効果的に用いて、色収差を良好に補正したレンズ光学系を実現することができる。また、第1又はの発明によれば、製造容易な回折レンズを用いて、色収差及び2次の色スペクトルが良好なレンズ光学系を実現することができる。
【図面の簡単な説明】
【図1】第1の実施の形態(実施例1)のレンズ構成図。
【図2】第2の実施の形態(実施例2)のレンズ構成図。
【図3】第3の実施の形態(実施例3)のレンズ構成図。
【図4】第4の実施の形態(実施例4)のレンズ構成図。
【図5】比較例のレンズ構成図。
【図6】実施例1の収差図。
【図7】実施例2の収差図。
【図8】実施例3の収差図。
【図9】実施例4の収差図。
【図10】比較例の収差図。
【図11】ブレーズ形状を説明するための図。
【符号の説明】
Gr1 …第1群
Gr2 …第2群
Gr3 …第3群
LPF …ローパスフィルター[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lens optical system, and more particularly to a lens optical system using a cemented lens having a diffraction grating.
[0002]
[Prior art]
A lens having a light condensing function by a diffraction grating (hereinafter referred to as “diffractive lens”) has a useful feature not found in a conventionally known refractive lens. For example, the following features are known.
Since a diffractive lens can be attached to the surface of a normal refractive lens, one lens can have both diffractive action and refractive action.
The amount corresponding to the dispersion characteristic in the refractive lens has an opposite value in the diffractive lens, so that the chromatic aberration can be effectively corrected with the diffractive lens.
[0003]
Therefore, it is possible to perform chromatic aberration correction, which has been performed with a combination of two positive and negative refractive lenses, with a single lens by attaching a diffractive lens to the surface of the refractive lens. The diffractive lens has the above-mentioned useful features that the conventional refractive lens does not have, but has a problem because the diffraction efficiency of the diffraction grating depends on the wavelength. For example, since the generation of diffracted light other than the design order becomes significant at a wavelength other than the design wavelength, a ghost generated thereby causes image performance deterioration. This is a serious problem particularly in an optical system that uses white light with a wide operating wavelength range.
[0004]
A diffractive optical element aimed at solving this problem has been proposed in Japanese Patent Laid-Open No. 9-127321 and Steven M. Ebstein (1996.9.15 OPTICAL SOCIETY OF AMERICA). These diffractive optical elements have a configuration in which a relief pattern of a diffraction grating is formed on a boundary surface between different optical materials. By making use of the fact that the difference in refractive index between the two materials depends on the wavelength, it is possible to increase the diffraction efficiency in a wide wavelength region by preventing a change in phase difference due to the wavelength.
[0005]
[Problems to be solved by the invention]
However, realization of such a diffraction grating has the following restrictions.
{Circle around (1)} In order to increase the diffraction efficiency, the combination of materials needs to be a combination of a material having a relatively high refractive index and a small dispersion and a material having a low refractive index and a large dispersion.
{Circle over (2)} The blaze apex angle needs to be increased as much as possible. When the blazed shape of the diffraction grating is produced by molding, the material is more easily filled up to the tip of the blaze apex angle as the blaze apex angle determined by the diffraction grating height and the diffraction grating interval is larger. Therefore, the larger the blaze apex angle, the better the blazed shape transferability. According to the prototype test, the transferability was good when the blaze apex angle was about 70 °.
[0006]
The restriction (2) will be described in more detail based on FIG. 11 showing the blazed shape. In FIG. 11, Θ is the blaze apex angle, h0 is the diffraction grating height, and d is the diffraction grating spacing. When the refractive indexes of the optical material on the incident side and the exit side at the design wavelength λ0 are n0 and n′0, respectively, the diffraction grating height h0 is expressed by the formula: h0 = λ0 / (n0−n′0).
[0007]
The diffraction grating interval (d) represents the strength of the diffraction action. The smaller the diffraction grating distance (d), the stronger the diffraction action. When considering a diffractive lens, a small diffraction grating interval (d) means a strong power due to diffractive action. Therefore, when correcting the chromatic aberration of a lens made of a glass type having a large dispersion or a lens having a large power with a diffraction lens, it is necessary to increase the power due to the diffraction action. Further, in the diffractive lens, it is necessary to strengthen the diffractive action as it goes to the periphery of the lens. Therefore, the larger the effective diameter of the lens, the smaller the diffraction grating interval (d) at the lens peripheral part.
[0008]
In addition, as the blaze apex angle (Θ) increases, the material is more easily filled up to the tip of the blaze apex angle, so that the transferability of the blaze shape is improved. As the diffraction grating height (h0) is lower and the diffraction grating interval (d) is larger, the blaze apex angle (Θ) can be increased. However, due to the above-mentioned restriction (1), the realizable diffraction grating height (h0) becomes as high as about 6 to 17 μm. Therefore, when chromatic aberration correction is performed using only a diffractive lens, the diffraction grating interval (d) becomes small and the blaze apex angle (Θ) also becomes small due to the need to increase the power due to diffraction. As a result, the blazed shape transferability deteriorates.
[0009]
Next, chromatic aberration correction using a diffractive lens will be considered. In general, chromatic aberration correction is performed by matching the imaging position of the F-line wavelength with the imaging position of the C-line wavelength. However, in this case, the F-line wavelength imaging position and the d-line wavelength imaging position, and the d-line wavelength imaging position and the C-line wavelength imaging position are misaligned. . This is called a secondary color spectrum. When chromatic aberration is corrected by a diffractive lens, the secondary color spectrum tends to be larger than when chromatic aberration is corrected by a positive / negative two-lens configuration using a refractive lens. Therefore, considering the secondary color spectrum together, it can be said that it is desirable to use a combination of chromatic aberration correction using a diffractive lens and chromatic aberration correction using a positive / negative two-lens configuration using a refractive lens.
[0010]
The present invention has been made in view of such a situation, and provides a lens optical system that effectively corrects chromatic aberration by effectively using a diffractive lens that increases diffraction efficiency in a wide wavelength range. Objective.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a lens optical system according to a first aspect of the present invention is a lens optical system having a cemented lens made of two different optical materials and having positive and negative powers due to refraction. The cemented lens has a diffraction grating composed of a relief pattern on the contact surface of the two lenses, and the radius of curvature of the lens surface in contact with the air of the two lenses is the contact surface. Unlike radius of curvature, wherein the cemented lens is characterized that you satisfy the following condition.
0.1 ( φ p / ν d) / ( φ DOE / ν DOE) 35
However,
φ p : Of two positive and negative lenses in close contact, the power due to refraction is the power due to refraction of the lens with the opposite sign to the power due to diffraction ( where φ p is the power due to diffraction) included not.),
ν d : Abbe number of the optical material constituting the lens having a sign opposite to the power due to the diffractive power among the two positive and negative lenses in close contact with each other,
φ DOE : Power due to diffraction generated by the relief pattern on the contact surface,
ν DOE : Abbe number equivalent value due to diffraction action generated in the relief pattern of the contact surface,
It is.
[0012]
A lens optical system according to a second aspect of the present invention is a lens optical system that includes a cemented lens made of two different lenses that are made of different optical materials and have positive and negative power due to refraction. A diffraction grating composed of a relief pattern on the contact surfaces of the two lenses, and the curvature radius of the lens surface in contact with air of the two lenses is different from the curvature radius of the contact surfaces, The cemented lens satisfies the following conditional expression.
0.04 tp / tg 5
However,
tp : the distance between the upper surfaces of the lenses of the positive and negative lenses in close contact with each other, the power of the refraction is opposite to the power of the refraction.
tg : The distance between the upper surfaces of the axes of the two positive and negative lenses in close contact with each other whose power by refraction is the same as the power by diffraction.
It is.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
A lens optical system embodying the present invention will be described below with reference to the drawings. 1 to 4 are lens configuration diagrams respectively corresponding to the lens optical systems of the first to fourth embodiments. The first to third embodiments are zoom lenses, the fourth embodiment is a single focus lens, and the first to third embodiments (FIGS. 1 to 3) are at the wide-angle end [W]. , Middle (intermediate focal length state) [M] and telephoto end [T] lens arrangement.
[0015]
Arrows mj (j = 1, 2, 3) in each lens configuration diagram schematically indicate movement of the j-th group (Gri) during zooming, and di (i = 1, 2, 3,... The shaft upper surface interval marked with.) Indicates a variable interval that changes during zooming among the i-th shaft upper surface intervals counted from the object side. In each lens configuration diagram, the surface with ri (i = 1,2,3, ...) is the i-th surface counted from the object side (however, the final surface is the image surface (I)). The surface marked with * in ri is an aspherical surface, and the surface marked with # in ri is a diffraction surface on which a relief pattern of the diffraction grating is formed. For a cemented lens having a diffraction grating, "DOE" is attached to the diffractive lens constituting the cemented lens, and "p" is attached to a refractive lens having a power opposite to that of the diffractive lens. A refraction lens having the power of the symbol is indicated by “g”.
[0016]
The first embodiment (FIG. 1) includes a first group (Gr1) composed of a lens (L1) and a cemented lens (L2), and a second group (Gr2) composed of a lens (L3) and a cemented lens (L4). And a third group (Gr3) composed of a diaphragm (S), a cemented lens (L5) and a lens (L6), and a low-pass filter (LPF). In the second embodiment (FIG. 2), a first group (Gr1) composed of a cemented lens (L1), a second group (Gr2) composed of a lens (L2) and a cemented lens (L3), and an aperture (S ) And two lenses (L4, L5), and a third group (Gr3) and a low-pass filter (LPF). In the third embodiment (FIG. 3), a first group (Gr1) composed of a lens (L1) and a cemented lens (L2), and a second group (Gr2) composed of a diaphragm (S) and a cemented lens (L3). And a low-pass filter (LPF). The fourth embodiment (FIG. 3) includes a diaphragm (S), a lens (L1), a cemented lens (L2), and a low-pass filter (LPF).
[0017]
As described above, the first to fourth embodiments are lens optical systems having a cemented lens composed of two lenses made of different optical materials, and the cemented lens is in close contact with the two lenses. A diffraction grating composed of a relief pattern is provided on the surface (that is, the boundary surface). The curvature radii of the lens surfaces in contact with air of the two lenses are different from the curvature radii of the contact surfaces. As described above, since a diffractive lens that increases the diffraction efficiency in a wide wavelength region is effectively used, chromatic aberration can be corrected well.
[0018]
As in the first to fourth embodiments, in a lens optical system comprising a cemented lens made of two different optical materials made of different optical materials and having positive and negative power due to refraction, two lenses are used. It is desirable to have a diffraction grating composed of a relief pattern on the close contact surface of the lens, and that the cemented lens satisfies the following conditional expression (1).
0.1 ≦ (φp / νd) / (φDOE / νDOE) ≦ 35 (1)
However,
φp: Among the two positive and negative lenses in close contact, the power due to the refraction of the lens with the opposite sign of the power due to the refraction is the power due to the refraction of the lens (however, φp does not include the power due to the diffraction .),
νd: Abbe number of the optical material constituting the lens having a sign opposite to the power due to the diffractive power among the two positive and negative lenses in close contact with each other,
φDOE: Power due to diffraction effect generated by the relief pattern on the contact surface,
νDOE: Abbe number equivalent value due to diffraction effect generated in the relief pattern of the contact surface,
It is.
[0019]
By using a combination of chromatic aberration correction using a diffractive lens and chromatic aberration correction using a positive / negative two-lens configuration so as to satisfy conditional expression (1), the following (A) and (B) Can be achieved.
(A): Since the diffraction effect can be weakened, the diffraction grating interval (d) is increased, and the blaze apex angle (Θ) of the diffraction grating can be made 70 ° or more.
(B): Chromatic aberration and secondary color spectrum can be improved.
[0020]
When the lower limit of conditional expression (1) is exceeded, the degree of chromatic aberration correction by the diffraction lens becomes strong, and the blaze apex angle of the diffraction grating is less than 70 °. Or, problems such as an increase in the secondary color spectrum occur. If the upper limit of conditional expression (1) is exceeded, the degree to which chromatic aberration caused by the power of one refractive lens of the cemented lens is corrected by chromatic aberration generated by the opposite power of the other refractive lens of the cemented lens becomes strong. , The power uneven distribution of both refractive lenses increases. Therefore, since the surface curvature radius of each lens becomes small, the amount of aberration generated there increases. As a result, in order to correct the generated aberration, it is necessary to increase the number of lenses, which is inappropriate in terms of the cost and size of the optical system.
[0021]
As in the first to fourth embodiments, in a lens optical system comprising a cemented lens made of two different optical materials made of different optical materials and having positive and negative power due to refraction, two lenses are used. It is desirable to have a diffraction grating composed of a relief pattern on the close contact surface of the lens, and that the cemented lens satisfies the following conditional expression (2).
0.04 ≦ tp / tg ≦ 5 (2)
However,
tp: between two positive and negative lenses in close contact, the distance between the upper surfaces of the axes of the lens whose power due to refraction is opposite to the power due to diffraction,
tg: The distance between the upper surfaces of the lenses of the positive and negative lenses in close contact with each other, the power of the refraction action having the same sign as the power of the diffraction action,
It is.
[0022]
By using a combination of chromatic aberration correction by a diffractive lens and chromatic aberration correction by a positive / negative two-lens configuration using a refractive lens so as to satisfy the conditional expression (2), the above (A) and (B) Possible lens optics can be achieved.
[0023]
The lower limit of conditional expression (2) is determined when the lens with the axial distance (tp) has negative power.If the lower limit of conditional expression (2) is not reached, the lens power is obtained. The surface curvature radius is reduced. This increases the amount of aberration generated on the surface, which is inappropriate. Therefore, when the lower limit of conditional expression (2) is exceeded, it is necessary to increase the number of lenses in order to correct the resulting aberration, which is inappropriate in terms of the cost and size of the optical system.
[0024]
The upper limit of conditional expression (2) is determined when the lens with the axial distance (tp) has a positive power.If the upper limit of conditional expression (2) is exceeded, the lens power is obtained. The surface curvature radius is reduced. This increases the amount of aberration generated on the surface, which is inappropriate. Therefore, when the upper limit of conditional expression (2) is exceeded, it is necessary to increase the number of lenses in order to correct the resulting aberration, which is inappropriate in terms of the cost and size of the optical system.
[0025]
【Example】
Hereinafter, the configuration of the lens optical system embodying the present invention will be described more specifically with reference to construction data, aberration diagrams, and the like. Examples 1 to 4 listed below correspond to the first to fourth embodiments described above, respectively, and are lens configuration diagrams showing the first to fourth embodiments (FIGS. 1 to 4). ) Shows the lens configurations of the corresponding Examples 1 to 4, respectively. A comparative example corresponding to Example 1 and the like is also shown together with FIG.
[0026]
In the construction data of each embodiment, ri (i = 1,2,3, ...) is the radius of curvature of the i-th surface counted from the object side, and di (i = 1,2,3, ...) Indicates the i-th axis upper surface interval counted from the object side, and Ni (i = 1,2,3, ...) and νi (i = 1,2,3, ...) are from the object side. The refractive index (Nd) and Abbe number (νd) for the d-line of the i-th optical element are shown. In the construction data, the distance between the upper surface of the shaft (variable distance) that changes during zooming is as follows: wide-angle end (short focal length end) [W] to middle (intermediate focal length state) [M] to telephoto end (long focal length end). On-axis air spacing between groups at [T]. The focal length f, the half angle of view ω, and the F number FNO of the entire system corresponding to each focal length state [W], [M], [T] are also shown.
[0027]
The surface marked with * in the curvature radius ri indicates that the surface is composed of an aspheric surface, and is defined by the following expression (AS) representing the surface shape of the aspheric surface. In addition, the surface with the # mark on the radius of curvature ri indicates a diffractive surface composed of the relief pattern of the diffraction grating, and is defined by the following formula (DS) that represents the phase shape of the pitch of the diffractive surface. Shall be. The aspheric surface data of each aspheric surface and the diffraction surface data of each diffraction surface are shown together with other data.
[0028]
Z (H) = (C0 ・ H 2 ) / {1 + √ (1-C0 2・ H 2 )} + (A4 ・ H 4 + A6 ・ H 6 + A8 ・ H 8 + A10 ・ H 10 )… ( AS)
However, in the formula (AS)
Z (H): Amount of displacement in the optical axis direction at the position of height H (based on the surface vertex),
H: height in the direction perpendicular to the optical axis,
C0: Paraxial curvature,
Ai: i-th order aspheric coefficient,
It is.
[0029]
φ (H) = (2π / λ0) ・ (C1 ・ H 2 + C2 ・ H 4 )… (DS)
However, in the formula (DS)
φ (H): phase function,
H: height in the direction perpendicular to the optical axis,
Ci: 2i order phase coefficient,
λ0: design wavelength,
It is.
[0030]
Figure 0003858443
Figure 0003858443
[0031]
[Aspherical data of the first surface (r1)]
A4 = 2.93 × 10 -6
A6 = 1.3532 × 10 -7
A8 = -3.1 × 10 -9
[0032]
[Aspherical data of 3rd surface (r3)]
A4 = -1.3 × 10 -5
A6 = -5.051 × 10 -7
A8 = 5.5 × 10 -9
A10 = 9.26 × 10 -13
[0033]
[Aspherical data of 4th surface (r4)]
A4 = -2.4 × 10 -5
A6 = 1.3231 × 10 -7
A8 = 6.85 × 10 -9
A10 = -2.4 × 10 -11
[0034]
[Aspherical data of 5th surface (r5)]
A4 = 6.22 × 10 -6
A6 = -3.554 × 10 -7
A8 = 2.02 × 10 -9
A10 = -6.2 × 10 -12
[0035]
[Aspherical data of 6th surface (r6)]
A4 = 0.000941
A6 = -0.0001001
A8 = 3.49 × 10 -6
A10 = -4.5 × 10 -8
[0036]
[Aspherical data of 7th surface (r7)]
A4 = 0.001073
A6 = -0.0001082
A8 = 9.64 × 10 -7
A10 = -9.9 × 10 -8
[0037]
[Aspherical data of 8th surface (r8)]
A4 = -0.00046
A6 = 5.1001 × 10 -5
A8 = -3.9 × 10 -6
A10 = -1.4 × 10 -8
[0038]
[Aspherical data of 9th surface (r9)]
A4 = -0.00147
A6 = 1.3879 × 10 -5
A8 = 1.99 × 10 -6
A10 = -7.5 × 10 -9
[0039]
[Aspherical data of 10th surface (r10)]
A4 = -0.00094
A6 = 3.4959 × 10 -5
A8 = -3 × 10 -6
[0040]
[Aspherical data of 12th surface (r12)]
A4 = -0.00018
A6 = -6.571 × 10 -6
A8 = 1.16 × 10 -7
A10 = 1.25 × 10 -8
[0041]
[Aspherical data of 13th surface (r13)]
A4 = 0.000544
A6 = 1.7189 × 10 -5
A8 = -9.4 × 10 -7
A10 = -1.3 × 10 -8
[0042]
[Aspherical data of 14th surface (r14)]
A4 = 0.000763
A6 = -4.062 × 10 -5
A8 = -9.6 × 10 -7
A10 = 3.36 × 10 -8
[0043]
[Aspherical data of 15th surface (r15)]
A4 = 0.000348
A6 = -7.975 × 10 -6
A8 = -3.3 × 10 -6
[0044]
[Aspherical data of 16th surface (r16)]
A4 = 0.001374
A6 = 6.2198 × 10 -5
A8 = 1.73 × 10 -6
[0045]
[Diffraction surface data of 4th surface (r4)]
C1 = -0.00046
C2 = 8.4405 × 10 -7
[0046]
[Diffraction surface data of 9th surface (r9)]
C1 = 0.002731
C2 = -8.219 × 10 -5
[0047]
[Diffraction surface data of 13th surface (r13)]
C1 = -0.00169
C2 = 5.6339 × 10 -5
[0048]
Figure 0003858443
Figure 0003858443
[0049]
[Aspherical data of the first surface (r1)]
A4 = -1 × 10 -5
A6 = 8.7235 × 10 -7
A8 = -1.5 × 10 -8
A10 = 1.67 × 10 -10
[0050]
[Aspherical data of 2nd surface (r2)]
A4 = 6.28 × 10 -5
A6 = -1.108 × 10 -5
A8 = 2.48 × 10 -7
A10 = -2.4 × 10 -9
[0051]
[Aspherical data of 3rd surface (r3)]
A4 = 3.15 × 10 -5
A6 = 9.6774 × 10 -7
A8 = -1.9 × 10 -8
A10 = 2.77 × 10 -10
[0052]
[Aspherical data of 4th surface (r4)]
A4 = 0.000384
A6 = 3.3912 × 10 -5
A8 = -1.5 × 10 -6
A10 = 1.75 × 10 -8
[0053]
[Aspherical data of 5th surface (r5)]
A4 = -0.002
A6 = 2.0385 × 10 -5
A8 = 6.47 × 10 -6
A10 = -2.2 × 10 -7
[0054]
[Aspherical data of 6th surface (r6)]
A4 = -0.00436
A6 = 1.3465 × 10 -6
A8 = 7.78 × 10 -6
A10 = -3.2 × 10 -7
[0055]
[Aspherical data of 7th surface (r7)]
A4 = -0.00806
A6 = 0.00028396
A8 = 2.44 × 10 -5
A10 = -1.1 × 10 -6
[0056]
[Aspherical data of 8th surface (r8)]
A4 = -0.00495
A6 = 0.00018033
A8 = -4.5 × 10 -6
[0057]
[Aspherical data of 9th surface (r9)]
A4 = -0.00088
A6 = -2.088 × 10 -5
A8 = -6.1 × 10 -6
A10 = 1.06 × 10 -8
[0058]
[Aspherical data of 11th surface (r11)]
A4 = 0.000763
A6 = -4.062 × 10 -5
A8 = -9.6 × 10 -7
A10 = 3.36 × 10 -8
[0059]
[Aspherical data of 12th surface (r12)]
A4 = 0.000675
A6 = 9.9201 × 10 -6
A8 = 2.94 × 10 -6
[0060]
[Aspherical data of 13th surface (r13)]
A4 = 0.001621
A6 = 9.5672 × 10 -5
A8 = 2.95 × 10 -6
[0061]
[Diffraction surface data of the second surface (r2)]
C1 = -0.00019
C2 = -7.154 × 10 -7
[0062]
[Diffraction surface data of 7th surface (r7)]
C1 = 0.000379
C2 = 5.4451 × 10 -5
[0063]
Figure 0003858443
[0064]
[Aspherical data of the first surface (r1)]
A4 = 0.009071
A6 = -0.0001235
A8 = -4.4 × 10 -6
[0065]
[Aspherical data of 2nd surface (r2)]
A4 = 0.012871
A6 = 0.00211106
A8 = 9.85 × 10 -5
[0066]
[Aspherical data of 3rd surface (r3)]
A4 = -0.00584
A6 = 0.00141341
A8 = -0.00014
[0067]
[Aspherical data of 4th surface (r4)]
A4 = 0.036276
A6 = -0.015181
A8 = 0.002011
[0068]
[Aspherical data of 5th surface (r5)]
A4 = -0.01326
A6 = 0.0018055
A8 = -0.00037
[0069]
[Aspherical data of 7th surface (r7)]
A4 = -0.00695
A6 = -0.0008778
A8 = 0.000301
A10 = -0.00013
[0070]
[Aspherical data of 8th surface (r8)]
A4 = -0.01369
A6 = 0.0051316
A8 = -0.00021
[0071]
[Aspherical data of 9th surface (r9)]
A4 = 0.000919
A6 = -0.0003216
A8 = 3.39 × 10 -5
[0072]
[Diffraction surface data of 4th surface (r4)]
C1 = 0.003039
C2 = -0.0007736
[0073]
[Diffraction surface data of 8th surface (r8)]
C1 = -0.00146
C2 = 0.00030703
[0074]
Figure 0003858443
[0075]
[Aspherical data of 3rd surface (r3)]
A4 = 0.006759
A6 = 0.00076404
A8 = 7.49 × 10 -5
[0076]
[Aspherical data of 4th surface (r4)]
A4 = 0.005799
A6 = -0.0001718
A8 = -1.8 × 10 -5
[0077]
[Aspherical data of 6th surface (r6)]
A4 = 0.002042
A6 = 1.6469 × 10 -6
A8 = 2.4 × 10 -6
[0078]
[Diffraction surface data of 5th surface (r5)]
C1 = -0.00151
C2 = 6.3854 × 10 -5
[0079]
Figure 0003858443
Figure 0003858443
[0080]
[Aspherical data of the first surface (r1)]
A4 = -5.5 × 10 -6
A6 = 2.1002 × 10 -7
A8 = -2.7 × 10 -9
[0081]
[Aspherical data of 3rd surface (r3)]
A4 = -7.4 × 10 -6
A6 = -6.535 × 10 -7
A8 = 5.81 × 10 -9
A10 = -1.2 × 10 -11
[0082]
[Aspherical data of 4th surface (r4)]
A4 = -2.9 × 10 -6
A6 = -3.052 × 10 -7
A8 = 2.75 × 10 -9
A10 = -1.3 × 10 -11
[0083]
[Aspherical data of 5th surface (r5)]
A4 = -2.9 × 10 -6
A6 = -3.052 × 10 -7
A8 = 2.75 × 10 -9
A10 = -1.3 × 10 -11
[0084]
[Aspherical data of 6th surface (r6)]
A4 = 0.001166
A6 = -0.0001044
A8 = 3.19 × 10 -6
A10 = -3.6 × 10 -8
[0085]
[Aspherical data of 7th surface (r7)]
A4 = 0.00122
A6 = -0.0001005
A8 = 1.02 × 10 -6
A10 = -1.5 × 10 -7
[0086]
[Aspherical data of 8th surface (r8)]
A4 = -0.00184
A6 = 9.1967 × 10 -5
A8 = -2.4 × 10 -6
A10 = -7.5 × 10 -8
[0087]
[Aspherical data of 9th surface (r9)]
A4 = -0.00184
A6 = 9.1967 × 10 -5
A8 = -2.4 × 10 -6
A10 = -7.5 × 10 -8
[0088]
[Aspherical data of 10th surface (r10)]
A4 = -0.00193
A6 = 7.4375 × 10 -5
A8 = -3.6 × 10 -6
[0089]
[Aspherical data of 12th surface (r12)]
A4 = -6 × 10 -5
A6 = -8.051 × 10 -6
A8 = 1.92 × 10 -7
A10 = 1.27 × 10 -8
[0090]
[Aspherical data of 13th surface (r13)]
A4 = 0.000484
A6 = -4.434 × 10 -5
A8 = -1.8 × 10 -6
A10 = 6.09 × 10 -8
[0091]
[Aspherical data of 14th surface (r14)]
A4 = 0.000484
A6 = -4.434 × 10 -5
A8 = -1.8 × 10 -6
A10 = 6.09 × 10 -8
[0092]
[Aspherical data of 15th surface (r15)]
A4 = 0.000242
A6 = -2.076 × 10 -5
A8 = -3.3 × 10 -6
[0093]
[Aspherical data of 16th surface (r16)]
A4 = 0.001559
A6 = 5.5353 × 10 -5
A8 = 2.83 × 10 -6
[0094]
[Diffraction surface data of 4th surface (r4)]
C1 = -0.0009
C2 = 1.8993 × 10 -6
[0095]
[Diffraction surface data of 9th surface (r9)]
C1 = 0.005716
C2 = -2.475 × 10 -5
[0096]
[Diffraction surface data of 13th surface (r13)]
C1 = -0.00269
C2 = 5.7229 × 10 -5
[0097]
6 is an aberration diagram of Example 1, FIG. 7 is an aberration diagram of Example 2, FIG. 8 is an aberration diagram of Example 3, FIG. 9 is an aberration diagram of Example 4, and FIG. 10 is an aberration diagram of Comparative Example. . The aberration diagrams of Examples 1 to 3 and the comparative example show various aberrations at the wide-angle end [W], middle (intermediate focal length state) [M], and telephoto end [T], respectively. The aberration diagrams in the respective focal length states represent (A) spherical aberration, (B) astigmatism, and (C) distortion in order from the left, and the broken line is for the C line (wavelength: λC = 656.3 nm). The aberration and the solid line represent the aberration with respect to the d-line (wavelength: λd = 587.6 nm), and the alternate long and short dash line represents the aberration with respect to the g-line (wavelength: λg = 435.8 nm). The vertical axis of spherical aberration {horizontal axis: deviation in the optical axis direction from the paraxial image plane (mm)} is the value obtained by normalizing the incident height (H) by its maximum height (H0) (ie, the entrance pupil) Relative height across the plane) H / H0, astigmatism {horizontal axis: deviation in the optical axis direction from the paraxial image plane (mm)} and distortion aberration {horizontal axis (%)} The axis represents the image height Y ′ (mm). A solid line X represents astigmatism on the sagittal surface, and a solid line Y represents astigmatism on the meridional surface.
[0098]
Table 1 shows the diffraction grating height (h0) and the minimum grating distance (dmin) of the diffraction grating used in each example, together with the blaze apex angle (Θ) at the minimum grating distance (dmin). In Examples 1 to 4, the diffractive action is reduced by combining chromatic aberration correction by a diffractive lens and chromatic aberration correction by a refractive lens having a power opposite to that of the diffractive action. For this reason, the minimum lattice spacing (dmin) is relatively large, and the blaze apex angle (Θ) is also large. On the other hand, in the comparative example, since the ratio of chromatic aberration correction by the diffractive lens is large, the minimum grating interval (dmin) of the diffraction grating is relatively small due to the necessity of increasing the diffraction effect, and the blaze apex angle (Θ) is also small.
[0099]
[Table 1]
Figure 0003858443
[0100]
Table 2 shows the degree of chromatic aberration correction by the diffractive lens and the degree of chromatic aberration correction by the refracting lens having a power opposite to that of the diffractive action. The larger the ratio of the refractive lens (φp / νd) to the diffractive lens (φDOE / νDOE) {that is, the corresponding value of the conditional expression (1)}, the greater the degree of chromatic aberration correction by the refractive lens. It can be seen that the degree of chromatic aberration correction of the refractive lens is greater than that of the comparative example. Therefore, comparing both spherical aberrations, it can be seen that the spherical aberration amount of the g-line (436 nm) or the C-line (656 nm) is smaller in Example 1 (that is, the secondary color spectrum is smaller).
[0101]
[Table 2]
Figure 0003858443
[0102]
Table 3 shows the ratio of the distance between the axial upper surfaces of the refractive lenses having the power opposite to that of the diffractive lenses and the distance between the axial upper surfaces of the refractive lenses having the same power as that of the diffractive lenses. Show. If this ratio {ie, the corresponding value of conditional expression (2)} is appropriate, the balance between the degree of chromatic aberration correction by the diffractive lens and the degree of chromatic aberration correction of the refractive lens having a power opposite to that of the diffractive action is balanced. This is favorable in terms of aberrations other than the secondary color spectrum and chromatic aberration. Comparing Example 2 and the comparative example, it can be seen that the aberration performance of the two is almost the same, but the number of lenses constituting Example 2 is reduced compared to the comparative example.
[0103]
[Table 3]
Figure 0003858443
[0104]
【The invention's effect】
As described above, according to the first or second invention, it is possible to realize a lens optical system that favorably corrects chromatic aberration by effectively using a diffractive lens that increases diffraction efficiency in a wide wavelength range. Further, according to the first or second invention, it is possible to realize a lens optical system having good chromatic aberration and secondary color spectrum by using an easily manufactured diffractive lens.
[Brief description of the drawings]
FIG. 1 is a lens configuration diagram of a first embodiment (Example 1).
FIG. 2 is a lens configuration diagram of a second embodiment (Example 2).
FIG. 3 is a lens configuration diagram of a third mode for embodying the present invention (embodiment 3);
FIG. 4 is a lens configuration diagram of a fourth embodiment (Example 4).
FIG. 5 is a lens configuration diagram of a comparative example.
6 is an aberration diagram of Example 1. FIG.
FIG. 7 is an aberration diagram of Example 2.
FIG. 8 is an aberration diagram of Example 3.
FIG. 9 is an aberration diagram of Example 4.
FIG. 10 is an aberration diagram of a comparative example.
FIG. 11 is a diagram for explaining a blaze shape.
[Explanation of symbols]
Gr1 ... 1st group
Gr2 ... 2nd group
Gr3 ... 3rd group
LPF: Low pass filter

Claims (2)

互いに異なる光学材料から成るとともに屈折作用によるパワーが正と負の2枚のレンズで構成された接合レンズを有するレンズ光学系であって、
前記接合レンズが、前記2枚のレンズの密着面にレリーフパターンで構成された回折格子を有し、前記2枚のレンズの空気と接するレンズ面の曲率半径が、いずれも前記密着面の曲率半径とは異なり、前記接合レンズが以下の条件式を満足することを特徴とすレンズ光学系;
0.1≦(φp/νd)/(φDOE/νDOE)≦35
ただし、
φp:密着している正と負の2枚のレンズのうち、屈折作用によるパワーが回折作用によるパワーとは逆の符号のレンズの屈折作用によるパワー(ただし、φpは回折作用によるパワーを含まない。)、
νd:密着している正と負の2枚のレンズのうち、屈折作用によるパワーが回折作用によるパワーとは逆の符号のレンズを構成している光学材料のアッベ数、
φDOE:密着面のレリーフパターンで発生する回折作用によるパワー、
νDOE:密着面のレリーフパターンで発生する回折作用によるアッベ数相当値、
である。
A lens optical system having a cemented lens made of two different lenses that are made of different optical materials and have positive and negative power due to refraction,
The cemented lens has a diffraction grating composed of a relief pattern on the contact surfaces of the two lenses, and the curvature radii of the lens surfaces in contact with air of the two lenses are both the curvature radii of the contact surfaces. Unlike lens optical system the cemented lens you and satisfies the following condition;
0.1 ≦ (φp / νd) / (φDOE / νDOE) ≦ 35
However,
φp: Among the two positive and negative lenses in close contact, the power due to the refraction of the lens with the opposite sign of the power due to the refraction is the power due to the refraction of the lens (however, φp does not include the power due to the diffraction .),
νd: Abbe number of the optical material constituting the lens having a sign opposite to the power due to the diffractive power among the two positive and negative lenses in close contact with each other,
φDOE: Power due to diffraction effect generated by the relief pattern on the contact surface,
νDOE: Abbe number equivalent value due to diffraction effect generated in the relief pattern of the contact surface,
It is.
互いに異なる光学材料から成るとともに屈折作用によるパワーが正と負の2枚のレンズで構成された接合レンズを有するレンズ光学系であって、
前記接合レンズが、前記2枚のレンズの密着面にレリーフパターンで構成された回折格子を有し、前記2枚のレンズの空気と接するレンズ面の曲率半径が、いずれも前記密着面の曲率半径とは異なり、前記接合レンズが以下の条件式を満足することを特徴とすレンズ光学系;
0.04≦tp/tg≦5
ただし、
tp:密着している正と負の2枚のレンズのうち、屈折作用によるパワーが回折作用によるパワーと逆の符号のレンズの軸上面間隔、
tg:密着している正と負の2枚のレンズのうち、屈折作用によるパワーが回折作用によるパワーと同じ符号のレンズの軸上面間隔、
である。
A lens optical system having a cemented lens made of two different lenses that are made of different optical materials and have positive and negative power due to refraction,
The cemented lens has a diffraction grating composed of a relief pattern on the contact surfaces of the two lenses, and the curvature radii of the lens surfaces in contact with air of the two lenses are both the curvature radii of the contact surfaces. Unlike lens optical system the cemented lens you and satisfies the following condition;
0.04 ≦ tp / tg ≦ 5
However,
tp: between two positive and negative lenses in close contact, the distance between the upper surfaces of the axes of the lens whose power due to refraction is opposite to the power due to diffraction,
tg: The distance between the upper surfaces of the lenses of the positive and negative lenses in close contact with each other, the power of the refraction action having the same sign as the power of the diffraction action,
It is.
JP11061298A 1998-04-21 1998-04-21 Lens optical system Expired - Fee Related JP3858443B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11061298A JP3858443B2 (en) 1998-04-21 1998-04-21 Lens optical system
US09/451,080 US7295387B1 (en) 1998-04-21 1999-11-30 Lens optical system
US10/096,370 US6704149B2 (en) 1998-04-21 2002-03-13 Lens optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11061298A JP3858443B2 (en) 1998-04-21 1998-04-21 Lens optical system

Publications (2)

Publication Number Publication Date
JPH11305126A JPH11305126A (en) 1999-11-05
JP3858443B2 true JP3858443B2 (en) 2006-12-13

Family

ID=14540247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11061298A Expired - Fee Related JP3858443B2 (en) 1998-04-21 1998-04-21 Lens optical system

Country Status (1)

Country Link
JP (1) JP3858443B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3376351B2 (en) * 1999-11-29 2003-02-10 キヤノン株式会社 Optical system and document reading device
JP3467018B2 (en) * 2000-03-08 2003-11-17 キヤノン株式会社 Optical system and optical equipment
US6473232B2 (en) 2000-03-08 2002-10-29 Canon Kabushiki Kaisha Optical system having a diffractive optical element, and optical apparatus
JP4641339B2 (en) * 2000-09-01 2011-03-02 キヤノン株式会社 Optical system and optical instrument using the same
US6763186B2 (en) 2002-01-25 2004-07-13 Canon Kabushiki Kaisha Zoom lens, and camera incorporating such zoom lens
JP4513049B2 (en) 2003-09-29 2010-07-28 株式会社ニコン Zoom lens
JP4496009B2 (en) * 2004-05-17 2010-07-07 株式会社リコー Information device having zoom lens and photographing function
JP4764051B2 (en) 2005-04-01 2011-08-31 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5185799B2 (en) * 2008-12-19 2013-04-17 オリンパスイメージング株式会社 Zoom lens and image pickup apparatus including the same
WO2013161197A1 (en) * 2012-04-24 2013-10-31 株式会社ニコン Zoom lens and optical equipment having same
JP5341247B2 (en) * 2012-12-17 2013-11-13 オリンパスイメージング株式会社 Zoom lens and image pickup apparatus including the same

Also Published As

Publication number Publication date
JPH11305126A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
US5872658A (en) Zoom lens system
US6275342B1 (en) Zoom lens system
JP4756901B2 (en) Eyepiece lens and optical instrument using the same
JP3845967B2 (en) Zoom lens
JP4273556B2 (en) Lens optical system
JPH1164726A (en) Wide-angle lens
JPH11311743A (en) Zoom lens using diffraction optical element and image pickup device using the zoom lens
JPH1123968A (en) Zoom lens having diffraction surface
JP3832935B2 (en) Zoom lens
JP3858443B2 (en) Lens optical system
JP3843607B2 (en) Zoom lens
US6515809B2 (en) Fixed focal length lens system
JP3505980B2 (en) Imaging device
JP2004085979A (en) Projection optical system
JPH10282416A (en) Zoom lens
JP3709705B2 (en) Optical system including diffractive optical element
JPH1152244A (en) Small-sized zoom lens
JP2582446B2 (en) Wide-angle lens for film-integrated camera
WO2009044836A1 (en) Zoom eyepiece system
JPH112762A (en) Zoom lens
JPH116958A (en) Zoom lens
JPH10333038A (en) Zoom lens
JPH10333037A (en) Zoom lens
JPH06130298A (en) Compact zoom lens
JP2000275524A (en) Zoom lens

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050124

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees