JP3858343B2 - Control device for gas combustion equipment - Google Patents

Control device for gas combustion equipment Download PDF

Info

Publication number
JP3858343B2
JP3858343B2 JP13075697A JP13075697A JP3858343B2 JP 3858343 B2 JP3858343 B2 JP 3858343B2 JP 13075697 A JP13075697 A JP 13075697A JP 13075697 A JP13075697 A JP 13075697A JP 3858343 B2 JP3858343 B2 JP 3858343B2
Authority
JP
Japan
Prior art keywords
solenoid valve
transistor
signal
valve drive
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13075697A
Other languages
Japanese (ja)
Other versions
JPH10318531A (en
Inventor
孝治 村瀬
剛司 本田
逸夫 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP13075697A priority Critical patent/JP3858343B2/en
Publication of JPH10318531A publication Critical patent/JPH10318531A/en
Application granted granted Critical
Publication of JP3858343B2 publication Critical patent/JP3858343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Feeding And Controlling Fuel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガス燃焼機器において、ガス供給通路を閉止及び開放する電磁弁の制御装置に関するものである。
【0002】
【従来の技術】
近年、ガス燃焼機器においては、安全性の向上はもちろんのこと小型化、静音化などの要望がある。
【0003】
安全性においては、ガス通路部を開閉する電磁弁とその駆動回路の故障により直接ガス漏れに至るため、電磁弁への電力供給方法に工夫が凝らされ、従来から安全対策がなされてきた。
【0004】
以下にガスファンヒーターを事例にして、従来の電磁弁駆動の制御装置について説明する。
【0005】
図3は制御装置のブロック図を示すものである。図において、ガス通路1の途中にガスの供給及び停止を行う電磁弁2が設けてある。ガスは電磁弁2を介して燃焼部3に供給される。電磁弁2のコイルは、一方は電源供給トランジスタ4を介してDC24V電源に接続されもう一方は電磁弁駆動トランジスタ7を介して回路グランドに接続され、電磁弁駆動回路が形成されている。
【0006】
6はマイクロコンピューター(以下マイコンと言う)である。マイコン6のO1は、DC24V電源の供給を制御するパルス信号の出力端子であり、周波数/
電圧変換回路5とスイッチングトランジスタをT介して電源供給トランジスタ4のベースに接続される。
【0007】
また、マイコン6のO2は、電磁弁2の動作を制御する電磁弁駆動信号9の出力端子であり、電磁弁駆動トランジスタ7のベースに接続される。電磁弁駆動トランジスタ7のコレクタには、電磁弁駆動回路の動作状態を監視する故障検出トランジスタ8のベースが接続され、故障検出トランジスタ8のコレクタより故障検出信号10を取り出しマイコン6の入力端子iに接続し帰還させる。
【0008】
図4は電磁弁駆動信号9と故障検出信号10のタイミングチャート図を示すものである。電磁弁駆動信号9は、オン時間t1とオフ時間t2が等しい一定周期のパルス信号であり、本事例では周波数80Hz、オン時間t1=オフ時間t2=6.25mS(デューティー比50.0%)の信号を示す。故障検出信号10は、電源供給トランジスタ4と電磁弁2と電磁弁駆動トランジスタ7が電気的に正常に接続されている時の信号波形を示し、電磁弁駆動信号9と同一論理の信号が検出される。
【0009】
このような構成において、機器が停止から燃焼となる時は、まずマイコン6がO1よりパルス信号を出力し、周波数/電圧変換回路5を介して電源供給トランジスタ4をオン状態とし、DC24V電源を供給する。次にO2より電磁弁駆動信号9を出力し電磁弁2を開放状態とし燃焼部3にガスを供給する。
【0010】
ここで、電磁弁駆動信号9はパルス信号であるため、電磁弁駆動トランジスタ7はスイッチングを行い電磁弁2には断続的にしか電力供給されないが、100Hz前後の周波数であれば電磁弁2が持つ保持力により電磁弁2の弁体が離脱し閉止状態になることはなく、継続してガスを供給できる。
【0011】
また、マイコン6は電磁弁駆動信号9を出力すると同時に、故障検出信号10を監視しており、電磁弁駆動回路が正常なときは、t1、t2の各々のタイミングにおいて、O1から出力された信号論理とiに入力される信号論理は等しいことが期待されるため、マイコン6がそれを判定し、電磁弁駆動回路の状態を常時監視することができる。
【0012】
例えば、電磁弁駆動信号9のオン時間t1では、電磁弁駆動トランジスタ7がオープン故障(ガスは止まる故障)すると故障検出信号10はオフとなり逆論値となる。また、電磁弁駆動信号9のオフ時間t2では、電磁弁駆動トランジスタ7がショート故障(ガス漏れする故障)すると故障検出信号10はオンとなり逆論値となる。
【0013】
マイコン6が逆論理=故障と判定し、電磁弁2への電源供給を停止し、ガス供給通路を閉止する。電磁弁駆動信号9を常時オン(直流信号)として動作させた場合では後者のショート故障(ガス漏れする故障)の常時検出が不可能となり安全性が低下する。
【0014】
このように、電磁弁2への電力供給の制御にパルス信号を用いることで、電磁弁駆動回路のオープン、ショートの両モードの故障を常時検出することができ、安全性を高めてきた。
【0015】
【発明が解決しようとする課題】
しかしながら上記従来の構成では、故障検出を行うために電磁弁2をパルス駆動することで、電磁弁2への電力供給が時間的に1/2となり電力供給効率が悪くなっている。
【0016】
電磁弁2を直流信号で駆動した時に対して、電磁弁2に同一の電磁力を得るには、駆動電圧を2倍とするか、電磁弁コイルの巻数を2倍にする必要がある。しかし、駆動電圧を上げることはシステムの回路全体の消費電力ロスの増加につながり、コイル巻数を増やすことは電磁弁2の大型化につながる。
【0017】
また、電磁弁2が開放動作をする際、プランジャーと電磁弁ボディーとの衝突音が生じる。静音対策はプランジャーと電磁弁ボディーとの間に緩衝材を設けることで可能であるが、同じ電磁力では弁体が閉止する離脱電圧が高くなり、電磁力を増すためコイル巻数を増加する必要がある。すなわち、電磁弁2の静音化は電磁弁2の大型化を意味する。または、駆動回路において、駆動電圧の上昇や駆動信号の直流化などにより対策をする必要がある。等と言った課題がある。
【0018】
そこで本発明の目的は、従来と同じ安全性を確保し、且つ電磁弁の小型化や静音化を実現することにある。
【0019】
【課題を解決するための手段】
本発明は上記目的を達成するために、ガス通路の途中に接続され、燃焼部へ至るガスの供給及び停止を行う電磁弁と、この電磁弁におけるコイルの一方が電源供給トランジスタを介してDC電源に接続され、もう一方が電磁弁駆動トランジスタを介して回路グランドに接続された電磁弁駆動回路と、周波数/電圧変換回路とスイッチングトランジスタを介して前記電源供給トランジスタのベースに接続され、前記DC電源の供給を制御するパルス信号を出力する第1の出力端子および電磁弁駆動トランジスタのベースに接続されて、電磁弁の動作を制御する電磁弁駆動信号を出力する第2出力端子を有するマイクロコンピューターとを具備し、前記電磁弁駆動トランジスタのコレクタには、電磁弁駆動回路の動作状態を監視する故障検出トランジスタのベースを接続し、この故障検出トランジスタのコレクタより故障検出信号を取り出しマイクロコンピューターの入力端子に接続し帰還させるように構成し、且つ、前記電磁弁駆動信号は一定周期のパルス信号であって、そのオン時間をオフ時間よりも著しく大きく設定したものである。
【0020】
上記発明によれば、電磁弁をパルス信号で駆動し故障を検出するため、従来の構成と同じ安全性を実現できるとともに、パルス信号の電磁弁への電力供給時間の停止時間に対する比率が十分に大きいため、効率よく電磁力が得られ、コイル巻数を減少させ電磁弁を小型化することができる。また、緩衝材による静音化対策を従来のコイル巻数のまま実現することができる。
【0021】
【発明の実施の形態】
本発明は、ガス通路の途中に接続され、燃焼部へ至るガスの供給及び停止を行う電磁弁と、この電磁弁におけるコイルの一方が電源供給トランジスタを介してDC電源に接続され、もう一方が電磁弁駆動トランジスタを介して回路グランドに接続された電磁弁駆動回路と、周波数/電圧変換回路とスイッチングトランジスタを介して前記電源供給トランジスタのベースに接続され、前記DC電源の供給を制御するパルス信号を出力する第1の出力端子および電磁弁駆動トランジスタのベースに接続されて、電磁弁の動作を制御する電磁弁駆動信号を出力する第2出力端子を有するマイクロコンピューターとを具備し、前記電磁弁駆動トランジスタのコレクタには、電磁弁駆動回路の動作状態を監視する故障検出トランジスタのベースを接続し、この故障検出トランジスタのコレクタより故障検出信号を取り出しマイクロコンピューターの入力端子に接続し帰還させるように構成し、且つ、前記電磁弁駆動信号は一定周期のパルス信号であって、そのオン時間をオフ時間よりも著しく大きく設定したものである。
【0022】
そして、電磁弁をパルス信号で駆動し故障を検出するため、電磁弁の駆動回路オープン、ショートの故障を検出できるため従来通りの安全性を確保できる。且つ、パルス信号の電磁弁への電力供給時間の停止時間に対する比率が十分に大きいため、効率よく電磁力が得られ、コイル巻数を減少させ電磁弁を小型化することができる。また、電磁弁の静音化に際しても、電力供給効率で電磁力を補うことでコイルを大型化させること無く電磁弁の静音対策を実施することができる。
【0023】
以下、本発明の実施例について図1、図2を用いて説明する。
【0024】
(実施例1)
図1は本発明の制御装置のブロック図を示すものである。ガス通路11の途中にガスの供給及び停止を行う電磁弁12が設けてある。ガスは電磁弁12を介して燃焼部13に供給される。電磁弁12のコイルは、一方は電源供給トランジスタ14を介してDC24V電源に接続され、もう一方は電磁弁駆動トランジスタ17を介して回路グランドに接続され、電磁弁駆動回路が形成されている。
【0025】
16はマイクロコンピューター(以下マイコンと言う)である。マイコン16のO1は、DC24V電源の供給を制御するパルス信号の出力端子であり、周波数/電圧変換回路15とスイッチングトランジスタを介して電源供給トランジスタ14のベースに接続されている。
【0026】
また、マイコン16のO2は、電磁弁12の動作を制御する電磁弁駆動信号19の出力端子であり、電磁弁駆動トランジスタ17のベースに接続される。電磁弁駆動トランジスタ17のコレクタには、電磁弁駆動回路の動作状態を監視する故障検出トランジスタ18のベースが接続され、故障検出トランジスタ18のコレクタより故障検出信号20を取り出しマイコン16の入力端子iに接続し帰還させる。
【0027】
図2は電磁弁駆動信号19と故障検出信号20のタイミングチャートを示すものである。電磁弁駆動信号19は一定周期のパルス信号であり、オン時間t3とオフ時間t4が著しく異なり、オン時間t3>オフ時間t4の関係にある。
【0028】
本実施例では周波数80Hz、オン時間t3=12.4mS、オフ時間t4=0.1mS(デューティー比99.2%)の信号を示す。オン時間を十分に長くする理由は、電磁弁12への電力供給効率を向上させるためである。
【0029】
故障検出信号20は、電磁弁駆動信号19により電磁弁駆動トランジスタ17と故障検出トランジスタ18がスイッチンッグ動作した結果得られる信号である。
【0030】
本図では、電源供給トランジスタ14と電磁弁12と電磁弁駆動トランジスタ17が電気的に正常に接続されている時の信号波形を示し、電磁弁駆動信号と同一論理の信号が検出される。
【0031】
電磁弁駆動信号19のオフ時間t4は、短いほど電力供給効率は増すが、故障検出信号を形成するには、最低限二つのトランジスタ17、18のスイッチング時間を確保する必要がある。一般的にトランジスタのスイッチング時間は数十μSであり、ばらつき、安全率を考慮し0.1m(=100μ)Sとする。
【0032】
また、スイッチング動作の早いトランジスタを使うことにより、オフ時間t4は更に短縮でき、デューティー比を改善することができる。
【0033】
次に動作、作用について説明すると、機器が停止から燃焼となる時は、まずマイコン6がO1よりパルス信号を出力し、周波数/電圧変換回路15を介して電源供給トランジスタ14をオン状態とし、DC24V電源を供給する。
【0034】
次にO2より電磁弁駆動信号19を出力し電磁弁12を開放状態とし燃焼部3にガスを供給する。
【0035】
ここで、電磁弁駆動信号19は従来の駆動信号に対し、同一の周波数でデューディー比が99.2%に増加するため、電磁弁12への電力供給効率が十分に改善されている。
【0036】
パルス駆動ではあるが、余裕を持って電磁弁12を動作させ、問題なくガスを供給できる。
【0037】
また、オフ時間t4が十分に短いため同一の保持力でも、電磁弁12の弁体の開放状態からの離脱電圧に関しても改善される。
【0038】
従来構成と同じ電磁弁12を使用するならば、電磁弁駆動条件に余裕がうまれるばかりか、電磁弁12の駆動電圧を低下させることも可能となる。
【0039】
また、電磁弁12の設計条件も緩和される。例えば、コイルの巻数の減少やコイル線径を細くしコイルの小型化も可能となる。あるいは、電磁弁12のプランジャーに衝撃緩衝材を設け電磁弁12を静音化することも可能となる。電磁弁12の動作条件を厳しくしても、電磁弁駆動回路側で従来より余裕ができているためである。
【0040】
また、従来の構成と同様、マイコン16は電磁弁駆動信号19を出力すると同時に、故障検出信号20を監視しており、電磁弁駆動回路が正常なときは、t3、t4の各々のタイミングにおいて、O1から出力された信号論理とiに入力される信号論理は等しいことが期待されるため、マイコン6がその一致、不一致を判定し、電磁弁駆動回路の正常状態、異常状態を常時監視し、異常時にはDC24Vの供給を停止しガスを遮断することができる。
【0041】
尚、本実施例では、電磁弁駆動信号19を12.5mS周期としたが、周期(t3+t4)を1000mSと長くし、オフ時間t4を0.1mSのままとしておけば、デューティー比はより改善されることになる。設計した電磁弁との関係で最適な周期を決定する。ただし、電磁弁駆動信号19の周期は故障検出のサンプリング周期であるため、故障発生時、その検出に支障のない時間とすべきである。
【0042】
【発明の効果】
以上のように本発明によれば、電磁弁への電力供給を、パルス信号を用いて制御しているので、電磁弁駆動回路故障の検出が可能となり、従来と同じ安全性を確保できる。且つ、パルス信号が電力供給時間の電力停止時間に対する比率が十分に大きいと言う特徴を備えているため、電磁弁への電力供給効率が良く、電磁弁の設計条件を緩和することが可能となり、コイル巻数の減少による電磁弁の小型化や、電磁弁の静音化対策の実施が可能となり、ガス機器の小型化、静音化への改善に効果を有する。
【図面の簡単な説明】
【図1】 本発明の実施例1を示すガス燃焼機器の制御装置のブロック図
【図2】 同制御装置の制御信号のタイミングチャート
【図3】 従来のガス燃焼機器の制御装置のブロック図
【図4】 同制御装置の制御信号のタイミングチャート
【符号の説明】
11 ガス供給通路
12 電磁弁
16 マイクロコンピューター
17 電磁弁駆動トランジスタ
18 故障検出トランジスタ
19 電磁弁駆動信号
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for an electromagnetic valve for closing and opening a gas supply passage in a gas combustion device .
[0002]
[Prior art]
In recent years, there has been a demand for gas combustion devices that are not only improved in safety but also reduced in size and noise.
[0003]
In terms of safety, since a gas leak is caused directly by a failure of the solenoid valve that opens and closes the gas passage and its drive circuit, the power supply method to the solenoid valve has been devised and safety measures have been taken conventionally.
[0004]
A conventional solenoid valve drive control device will be described below using a gas fan heater as an example.
[0005]
FIG. 3 shows a block diagram of the control device. In the figure, an electromagnetic valve 2 for supplying and stopping gas is provided in the middle of the gas passage 1. The gas is supplied to the combustion unit 3 through the electromagnetic valve 2. One of the coils of the solenoid valve 2 is connected to a DC 24V power source via a power supply transistor 4 and the other is connected to a circuit ground via a solenoid valve drive transistor 7 to form a solenoid valve drive circuit.
[0006]
Reference numeral 6 denotes a microcomputer (hereinafter referred to as a microcomputer). O1 of the microcomputer 6 is an output terminal of a pulse signal for controlling the supply of DC 24V power, and the frequency /
The voltage conversion circuit 5 and the switching transistor are connected to the base of the power supply transistor 4 via T.
[0007]
Further, O2 of the microcomputer 6 is an output terminal of an electromagnetic valve driving signal 9 for controlling the operation of the electromagnetic valve 2, and is connected to the base of the electromagnetic valve driving transistor 7. The collector of the solenoid valve drive transistor 7 is connected to the base of a failure detection transistor 8 that monitors the operating state of the solenoid valve drive circuit. The failure detection signal 10 is taken out from the collector of the failure detection transistor 8 and input to the input terminal i of the microcomputer 6. Connect and return.
[0008]
FIG. 4 shows a timing chart of the solenoid valve drive signal 9 and the failure detection signal 10. The solenoid valve drive signal 9 is a pulse signal having a constant period in which the on-time t1 and the off-time t2 are equal. In this example, the frequency is 80 Hz, the on-time t1 = off-time t2 = 6.25 mS (duty ratio 50.0%). Signals are shown. The failure detection signal 10 indicates a signal waveform when the power supply transistor 4, the solenoid valve 2, and the solenoid valve drive transistor 7 are electrically connected normally, and a signal having the same logic as that of the solenoid valve drive signal 9 is detected. The
[0009]
In such a configuration, when the equipment is burned from the stop, the microcomputer 6 first outputs a pulse signal from O1, turns on the power supply transistor 4 via the frequency / voltage conversion circuit 5, and supplies DC 24V power. To do. Next, a solenoid valve drive signal 9 is output from O 2 to open the solenoid valve 2 and supply gas to the combustion section 3.
[0010]
Here, since the solenoid valve drive signal 9 is a pulse signal, the solenoid valve drive transistor 7 performs switching, and power is supplied only intermittently to the solenoid valve 2, but the solenoid valve 2 has a frequency of about 100 Hz. The valve body of the solenoid valve 2 is not detached by the holding force and is not closed, and the gas can be continuously supplied.
[0011]
The microcomputer 6 outputs the solenoid valve drive signal 9 and simultaneously monitors the failure detection signal 10. When the solenoid valve drive circuit is normal, the signal output from O1 at the timings t1 and t2. Since the logic logic and the signal logic input to i are expected to be equal, the microcomputer 6 can determine this and monitor the state of the solenoid valve drive circuit at all times.
[0012]
For example, at the on-time t1 of the solenoid valve drive signal 9, if the solenoid valve drive transistor 7 is open failure (failure that gas is stopped), the failure detection signal 10 is turned off and becomes an inverse value. Further, at the off time t2 of the solenoid valve drive signal 9, if the solenoid valve drive transistor 7 is short-circuited (failed to leak gas), the failure detection signal 10 is turned on and becomes an inverse value.
[0013]
The microcomputer 6 determines that the reverse logic = failure, stops the power supply to the solenoid valve 2, and closes the gas supply passage. When the solenoid valve drive signal 9 is operated while being always on (DC signal), the latter short-circuit failure (failure that causes gas leakage) cannot be detected at all times, and safety is lowered.
[0014]
Thus, by using a pulse signal to control the power supply to the solenoid valve 2, it is possible to always detect both open and short modes of the solenoid valve drive circuit, thereby improving safety.
[0015]
[Problems to be solved by the invention]
However, in the above-described conventional configuration, the electromagnetic valve 2 is pulse-driven in order to detect a failure, so that the power supply to the electromagnetic valve 2 is halved in time and the power supply efficiency is deteriorated.
[0016]
In order to obtain the same electromagnetic force in the solenoid valve 2 when the solenoid valve 2 is driven by a DC signal, it is necessary to double the drive voltage or double the number of turns of the solenoid valve coil. However, increasing the drive voltage leads to an increase in power consumption loss of the entire system circuit, and increasing the number of coil turns leads to an increase in the size of the solenoid valve 2.
[0017]
Further, when the solenoid valve 2 opens, a collision sound between the plunger and the solenoid valve body is generated. Quiet countermeasures can be achieved by providing a cushioning material between the plunger and the solenoid valve body, but with the same electromagnetic force, the release voltage at which the valve body closes increases, and the number of coil turns must be increased to increase the electromagnetic force. There is. That is, noise reduction of the solenoid valve 2 means an increase in size of the solenoid valve 2. Or, in the drive circuit, it is necessary to take measures by increasing the drive voltage or making the drive signal DC. There are issues such as.
[0018]
Accordingly, an object of the present invention is to ensure the same safety as that of the prior art and to realize miniaturization and noise reduction of the solenoid valve.
[0019]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an electromagnetic valve connected in the middle of a gas passage for supplying and stopping gas reaching the combustion section, and one of the coils in the electromagnetic valve is connected to a DC power source via a power supply transistor. And the other is connected to the base of the power supply transistor via a frequency / voltage conversion circuit and a switching transistor, and the DC power supply A microcomputer having a first output terminal for outputting a pulse signal for controlling the supply of the first output terminal and a second output terminal connected to the base of the solenoid valve drive transistor for outputting a solenoid valve drive signal for controlling the operation of the solenoid valve; And a collector of the solenoid valve drive transistor includes a failure detection transistor for monitoring an operation state of the solenoid valve drive circuit. The base of the register is connected, the failure detection signal is taken out from the collector of the failure detection transistor, connected to the input terminal of the microcomputer and fed back, and the solenoid valve drive signal is a pulse signal with a constant cycle. The on-time is set to be significantly larger than the off-time .
[0020]
According to the above invention, since the solenoid valve is driven with a pulse signal to detect a failure, the same safety as the conventional configuration can be realized, and the ratio of the pulse signal power supply time to the solenoid valve with respect to the stop time is sufficient. Since it is large, electromagnetic force can be obtained efficiently, the number of coil turns can be reduced, and the solenoid valve can be miniaturized. Moreover, the noise reduction countermeasure by the buffer material can be realized with the conventional number of coil turns.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, an electromagnetic valve that is connected in the middle of a gas passage to supply and stop gas to the combustion section, and one of the coils in the electromagnetic valve is connected to a DC power source through a power supply transistor, and the other is A solenoid valve drive circuit connected to circuit ground via a solenoid valve drive transistor, and a pulse signal connected to the base of the power supply transistor via a frequency / voltage conversion circuit and a switching transistor to control the supply of the DC power supply And a microcomputer having a second output terminal connected to the base of the solenoid valve driving transistor and outputting a solenoid valve drive signal for controlling the operation of the solenoid valve. The collector of the drive transistor is connected to the base of a failure detection transistor that monitors the operating state of the solenoid valve drive circuit. The failure detection signal is taken out from the collector of the failure detection transistor, connected to the input terminal of the microcomputer, and fed back, and the solenoid valve drive signal is a pulse signal with a constant period, and the on time is the off time. Is set to be significantly larger .
[0022]
Since the electromagnetic valve is driven by a pulse signal to detect a failure, it is possible to detect a failure of the electromagnetic valve drive circuit open or short, so that conventional safety can be ensured. In addition, since the ratio of the pulse signal power supply time to the stop time is sufficiently large, the electromagnetic force can be obtained efficiently, the number of coil turns can be reduced, and the solenoid valve can be downsized. In addition, when the electromagnetic valve is silenced, the electromagnetic valve can be silenced without increasing the size of the coil by supplementing the electromagnetic force with the power supply efficiency.
[0023]
Embodiments of the present invention will be described below with reference to FIGS.
[0024]
(Example 1)
FIG. 1 shows a block diagram of a control apparatus of the present invention. An electromagnetic valve 12 for supplying and stopping gas is provided in the middle of the gas passage 11. The gas is supplied to the combustion unit 13 via the electromagnetic valve 12. One of the coils of the solenoid valve 12 is connected to a DC 24V power source via a power supply transistor 14 and the other is connected to a circuit ground via a solenoid valve drive transistor 17 to form a solenoid valve drive circuit.
[0025]
Reference numeral 16 denotes a microcomputer (hereinafter referred to as a microcomputer). O1 of the microcomputer 16 is an output terminal of a pulse signal for controlling supply of DC 24V power, and is connected to the base of the power supply transistor 14 through the frequency / voltage conversion circuit 15 and a switching transistor .
[0026]
Further, O2 of the microcomputer 16 is an output terminal of an electromagnetic valve driving signal 19 for controlling the operation of the electromagnetic valve 12, and is connected to the base of the electromagnetic valve driving transistor 17. The collector of the solenoid valve drive transistor 17 is connected to the base of a failure detection transistor 18 that monitors the operating state of the solenoid valve drive circuit. The failure detection signal 20 is taken out from the collector of the failure detection transistor 18 and input to the input terminal i of the microcomputer 16. Connect and return.
[0027]
FIG. 2 shows a timing chart of the solenoid valve drive signal 19 and the failure detection signal 20. The electromagnetic valve drive signal 19 is a pulse signal having a fixed period, and the on time t3 and the off time t4 are significantly different, and the relation of on time t3> off time t4 is satisfied.
[0028]
In this embodiment, a signal having a frequency of 80 Hz, an on time t3 = 12.4 mS, and an off time t4 = 0.1 mS (duty ratio 99.2%) is shown. The reason why the ON time is sufficiently long is to improve the power supply efficiency to the solenoid valve 12.
[0029]
The failure detection signal 20 is a signal obtained as a result of the switching operation of the solenoid valve drive transistor 17 and the failure detection transistor 18 by the solenoid valve drive signal 19.
[0030]
This figure shows signal waveforms when the power supply transistor 14, the solenoid valve 12, and the solenoid valve drive transistor 17 are electrically connected normally, and a signal having the same logic as the solenoid valve drive signal is detected.
[0031]
Although the power supply efficiency increases as the OFF time t4 of the solenoid valve drive signal 19 is shorter, it is necessary to secure at least the switching time of the two transistors 17 and 18 in order to form a failure detection signal. In general, the switching time of a transistor is several tens of μs, and is 0.1 m (= 100 μs) S in consideration of variation and a safety factor.
[0032]
Further, by using a transistor having a fast switching operation, the off time t4 can be further shortened, and the duty ratio can be improved.
[0033]
Next, the operation and action will be described. When the device is burned from the stop, the microcomputer 6 first outputs a pulse signal from O1, turns on the power supply transistor 14 via the frequency / voltage conversion circuit 15, and DC24V Supply power.
[0034]
Next, the solenoid valve drive signal 19 is output from O2, the solenoid valve 12 is opened, and gas is supplied to the combustion unit 3.
[0035]
Here, since the duty ratio of the electromagnetic valve drive signal 19 increases to 99.2% at the same frequency as the conventional drive signal, the power supply efficiency to the electromagnetic valve 12 is sufficiently improved.
[0036]
Although it is pulse drive, the solenoid valve 12 can be operated with a margin and gas can be supplied without any problem.
[0037]
Further, since the off time t4 is sufficiently short, the voltage with which the solenoid valve 12 is released from the open state can be improved even with the same holding force.
[0038]
If the same solenoid valve 12 as that of the conventional configuration is used, not only the solenoid valve driving condition is provided, but also the driving voltage of the solenoid valve 12 can be lowered.
[0039]
In addition, the design conditions of the solenoid valve 12 are eased. For example, the number of turns of the coil can be reduced, the coil wire diameter can be reduced, and the size of the coil can be reduced. Alternatively, it is possible to reduce the noise of the electromagnetic valve 12 by providing an impact buffer on the plunger of the electromagnetic valve 12. This is because even if the operating conditions of the solenoid valve 12 are stricter, there is a margin on the solenoid valve drive circuit side than before.
[0040]
Similarly to the conventional configuration, the microcomputer 16 outputs the solenoid valve drive signal 19 and simultaneously monitors the failure detection signal 20. When the solenoid valve drive circuit is normal, at each timing t3 and t4, Since the signal logic output from O1 is expected to be the same as the signal logic input to i, the microcomputer 6 determines the match / mismatch and constantly monitors the normal state and abnormal state of the solenoid valve drive circuit, When an abnormality occurs, the supply of DC 24V can be stopped to shut off the gas.
[0041]
In this embodiment, the solenoid valve drive signal 19 has a 12.5 mS cycle. However, if the cycle (t3 + t4) is increased to 1000 mS and the off time t4 is kept at 0.1 mS, the duty ratio is further improved. Will be. The optimum cycle is determined in relation to the designed solenoid valve. However, since the period of the electromagnetic valve drive signal 19 is a sampling period for failure detection, it should be a time that does not hinder the detection when a failure occurs.
[0042]
【The invention's effect】
As described above, according to the present invention, since the power supply to the solenoid valve is controlled using the pulse signal, the failure of the solenoid valve drive circuit can be detected, and the same safety as the conventional one can be ensured. And, since the pulse signal has a feature that the ratio of the power supply time to the power stop time is sufficiently large, the power supply efficiency to the solenoid valve is good, and the design conditions of the solenoid valve can be relaxed, It is possible to reduce the size of the solenoid valve by reducing the number of coil turns, and to implement countermeasures to reduce the noise of the solenoid valve, which is effective in reducing the size of the gas equipment and reducing the noise.
[Brief description of the drawings]
FIG. 1 is a block diagram of a control device for a gas combustion device showing Embodiment 1 of the present invention. FIG. 2 is a timing chart of control signals of the control device. FIG. 3 is a block diagram of a control device for a conventional gas combustion device . Fig. 4 Timing chart of control signal of the same control device
11 Gas supply passage 12 Solenoid valve 16 Microcomputer 17 Solenoid valve drive transistor 18 Failure detection transistor 19 Solenoid valve drive signal

Claims (1)

ガス通路の途中に接続され、燃焼部へ至るガスの供給及び停止を行う電磁弁と、この電磁弁におけるコイルの一方が電源供給トランジスタを介してDC電源に接続され、もう一方が電磁弁駆動トランジスタを介して回路グランドに接続された電磁弁駆動回路と、周波数/電圧変換回路とスイッチングトランジスタを介して前記電源供給トランジスタのベースに接続され、前記DC電源の供給を制御するパルス信号を出力する第1の出力端子および電磁弁駆動トランジスタのベースに接続されて、電磁弁の動作を制御する電磁弁駆動信号を出力する第2出力端子を有するマイクロコンピューターとを具備し、前記電磁弁駆動トランジスタのコレクタには、電磁弁駆動回路の動作状態を監視する故障検出トランジスタのベースを接続し、この故障検出トランジスタのコレクタより故障検出信号を取り出しマイクロコンピューターの入力端子に接続し帰還させるように構成し、かつ、前記電磁弁駆動信号は一定周期のパルス信号であって、そのオン時間をオフ時間よりも著しく大きく設定したガス燃焼機器の制御装置。An electromagnetic valve connected in the middle of the gas passage for supplying and stopping gas reaching the combustion section, one of the coils in the electromagnetic valve is connected to a DC power source via a power supply transistor, and the other is an electromagnetic valve driving transistor A solenoid valve driving circuit connected to the circuit ground via the first, a frequency / voltage conversion circuit, and a switching transistor connected to the base of the power supply transistor to output a pulse signal for controlling the supply of the DC power. And a microcomputer having a second output terminal connected to the output terminal of the first output terminal and the base of the solenoid valve drive transistor and outputting a solenoid valve drive signal for controlling the operation of the solenoid valve, the collector of the solenoid valve drive transistor Connect the base of the failure detection transistor to monitor the operating state of the solenoid valve drive circuit, this failure The failure detection signal is taken out from the collector of the output transistor, connected to the input terminal of the microcomputer, and fed back. Control device for gas combustion equipment set to a significantly large value.
JP13075697A 1997-05-21 1997-05-21 Control device for gas combustion equipment Expired - Fee Related JP3858343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13075697A JP3858343B2 (en) 1997-05-21 1997-05-21 Control device for gas combustion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13075697A JP3858343B2 (en) 1997-05-21 1997-05-21 Control device for gas combustion equipment

Publications (2)

Publication Number Publication Date
JPH10318531A JPH10318531A (en) 1998-12-04
JP3858343B2 true JP3858343B2 (en) 2006-12-13

Family

ID=15041908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13075697A Expired - Fee Related JP3858343B2 (en) 1997-05-21 1997-05-21 Control device for gas combustion equipment

Country Status (1)

Country Link
JP (1) JP3858343B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5553144B2 (en) * 2010-01-28 2014-07-16 株式会社ノーリツ Method for driving solenoid valve and combustion apparatus
JP2014026873A (en) * 2012-07-27 2014-02-06 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and control method for the same
CN113983233B (en) * 2021-10-26 2022-04-26 河南驰诚电气股份有限公司 Household alarm with functions of detecting connection and opening and closing states of electromagnetic valve

Also Published As

Publication number Publication date
JPH10318531A (en) 1998-12-04

Similar Documents

Publication Publication Date Title
JP4871245B2 (en) Internal combustion engine control device
CN103703673B (en) Method and control device for protection time setting in electric drive system
CN104040857B (en) Converter controller, circuit and method with the half-bridge adaptive dead zone time
WO2012100443A1 (en) Pwm control circuit for elevator brakes
AU2014240093B2 (en) Electronic circuit to capture lock controller pulses
JP3858343B2 (en) Control device for gas combustion equipment
KR20010032844A (en) Device for driving solenoid valve
CA2416338A1 (en) Power supply start up circuit
JP3807294B2 (en) Electric load drive
CN110375107B (en) Automobile electromagnetic valve control circuit and control method thereof
US20050111160A1 (en) Control circuit for driving an electric actuator, in particular an electric fuel injector for an internal-combustion engine
CN110580997B (en) Pulse width modulation control of solenoid valve
US20090066158A1 (en) Load Driving apparatus
JPS5865384A (en) Solenoid valve controller
JPH11325298A (en) Solenoid valve driving device
KR100693929B1 (en) Control circuit to be coil of electron contactor
TWI839624B (en) Synchronous Rectification Controller
JPH1141077A (en) Control circuit equipped with malfunction preventing function
JPH1140028A (en) Relay driving device
US20230266381A1 (en) Integrated circuit with off-state diagnosis for driver channels
JP3558441B2 (en) Control device for combustion equipment
CN215183736U (en) Single-coil energy-saving control circuit
JPH0571663A (en) Solenoid valve driving circuit
JP2001119854A (en) Fault-detecting circuit
CN118029819A (en) Magnetic suspension door control system and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040422

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040512

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees