JP3857846B2 - Condenser motor - Google Patents

Condenser motor Download PDF

Info

Publication number
JP3857846B2
JP3857846B2 JP34427699A JP34427699A JP3857846B2 JP 3857846 B2 JP3857846 B2 JP 3857846B2 JP 34427699 A JP34427699 A JP 34427699A JP 34427699 A JP34427699 A JP 34427699A JP 3857846 B2 JP3857846 B2 JP 3857846B2
Authority
JP
Japan
Prior art keywords
winding
motor
main
stator
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34427699A
Other languages
Japanese (ja)
Other versions
JP2001169517A (en
Inventor
利夫 大谷
直起 藤井
明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP34427699A priority Critical patent/JP3857846B2/en
Publication of JP2001169517A publication Critical patent/JP2001169517A/en
Application granted granted Critical
Publication of JP3857846B2 publication Critical patent/JP3857846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Induction Machinery (AREA)
  • Windings For Motors And Generators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は可逆運転可能なコンデンサ電動機に関する。
【0002】
【従来の技術】
一般に、コンデンサ電動機と称されているコンデンサ進相型単相誘導電動機には、固定子鉄心に短節巻主・補巻線を電気角90度に配置して対称巻に巻装したもの、又は特公昭41−11497号公報に記載のもののように、4極電動機で12スロットの固定子鉄心に短節巻主・補巻線を電気角120度に巻装配置してトルク特性を改善した非対称巻のものがある。
【0003】
固定子鉄心に短節巻主・補巻線を電気角90度に配置して対称巻に巻装した例として、電動機の巻線配置図を図5に、配線図を図6(A)に示すものがある。図5の電動機は、固定子鉄心に間隔が均一な固定子歯数16とスロット数16を形成し、8個の巻線を巻装した4極対称軸固定子を構成し、主・補両巻線は電気角が90度になるように配置されている。
【0004】
即ち、図6(A)の配線図に示すように、電源がコンデンサの極性に対して実線側に切替えられているとき、補巻線2が巻回されている固定子歯(1)〜(3)に磁極が発生し、次に主巻線1が巻回されている固定子歯(1)〜(5)に磁極が発生し、順次、固定子歯(1)〜(16)へと配線図の右側から左側へ向かって回転磁界が移動する。その結果、図5の電動機の回転子は時計方向に回転する。
【0005】
この電動機をリバーシブル型電動機として実際に運転したとき、それぞれの固定子歯(1)〜(8)((9)〜(16)は(1)〜(8)と等しい)に生じる起磁力(界磁磁束)の時間に対する変化を示すと、図6(B)のようになる。これから理解できるように、良好なトルク特性を得るだけの起磁力(界磁磁束)の大きさは確保できるが、固定子歯間の起磁力の位相は相当なバラツキが生じている。
【0006】
また、4極電動機で12スロットの固定子鉄心に短節巻主・補巻線を電気角120度に配置して巻装してトルク特性を改善した非対称巻のものの例として、電動機の巻線配置図を図3に、配線図を図4(A)に示すものがある。図3の電動機は、スロット間隔が均一なスロット数12の固定子に、8個の巻線を巻装した4極非対称軸固定子の場合を示し、主巻線1及び補巻線2はいずれも短節巻で、主・補両巻線1、2は電気角を120度にして、主巻線1と補巻線2は互いに巻方向が逆になるように巻装配置され、主・補両巻線の各一方の巻線辺は共通の同一スロット3に納められ、また他方の各巻線辺はそれぞれ別個のスロット4に単独で納められている。
【0007】
この例の固定子鉄心は角丸状固定子鉄心であり、4極固定子鉄心における12スロット内で、対向直線部の幅方向に対し45度の方向、換言すれば、鉄心4隅の丸み部に位置する4個のスロット3の占有断面積を大とし、このスロット3に前述のように主・補両巻線1、2の各一方の巻線辺を納め、また他の占有断面積が小の8個のスロット4には他方の各巻線辺が単独で納められる。
【0008】
これにより、図4(A)の配線図に示すように、電源がコンデンサの極性に対して実線側に切替えられているとき、主巻線1と補巻線2に流れる電流の方向は互いに逆となる。そして、主巻線1が巻回されている固定子歯(1),(2)に磁極が発生し、次に主巻線1と逆方向に巻かれた補巻線2が巻回されている固定子(2),(3)に磁極が発生し、順次、固定子歯(1)〜(12)へと配線図の右側から左側へ向かって回転磁界が移動する。その結果、図3に示す電動機の回転子(図示せず)は時計方向に回転する。
【0009】
この電動機をリバーシブル型電動機として実際に運転したとき、それぞれの固定子歯(1)〜(6)((7)〜(12)は(1)〜(6)と等しい)に生じる起磁力(界磁磁束)の時間に対する変化を示すと、図4(B)のようになり、良好なトルク特性を得るだけの起磁力(界磁磁束)の大きさは確保できるが、固定子歯間の起磁力の位相は相当なばらつきが生じることになる。
【0010】
【発明が解決しようとする課題】
従来のこれらコンデンサ電動機では、一方向回転の負荷のみを運転条件として想定したものが殆どであるために、正逆両回転用のリバーシブル型電動機については、主巻線と補巻線の線径、巻数等の仕様を同一にする必要があり、トルク特性と電磁振動特性を共に最良に設計することが難しく、多くの場合はトルク特性が優先される結果、回転子の振動値は一方向回転専用の電動機に比して大きくなっていた。そこで本発明は、正逆回転の負荷を必要とする機器に使用する、堅牢で長寿命かつ安価なリバーシブル型電動機として、トルク特性と電磁振動特性の両方が最良となる巻線仕様及びコンデンサ値を設定することができるコンデンサ電動機を提供することを目的とする。
【0011】
【課題を解決するための手段】
この発明の請求項1に係るコンデンサ電動機は、スロット数6n個の固定子鉄心に、コイル数4n個の巻線を巻装するに際し、主・補両巻線はいずれも各一方の巻線辺を共通の同一スロットに、他方の各巻線辺を単独で別個のスロットに収納し、主・補巻線の電気角が60度になるように配置して2n極非対称軸固定子を形成して構成した。
【0012】
これにより、正逆回転時でのトルク特性と電磁振動特性が共に最良となる巻線仕様及びコンデンサ値を設定することができ、正逆回転の負荷を必要とする機器の騒音の低減と他部品への影響を防止できる堅牢で長寿命かつ安価なコンデンサ電動機を実現できる。
【0013】
【発明の実施の形態】
次に、本発明を図面を参照して実施例にもとづいて説明する。図1は本発明のコンデンサ電動機の巻線配置図を、図2(A)は配線図を示す。本発明コンデンサ電動機は、一般にnを自然数として、角丸状固定子鉄心の2n極電動機で、スロット数6n個の固定子鉄心にコイル数4n個の巻線を巻装するものを対象とするものであるが、実施の態様としては、図3のものと同様にn=2とした、角丸状固定子鉄心の4極電動機を対象にして以下に説明する。
【0014】
図1の電動機の巻線配置は、スロット間隔が均一なスロット数12の固定子に、8個の巻線を巻装した4極非対称軸固定子である。主巻線1及び補巻線2は、この例ではいずれも短節巻であって、主・補両巻線1、2は電気角を60度にして、主巻線1と補巻線2は互いに巻方向が同じになるように巻装配置される。主・補両巻線1,2の各一方の巻線辺は共通の同一スロット3に納められ、また、他方の各巻線辺はそれぞれ別個のスロット4に単独で納められている。
【0015】
角丸状固定子鉄心は、図3のものと同様に、4極固定子鉄心における12スロット内で、対向直線部の幅方向に対し45度の方向、換言すれば、鉄心4隅の丸み部に位置する4個のスロット3の占有断面積を大に形成し、このスロット3に前述のように主・補両巻線1、2の各一方の巻線辺を納める。また他部の占有断面積が小に形成された8個のスロット4には、主・補両巻線1、2の他方の各巻線辺が単独で納められる。
【0016】
これにより、図2(A)の配線図に示すように、電源がコンデンサの極性に対して実線側に切替えられているとき、主巻線1と補巻線2に流れる電流の方向は同じ方向となる。そして、補巻線2が巻回されている固定子歯(1),(2)に磁極が発生し、次に主巻線1が巻回されている固定子歯(2),(3)に磁極が発生し、順次、固定子歯(1)〜(12)へと配線図の右側から左側へ向かって回転磁界が移動する。その結果、図1の電動機の回転子は時計方向に回転する。
【0017】
反時計方向に駆動する場合は、電源をコンデンサの極性に対して点線側に切替えることにより達成することができる。そして、この電動機をリバーシブル型電動機として実際に運転したとき、それぞれの固定子歯(1)〜(6)((7)〜(12)は(1)〜(6)と等しい)に生じる起磁力の時間に対する変化を示すと図2(B)のようになり、図4(B)及び図6(B)に示す従来の電動機の固定子歯の起磁力分布と比較しても、本発明のコンデンサ電動機の起磁力(界磁磁束)の大きさのバラツキも小さく、良好なトルク特性を得ることができると共に固定子歯間の起磁力の位相も略均一になりバラツキも小さいものとなった。
【0018】
こうして、非対称巻のリバーシブル型電動機であるコンデンサ電動機の主巻線、補巻線の配置を電気角60度にすることにより、主巻線及び補巻線に流れる電流による固定子歯の起磁力(界磁磁束)が、通常負荷時(すべり0〜0.2程度)において、ほぼ理想的な回転磁界となるように巻線及びコンデンサ値を設定することができるようになる。このとき巻線仕様(主巻線、補巻線とも同一仕様)に対し電磁振動が最小となるコンデンサ容量値が存在し、この値を利用することにより巻線仕様を調整して容易にトルク特性と振動特性が最良点になるように設計することができる。
【0019】
【発明の効果】
以上のように、本発明は、正逆回転時でのトルク特性と電磁振動特性が共に最良となる巻線仕様及びコンデンサ値を設定することができ、正逆回転の負荷を必要とする機器の正転運転時あるいは逆転運転時での騒音の低減と、他部品への影響を防止できる堅牢で長寿命かつ安価なコンデンサ電動機を実現できる。
【図面の簡単な説明】
【図1】本発明のコンデンサ電動機の巻線配置図。
【図2】(A)本発明のコンデンサ電動機の配線図。
(B)本発明のコンデンサ電動機の固定子歯の起磁力分布。
【図3】従来のコンデンサ電動機の巻線配置図。
【図4】(A)従来のコンデンサ電動機の配線図。
(B)従来のコンデンサ電動機の固定子歯の起磁力分布。
【図5】他の従来のコンデンサ電動機の巻線配置図。
【図6】(A)他の従来のコンデンサ電動機の配線図。
(B)他の従来のコンデンサ電動機の固定子歯の起磁力分布。
【符号の説明】
1 主巻線
2 補巻線
3 占有断面積大のスロット
4 占有断面積小のスロット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a capacitor motor capable of reversible operation.
[0002]
[Prior art]
In general, a capacitor phase advance type single-phase induction motor called a capacitor motor has a short-winding main / auxiliary winding arranged at a 90-degree electrical angle on a stator core, or wound in a symmetrical winding, or As described in Japanese Patent Publication No. 41-11497, a 4-pole electric motor has a 12-slot stator core with short-pitch main and auxiliary windings arranged at an electrical angle of 120 degrees to improve torque characteristics. There is a roll.
[0003]
As an example of short-winding main and auxiliary windings placed on a stator core at an electrical angle of 90 degrees and wound in a symmetrical winding, FIG. 5 shows the winding arrangement of the motor, and FIG. 6A shows the wiring diagram. There is something to show. The motor shown in FIG. 5 forms a four-pole symmetric shaft stator in which stator teeth 16 and slots 16 are uniformly formed in the stator core, and eight windings are wound. The windings are arranged so that the electrical angle is 90 degrees.
[0004]
That is, as shown in the wiring diagram of FIG. 6A, when the power source is switched to the solid line side with respect to the polarity of the capacitor, the stator teeth (1) to (1) to (1) to (1) to ( 3) A magnetic pole is generated, and then a magnetic pole is generated on the stator teeth (1) to (5) around which the main winding 1 is wound, and the stator teeth (1) to (16) are sequentially formed. The rotating magnetic field moves from the right side to the left side of the wiring diagram. As a result, the rotor of the electric motor in FIG. 5 rotates in the clockwise direction.
[0005]
When this motor is actually operated as a reversible motor, the magnetomotive force (field) generated in each stator tooth (1) to (8) ((9) to (16) is equal to (1) to (8)) FIG. 6B shows the change of the magnetic flux) with respect to time. As can be understood from this, the magnitude of the magnetomotive force (field magnetic flux) sufficient to obtain good torque characteristics can be ensured, but the phase of the magnetomotive force between the stator teeth varies considerably.
[0006]
In addition, as an example of an asymmetrical winding in which a short pole main and auxiliary windings are wound around a 12-slot stator iron core at an electrical angle of 120 degrees to improve torque characteristics in a 4-pole motor, the winding of the motor A layout diagram is shown in FIG. 3, and a wiring diagram is shown in FIG. The motor shown in FIG. 3 shows a case of a four-pole asymmetric shaft stator in which eight windings are wound around a stator having 12 slots with a uniform slot interval. The main and auxiliary windings 1 and 2 are wound at an electrical angle of 120 degrees, and the main winding 1 and the auxiliary winding 2 are wound so that the winding directions are opposite to each other. One winding side of each of the complementary windings is housed in the same common slot 3, and the other winding side is individually housed in a separate slot 4.
[0007]
The stator iron core in this example is a rounded stator iron core, and the direction of 45 degrees with respect to the width direction of the opposing straight line portion in 12 slots in the four-pole stator iron core, in other words, round corners of the iron core four corners. The occupied sectional area of the four slots 3 located at the center is increased, and one side of each of the main and auxiliary windings 1 and 2 is accommodated in the slot 3 as described above, and the other occupied sectional area is Each of the other eight winding sides is stored in the small eight slots 4 alone.
[0008]
As a result, as shown in the wiring diagram of FIG. 4A, when the power source is switched to the solid line side with respect to the polarity of the capacitor, the directions of the currents flowing through the main winding 1 and the auxiliary winding 2 are opposite to each other. It becomes. Then, a magnetic pole is generated on the stator teeth (1) and (2) around which the main winding 1 is wound, and then the auxiliary winding 2 wound in the opposite direction to the main winding 1 is wound. Magnetic poles are generated in the stators (2) and (3), and the rotating magnetic field sequentially moves from the right side to the left side of the wiring diagram toward the stator teeth (1) to (12). As a result, the rotor (not shown) of the electric motor shown in FIG. 3 rotates in the clockwise direction.
[0009]
When this motor is actually operated as a reversible motor, the magnetomotive force (field) generated in each stator tooth (1) to (6) ((7) to (12) is equal to (1) to (6)) The change with time of the magnetic flux is as shown in FIG. 4B, and the magnitude of the magnetomotive force (field magnetic flux) sufficient to obtain good torque characteristics can be secured, but the occurrence between the stator teeth. The phase of the magnetic force will vary considerably.
[0010]
[Problems to be solved by the invention]
Since most of these conventional capacitor motors assume only a one-way rotation load as an operating condition, the reversible motors for both forward and reverse rotations have a wire diameter of main winding and auxiliary winding, It is necessary to make the specifications such as the number of turns the same, and it is difficult to optimally design both the torque characteristics and the electromagnetic vibration characteristics. In many cases, the torque characteristics are prioritized. It was larger than the electric motor. Therefore, the present invention provides a winding specification and a capacitor value that provide both the best torque characteristics and electromagnetic vibration characteristics as a robust, long-life and inexpensive reversible type motor that is used in equipment that requires forward and reverse rotation loads. An object is to provide a capacitor motor that can be set.
[0011]
[Means for Solving the Problems]
In the capacitor motor according to the first aspect of the present invention, when winding a coil having 4n coils on a stator core having 6n slots, both the main and auxiliary windings are wound on one of the winding sides. Are housed in the same common slot, and the other winding sides are individually housed in separate slots, and are arranged so that the electrical angle of the main and auxiliary windings is 60 degrees to form a 2n pole asymmetric shaft stator. Configured.
[0012]
This makes it possible to set winding specifications and capacitor values that provide the best torque characteristics and electromagnetic vibration characteristics during forward / reverse rotation, reduce noise in devices that require forward / reverse rotation loads, and other components. It is possible to realize a robust, long-life and inexpensive capacitor motor that can prevent the influence on the motor.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described based on examples with reference to the drawings. FIG. 1 shows a winding layout of a capacitor motor of the present invention, and FIG. 2A shows a wiring diagram. The capacitor motor according to the present invention is generally a 2n-pole motor with a rounded stator core, where n is a natural number, and a stator core with 6n slots wound with 4n coils. However, as an embodiment, the description will be given below with respect to a quadrupole motor having a rounded stator core in which n = 2 as in the case of FIG.
[0014]
The winding arrangement of the motor shown in FIG. 1 is a four-pole asymmetric shaft stator in which eight windings are wound around a stator having 12 slots with a uniform slot interval. The main winding 1 and the auxiliary winding 2 are both short-pitch windings in this example, and the main and auxiliary windings 1 and 2 have an electrical angle of 60 degrees, and the main winding 1 and the auxiliary winding 2 Are wound so that their winding directions are the same. One winding side of each of the main and auxiliary windings 1 and 2 is housed in the same common slot 3, and the other winding side is housed separately in a separate slot 4.
[0015]
As in the case of FIG. 3, the rounded stator core is in a 45-degree direction with respect to the width direction of the opposed straight portion in 12 slots in the 4-pole stator core, in other words, rounded portions at the four corners of the core. The four occupied slots 3 are formed in a large sectional area, and one side of each of the main and auxiliary windings 1 and 2 is placed in the slot 3 as described above. Further, the other winding sides of the main and auxiliary windings 1 and 2 are housed independently in the eight slots 4 in which the occupied sectional areas of the other portions are formed small.
[0016]
As a result, as shown in the wiring diagram of FIG. 2A, when the power source is switched to the solid line side with respect to the polarity of the capacitor, the direction of the current flowing through the main winding 1 and the auxiliary winding 2 is the same direction. It becomes. Then, a magnetic pole is generated on the stator teeth (1) and (2) around which the auxiliary winding 2 is wound, and then the stator teeth (2) and (3) around which the main winding 1 is wound. A magnetic field is generated in the magnetic field, and the rotating magnetic field moves sequentially from the right side to the left side of the wiring diagram toward the stator teeth (1) to (12). As a result, the rotor of the electric motor in FIG. 1 rotates in the clockwise direction.
[0017]
Driving in the counterclockwise direction can be achieved by switching the power source to the dotted line side with respect to the polarity of the capacitor. When this motor is actually operated as a reversible motor, the magnetomotive force generated in each stator tooth (1) to (6) ((7) to (12) is equal to (1) to (6)) The change with respect to time is as shown in FIG. 2 (B). Compared with the magnetomotive force distribution of the stator teeth of the conventional motor shown in FIGS. 4 (B) and 6 (B), The variation in the magnitude of the magnetomotive force (field magnetic flux) of the capacitor motor was small, and good torque characteristics could be obtained, and the phase of the magnetomotive force between the stator teeth became substantially uniform and the variation was small.
[0018]
Thus, by arranging the main winding and auxiliary winding of the capacitor motor, which is an asymmetric winding reversible motor, at an electrical angle of 60 degrees, the magnetomotive force of the stator teeth due to the current flowing in the main winding and auxiliary winding ( The winding and capacitor values can be set so that the field magnetic flux is a substantially ideal rotating magnetic field under normal load (slip 0 to 0.2). At this time, there is a capacitor capacity value that minimizes electromagnetic vibration with respect to the winding specification (the same specification for both the main and auxiliary windings). By using this value, the winding specification can be easily adjusted to easily obtain torque characteristics. And it can be designed so that the vibration characteristics become the best point.
[0019]
【The invention's effect】
As described above, the present invention can set a winding specification and a capacitor value that provide the best torque characteristics and electromagnetic vibration characteristics during forward / reverse rotation, and can be used for devices that require forward / reverse rotation loads. It is possible to realize a robust, long-life and inexpensive capacitor motor that can reduce noise during forward operation or reverse operation and prevent influence on other components.
[Brief description of the drawings]
FIG. 1 is a winding layout diagram of a capacitor motor according to the present invention.
FIG. 2A is a wiring diagram of a capacitor motor of the present invention.
(B) Magnetomotive force distribution of the stator teeth of the capacitor motor of the present invention.
FIG. 3 is a winding layout diagram of a conventional capacitor motor.
FIG. 4A is a wiring diagram of a conventional capacitor motor.
(B) Magnetomotive force distribution of stator teeth of a conventional capacitor motor.
FIG. 5 is a winding layout diagram of another conventional capacitor motor.
6A is a wiring diagram of another conventional capacitor motor. FIG.
(B) Magnetomotive force distribution of stator teeth of other conventional capacitor motors.
[Explanation of symbols]
1 Main winding 2 Auxiliary winding 3 Slot with large occupied sectional area 4 Slot with small occupied sectional area

Claims (1)

スロット数6n個の固定子鉄心に、コイル数4n個の巻線を巻装するに際し、主・補両巻線はいずれも各一方の巻線辺を共通の同一スロットに、他方の各巻線辺を単独で別個のスロットに収納し、主・補巻線の電気角が60度になるように配置して2n極非対称軸固定子を形成することを特徴とするコンデンサ電動機。When winding 4n coils on a stator core with 6n slots, both the main and auxiliary windings have one winding side in the same common slot and the other winding side. Is placed in a separate slot and arranged so that the electrical angle of the main and auxiliary windings is 60 degrees to form a 2n-pole asymmetric shaft stator.
JP34427699A 1999-12-03 1999-12-03 Condenser motor Expired - Fee Related JP3857846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34427699A JP3857846B2 (en) 1999-12-03 1999-12-03 Condenser motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34427699A JP3857846B2 (en) 1999-12-03 1999-12-03 Condenser motor

Publications (2)

Publication Number Publication Date
JP2001169517A JP2001169517A (en) 2001-06-22
JP3857846B2 true JP3857846B2 (en) 2006-12-13

Family

ID=18367990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34427699A Expired - Fee Related JP3857846B2 (en) 1999-12-03 1999-12-03 Condenser motor

Country Status (1)

Country Link
JP (1) JP3857846B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100425101B1 (en) * 2001-09-12 2004-03-30 엘지전자 주식회사 Motor for variable capacity type compressor
KR100866871B1 (en) * 2002-01-24 2008-11-04 엘지전자 주식회사 induction motor
KR100444326B1 (en) * 2002-02-06 2004-08-16 삼성광주전자 주식회사 Single phase induction motor and hermetic reciprocal compressor having single phase induction motor
KR100448546B1 (en) * 2002-09-24 2004-09-13 삼성광주전자 주식회사 Method for winding coil stator of induction motor for compressor
KR100565219B1 (en) * 2003-09-30 2006-03-30 엘지전자 주식회사 Free magnet type induction motor
KR100681573B1 (en) 2004-06-28 2007-02-09 주식회사 대우일렉트로닉스 Method of the winding in slot for single phase induction motor and stator thereof
JP6143076B2 (en) * 2013-04-25 2017-06-07 アイシン精機株式会社 Superconducting rotating electrical machine stator
EP2871753B1 (en) * 2013-11-11 2019-06-19 LEANTEC Motor GmbH Electric machine
CN109599974B (en) * 2018-12-24 2020-06-30 浙江大学 Three-phase single-layer winding motor with span of 2
US20230231456A1 (en) * 2020-08-13 2023-07-20 Mitsubishi Electric Corporation Electric motor, driving device, compressor, and air conditioner

Also Published As

Publication number Publication date
JP2001169517A (en) 2001-06-22

Similar Documents

Publication Publication Date Title
CA2421716C (en) Brush dc motors and ac commutator motor structures with concentrated windings
JP3466591B2 (en) Rotating electric machine
JP5532622B2 (en) motor
JP2001037186A (en) Permanent magnet motor
JP4016341B2 (en) Three-phase synchronous reluctance motor
JP3688798B2 (en) Double salient reluctance machine and assembly method thereof
WO2015005375A1 (en) Large output, high efficiency, single phase, multi-polar power generator
JP3857846B2 (en) Condenser motor
JP2003180059A (en) Alternating-current rotating electric machine for vehicle
US7679256B2 (en) Rotary electric machine
EP1244195A1 (en) Winding scheme for a permanent magnet type three-phase ac rotary electric machine
JP2003088078A (en) Brushless dc motor
JPH07298578A (en) Rotating electric machine
JP4961197B2 (en) DC motor armature and DC motor
JP3422643B2 (en) Synchronous motor
JP2002272067A (en) Squirrel-cage rotor and motor using the squirrel-cage rotor
US10361614B2 (en) AC excitation synchronous rotating electric machine
JP4172482B2 (en) Connection pattern switching device
JP2006320051A (en) Brushless electric motor
CN114552836A (en) Rotating electrical machine
JP5460807B1 (en) Synchronous motor
JP3837954B2 (en) Connection pattern switching device
JP2686869B2 (en) Capacitor drive type induction motor
JPH1198737A (en) Permanent magnet motor
US20230060549A1 (en) Tapped winding method for extended constant horsepower speed range

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees