JP3857535B2 - Pulse current welding method of amorphous alloy material - Google Patents

Pulse current welding method of amorphous alloy material Download PDF

Info

Publication number
JP3857535B2
JP3857535B2 JP2001081754A JP2001081754A JP3857535B2 JP 3857535 B2 JP3857535 B2 JP 3857535B2 JP 2001081754 A JP2001081754 A JP 2001081754A JP 2001081754 A JP2001081754 A JP 2001081754A JP 3857535 B2 JP3857535 B2 JP 3857535B2
Authority
JP
Japan
Prior art keywords
amorphous alloy
alloy material
pulse current
bonded
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001081754A
Other languages
Japanese (ja)
Other versions
JP2002283060A (en
Inventor
能人 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001081754A priority Critical patent/JP3857535B2/en
Publication of JP2002283060A publication Critical patent/JP2002283060A/en
Application granted granted Critical
Publication of JP3857535B2 publication Critical patent/JP3857535B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非晶質合金材料同士あるいは非晶質合金材料と結晶質合金材料の接合を可能とするパルス通電接合法に関するものであり、非晶質合金材料の応用範囲を拡げるものである。
【0002】
【従来の技術とその課題】
最近、結晶化の前でガラス遷移が見られ、広い過冷却液体領域を有すると共に、大きい非晶質形成能を示す各種非晶質合金材料が開発された。これら非晶質合金材料は、従来の非晶質合金材料に比較して大きな非晶質形成能を有しているために、単ロール式液体急冷法などのような大きな冷却速度が得られる特殊な方法のみならず、Cu鋳型鋳造や水焼き入れ法などのような比較的冷却速度の遅い一般的な鋳造法によってでも非晶質化し、バルク状の非晶質合金材料を比較的容易に作製することができるようになってきており、種々の実用化の検討が実施されてきている。
【0003】
非晶質合金材料は、溶接すると、溶接部が結晶化するのみならず、その熱影響部まで結晶化してしまうために、一般的な金属材料のように溶接ができなかった。また、高温での原子拡散を利用する固相拡散接合法でも、原子拡散が活発に生じる高温まで加熱すると結晶化してしまい、非晶質相を保持したままでの接合はできなかった。
【0004】
約15年ほど前に超音波接合により非晶質薄帯の固相接合が試みられているが、非晶質合金材料は高強度であるために、接合が不十分であり、また、結晶化してしまうという問題があった。これ以外に、非晶質合金材料の接合に成功したという学術雑誌や学会での報告はない。
【0005】
一方、非晶質合金材料粉末を、加圧した状態で、パルス電流を流すことによって、非晶質状態を保ったままで、粉末同士が接合して高密度に固化する方法が学会などで報告されている。このパルス電流を流す焼結法は、放電プラズマ焼結法とかパルス通電焼結法と呼ばれており、装置も市販されている。しかしながら、非晶質合金材料粉末のパルス通電焼結では、粉末同士の接合が不十分であったり、密度が低かったり、また、結晶化が生じてしまうという問題があった。
【0006】
また、特開平8-192278では、加圧下で交流電流を流すことにより非晶質合金材料薄帯を接合する方法が報告されている。これらのパルスや交流電流を用いる方法は、温度が結晶化温度以下に抑さえられており、結晶化温度以下までの加熱、さらに急激な加熱による表面酸化皮膜の破壊による活性面の出現によって、非晶質合金材料同士を接合する方法である。
【0007】
しかし、これらの方法では、粉末あるいは薄帯の酸化皮膜が接合界面に残留してしまうと言う問題がある。さらに、接合時の温度が結晶化温度以下という融点の約半分の低い温度であるため、強固な接合を得るための原子の拡散が不十分である。これらが原因で、パルスや交流電流を用いた方法では強固な接合は得られない。
【0008】
このように、非晶質合金材料同士や非晶質合金材料と他の結晶材料との接合ができなかったために、非晶質合金材料の応用範囲がかなり制約されており、非晶質合金材料の接合手法の開発が切望されていた。
【0009】
【課題を解決するための手段】
本発明は、上記した非晶質合金材料の大きい非晶質形成能と熱的に安定な過冷却液体状態を利用して、非晶質合金材料同士または非晶質合金材料と結晶質合金材料とを強固に接合できる非晶質合金材料の接合方法とこの方法によって接合された接合部材を提供することを目的としている。
【0010】
すなわち、本発明は、非晶質合金材料同士、または非晶質合金材料と結晶材料を加圧力が 5MPa 以上で加圧しながら付き合わせ、その材料間にパルス電流のピーク値が 0.15kA/mm 2 以上であり、パルス電流の立ち上がりからピークの半減までの時間が 0.1 秒以下であるパルス電流を流すことにより、非晶質合金材料の接合部の一部あるいは全てが溶融状態まで急速加熱されると共に接合部の流動変形による張り出し部の形成を伴って、非晶質合金材料の非晶質状態を保持した状態で接合ることを特徴とする非晶質合金材料同士、または、非晶質合金材料と結晶材料の接合方法である。
【0012】
また、本発明は、加熱速度0.67K/s の場合に、ガラス遷移を示し、ガラス遷移温度と結晶化温度の差が30K 以上である非晶質合金材料を接合することを特徴とする上記の接合方法である。
【0014】
【発明の実施の形態】
本発明は、ガラス遷移を示すと共に、高い非晶質形成能を持つ非晶質合金材料の接合に関するもので、加圧した状態で接合材料間に極めて短時間にパルス状の大電流を流し、接合界面を融点以上の温度まで急速上昇させると共に、母材への熱伝導や外気への放熱により溶融および熱影響部を急冷すること、さらに、溶接時に加圧することにより図2に示すように、長さXの張り出し部Cを形成すること、また、接合部のみを加熱すること、を特徴としており、結晶化を避けて非晶質状態を保持した状態で、非晶質合金材料同士あるいは非晶質合金材料と結晶質合金材料の溶接を可能にする方法である。
【0015】
図1は、パルス通電による接合装置の構成を概念的に示すものであり、電極1および電極2に接合材料Aと接合材料Bを取り付け、コンデンサ3に接続した変圧器4に電極1と電極2を接続する。まず、電圧調整によりコンデンサー3に所定の電気を貯め、電極Bを軸方向に油圧プレス7で押圧することによる接合材料間に加わる圧力が所定の圧力に達した瞬間に、コンデンサーに蓄えられた電気を一気に放電させる。トロイダルコア5は溶接電流を検出するものであり、このトロイダルコア5で関知した電流を電流記録計6で記録する。これによって、接合材AB間に流れた電流波形、電流の最大値、電流が流れた時間を計測できる。
【0016】
本発明の方法では、接合部のみを融点以上の温度まで加熱して、結晶化を避けて非晶質状態を保持した状態で、短時間で強固に溶接する必要があり、そのためには、(1)接合部のみの溶融化、(2)接合材料間の接合溶融面の密着、(3)接合界面の酸化皮膜の除去、(4)溶接部の非晶質保持、(5)熱影響部の非晶質保持、を実現する必要がある。
【0017】
これを解決する手段として、通常の熱分析で行われている0.67K/S の加熱速度で熱分析した場合、結晶化温度とガラス遷移温度の差が30K 以上である非晶質合金材料を相手材料と接合する。
【0018】
また、接合条件として、パルス電流の時間とピーク電流密度を制御して、パルス電流のピーク値を0.15kA/mm2 以上0.3kA/mm2 以下、パルス電流の立ち上がりからピーク電流の半分に減少するまでの時間(半減時間)を0.1 秒以下にし、溶接時の材料間に加える加圧力を5MPa以上500MPa以下としている。電流値が低すぎると、接合面全体に亘って溶融しない。高すぎると、接合面の温度が高くなりすぎ、また、溶融部の体積が大きくなり、さらに、熱影響部の温度も高くなり、結晶化の危険性が大きくなる。半減時間が長すぎると、結晶化する。
【0019】
加圧力は、小さすぎると、張り出し形成が少なくなり、結晶化し易くなる。高すぎると、母材の熱影響部まで変形してしまう。張り出し部Cの長さXは0.2mm以上が望ましい。張り出し部Cの長さXが0.2mm未満では、酸化物の排出が不十分であるために、接合界面に酸化物が残留してしまい、高い接合強度が得られない。また、接合部における高温体積の残留が多くなって接合部の冷却が遅くなり、その結果、接合部が結晶化しやすくなる。
【0020】
【作用】
この方法では下記の作用により、非晶質を保持した状態で強固な接合が得られる。
(1)放電初期に発生するプラズマによる接合面の清浄作用、(2)溶接界面が融点以上の温度まで加熱されることによる溶融状態での接合、(3)ガラス遷移温度以上に加熱された溶接部の一部が加圧力で流動変形を起こして張り出し部を形成することによる接合面の密着および表面酸化皮膜の破壊・分散・排出、により強固な接合が得られる。
【0021】
また、非晶質性の保持に関しては、(1)接合材料間に流れる電流の短時間での急上昇によって、結晶化の時間- 温度- 遷移曲線(TTT 曲線)を横切らないように溶接部が融点以上まで加熱されること、(2)接合材料間に流れる電流の急減により、溶接部の熱が母材への熱伝達と外気への放熱により効果的に急冷されること、(3)溶接時の加圧により溶接部に張り出しが形成され、それに伴い高温溶接部の体積が減少することによって、溶接部が効果的に急冷されること、により結晶化せずに非晶質性を保って強固に溶接することができる。
【0022】
【実施例】
実施例1
(1)0.67K/s という加熱速度でガラス遷移温度と結晶化温度の差が約82K であるZr55Al10Ni5Cu30 非晶質合金材料の板を、13mm×4.5mm で厚さ2mm に加工して接合試験片を作製した。この試験片を、図1に示すように、電極に取り付け、50MPa の荷重を付加した状態で、最大パルス電流2kA、パルス電流半減時間0.02秒のパルス電流を流して、非晶質合金材料を接合した。
【0023】
図2に示すように、接合部材の接合部には長さXの張り出しCが形成されていた。接合試験片の引張試験を行った結果、引張強度が1500MPa であり、Zr55Al10Ni5Cu30 非晶質合金材料自身の引張強度が得られ、強固に接合していることが明らかになった。
【0024】
また、図3に示すように、接合試験片の接合部の断面には欠陥が観察されず、接合面全体に亘って強固に接合していることが分かった。また、この断面のマイクロエリアX線回折実験の結果、図4に示すように、回折図形には、結晶相に対応する回折ピークは見られず、非晶質合金に特有のハロー図形のみが見られ、非晶質相を保持して接合していることが明らかになった。
【0025】
実施例2
0.67K/s という加熱速度でガラス遷移温度と結晶化温度の差が約82K であるZr55Al10Ni5Cu30 非晶質合金材料の板を、13mm×4.5mm で厚さ2mm に加工して接合試験片を作製した。この試験片を実施例1と同様に、電極に取り付け、50MPa の荷重を付加した状態で、最大パルス電流40kA、パルス電流の半減時間0.04秒のパルス電流を流して、非晶質合金材料を接合した。
【0026】
接合試験片の接合部の断面には欠陥が観察されず、接合面全体に亘って強固に接合していることが分かった。また、この断面のマイクロエリアX線回折実験の結果、回折図形には、結晶相に対応する回折ピークが観察され、結晶化していることが明らかになった。
【0027】
実施例3
0.67K/s という加熱速度でガラス遷移温度と結晶化温度の差が約82K であるZr55Al10Ni5Cu30 非晶質合金材料の板を、13mm×4.5mm で厚さ2mm に加工して接合試験片を作製した。この試験片を、電極に取り付け、50MPa の荷重を付加した状態で、最大パルス電流2kA、パルス電流の半減時間0.2 秒のパルス電流を流して、非晶質合金材料を接合した。
【0028】
接合試験片の接合部の断面には欠陥が観察されず、接合面全体に亘って強固に接合していることが分かった。また、この断面のマイクロエリアX線回折実験の結果、回折図形には、結晶相に対応する回折ピークが観察され、一部結晶化していることが明らかになった。
【0029】
実施例4
0.67K/s という加熱速度でガラス遷移温度と結晶化温度の差が約73K であるPd40Ni40P20 非晶質合金材料の丸棒材を加工して直径4mm の接合試験片を作製した。この試験片を、電極に取り付け、30MPa の荷重を付加した状態で、最大パルス電流2kA、パルス電流の半減時間0.02秒のパルス電流を流して、非晶質合金材料を接合した。
【0030】
接合試験片の引張試験を行った結果、引張強度が1600MPa であり、Pd40Ni40P20 非晶質合金材料自身の引張強度が得られ、強固に接合していることが明らかになった。また、接合試験片の接合部の断面には、欠陥が観察されず、接合面全体に亘って強固に接合していることが分かった。
【0031】
また、この断面のマイクロエリアX線回折を行った結果、その回折図形には結晶相に対応する回折ピークは見られず、非晶質合金に特有のハロー図形のみが見られ、非晶質相を保持して接合していることが明らかになった。
【0032】
実施例5
0.67K/s という加熱速度でガラス遷移温度と結晶化温度の差が約85K であるPd40Cu30Ni10P20 非晶質合金材料の丸棒材を加工して直径4mm の接合試験片を作製した。この試験片を、電極に取り付け、30MPa の荷重を付加した状態で、最大パルス電流2kA、パルス電流の半減時間0.02秒のパルス電流を流して、非晶質合金材料を接合した。
【0033】
接合試験片の引張試験を行った結果、引張強度が1600MPa であり、Pd40Cu30Ni10P20 非晶質合金材料自身の引張強度が得られ、強固に接合していることが明らかになった。また、接合試験片の接合部の断面には、欠陥が観察されず、接合面全体に亘って強固に接合していることが分かった。
【0034】
また、この断面のマイクロエリアX線回折を行った結果、その回折図形には結晶相に対応する回折ピークは見られず、非晶質合金に特有のハロー図形のみが見られ、非晶質相を保持して接合していることが明らかになった。
【0035】
実施例6
0.67K/s という加熱速度でガラス遷移温度と結晶化温度の差が約120KであるZr47Ti8Cu7.5Ni10Be27.5非晶質合金材料の板を、13mm×4.5mm で厚さ2mm に加工して接合試験片を作製した。この試験片を、電極に取り付け、70MPa の荷重を付加した状態で、最大パルス電流2kA、パルス電流の半減時間0.02秒のパルス電流を流して、非晶質合金材料を接合した。
【0036】
接合試験片の引張試験を行った結果、引張強度が1900MPa であり、Zr47Ti8Cu7.5Ni10Be27.5非晶質合金材料自身の引張強度が得られ、強固に接合していることが明らかになった。また、接合試験片の接合部の断面には、欠陥が観察されず、接合面全体に亘って強固に接合していることが分かった。
【0037】
また、この断面のマイクロエリアX線回折を行った結果、その回折図形には結晶相に対応する回折ピークは見られず、非晶質合金に特有のハロー図形のみが見られ、非晶質相を保持して接合していることが明らかになった。
【0038】
実施例7
0.67K/s という加熱速度でガラス遷移温度と結晶化温度の差が約82K であるZr55Al10Ni5Cu30 非晶質合金材料と通常のアルミニウム材の板を、13mm×4.5mm で厚さ2mm に加工して接合試験片を作製した。この試験片を、電極に取り付け、30MPa の荷重を付加した状態で、最大パルス電流2kA、パルス電流の半減時間0.02秒のパルス電流を流して、非晶質合金材料を接合した。
【0039】
接合試験片の引張試験を行った結果、引張強度が400MPaであり、アルミニウム材自身の引張強度が得られ、強固に接合していることが明らかになった。また、接合試験片の接合部の断面には、欠陥が観察されず、接合面全体に亘って強固に接合していることが分かった。
【0040】
また、この断面のマイクロエリアX線回折実験の結果、非晶質合金材料の部分の回折図形には、結晶相に対応する回折ピークは見られず、非晶質合金に特有のハロー図形のみが見られ、非晶質相を保持して接合していることが明らかになった。
【0041】
実施例8
0.67K/s という加熱速度でガラス遷移温度と結晶化温度の差が約120KであるZr47Ti8Cu7.5Ni10Be27.5非晶質合金材料と通常の軟鋼材の板を、13mm×4.5mm で厚さ2mm に加工して接合試験片を作製した。この試験片を、電極に取り付け、100MPaの荷重を付加した状態で、最大パルス電流2.5kA、パルス電流の半減時間0.03秒のパルス電流を流して、非晶質合金材料を接合した。
【0042】
接合試験片の引張試験を行った結果、引張強度が800MPaであり、軟鋼材自身の引張強度が得られ、強固に接合していることが明らかになった。また、接合試験片の接合部の断面には、欠陥が観察されず、接合面全体に亘って強固に接合していることが分かった。
また、この断面のマイクロエリアX線回折実験の結果、非晶質合金材料の部分の回折図形には、結晶相に対応する回折ピークは見られず、非晶質合金に特有のハロー図形のみが見られ、非晶質相を保持して接合していることが明らかになった。
【0043】
比較例1
0.67K/s という加熱速度でガラス遷移温度と結晶化温度の差が約82K であるZr55Al10Ni5Cu30 非晶質合金材料の板を、13mm×4.5mm で厚さ2mm に加工して接合試験片を作製した。この試験片を、電極に取り付け、50MPa の荷重を付加した状態で、最大パルス電流1kA 、パルス電流の半減時間0.02秒のパルス電流を流して、非晶質合金材料を接合した。しかし、電流が小さく溶融状態まで急速加熱されなかったために、接合試験片の接合部の断面を観察した結果、図5に示すように、元の接合界面が観察され、一部接合はしているが、接合面の殆どは接合していないことが分かった。
【0044】
【発明の効果】
本発明の非晶質を保持した状態で充分な強度が得られる非晶質合金材料の接合方法により非晶質合金材料の接合が容易になり非晶質合金材料の応用範囲を拡げることができる。
【図面の簡単な説明】
【図1】実施例1のパルス通電による接合装置の概念図である。
【図2】実施例1で溶接した非晶質合金接合部材(Zr55Al10Ni5Cu30 非晶質合金材料/ Zr55Al10Ni5Cu30 非晶質合金材料)の形状を示す側面図である。
【図3】実施例1で溶接した非晶質合金接合部材の接合部断面の図面代用光学顕微鏡写真である。
【図4】実施例1で溶接した非晶質合金接合部材の接合部断面のマイクロエリアX線回折図形である。
【図5】比較例1で溶接した非晶質合金接合部材(Zr55Al10Ni5Cu30 非晶質合金材料/ Zr55Al10Ni5Cu30 非晶質合金材料)の接合部断面の図面代用光学顕微鏡写真である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pulse current joining method that enables joining of amorphous alloy materials or between an amorphous alloy material and a crystalline alloy material, and expands the application range of the amorphous alloy material.
[0002]
[Prior art and its problems]
Recently, various amorphous alloy materials have been developed that exhibit a glass transition before crystallization, have a wide supercooled liquid region, and exhibit a large amorphous forming ability. Since these amorphous alloy materials have a larger amorphous forming ability than conventional amorphous alloy materials, they are special in that a large cooling rate such as a single roll liquid quenching method can be obtained. As well as simple methods, it becomes amorphous by using a general casting method with a relatively low cooling rate, such as Cu mold casting or water quenching, and bulk amorphous alloy materials can be produced relatively easily. As a result, various practical applications have been studied.
[0003]
When the amorphous alloy material is welded, not only the welded portion is crystallized but also the heat-affected zone is crystallized, so that it cannot be welded like a general metal material. Further, even in the solid phase diffusion bonding method using atomic diffusion at high temperature, it is crystallized when heated to a high temperature at which atomic diffusion actively occurs, and bonding with the amorphous phase maintained cannot be performed.
[0004]
About 15 years ago, solid-state bonding of amorphous ribbons was attempted by ultrasonic bonding, but the amorphous alloy material has high strength, so bonding is insufficient and crystallization occurs. There was a problem that. Other than this, there are no reports in academic journals or academic societies that successful bonding of amorphous alloy materials.
[0005]
On the other hand, a method has been reported by academic societies and the like to apply a pulsed current to amorphous alloy material powder in a pressurized state so that the powder can be bonded together and solidified to a high density while maintaining the amorphous state. ing. This sintering method in which a pulse current is passed is called a discharge plasma sintering method or a pulsed current sintering method, and an apparatus is also commercially available. However, in the pulse current sintering of the amorphous alloy material powder, there are problems that the powders are not sufficiently joined, the density is low, and crystallization occurs.
[0006]
Japanese Patent Application Laid-Open No. 8-192278 reports a method of joining an amorphous alloy material ribbon by flowing an alternating current under pressure. In the method using these pulses and alternating current, the temperature is suppressed below the crystallization temperature, and the non-appearance of the active surface due to the destruction of the surface oxide film due to the heating up to the crystallization temperature or below, and the rapid heating. This is a method of joining crystalline alloy materials.
[0007]
However, these methods have a problem that a powder or ribbon oxide film remains at the bonding interface. Furthermore, since the temperature at the time of bonding is a temperature that is about half the melting point that is equal to or lower than the crystallization temperature, the diffusion of atoms for obtaining a strong bond is insufficient. For these reasons, a strong bonding cannot be obtained by a method using a pulse or an alternating current.
[0008]
As described above, the application range of the amorphous alloy material is considerably limited because the amorphous alloy materials and the amorphous alloy material cannot be bonded to other crystal materials. The development of this joining method was eagerly desired.
[0009]
[Means for Solving the Problems]
The present invention utilizes the amorphous forming ability and the thermally stable supercooled liquid state of the amorphous alloy material described above to make use of amorphous alloy materials or between amorphous alloy material and crystalline alloy material. It is an object of the present invention to provide a method for joining amorphous alloy materials that can be firmly joined to each other and a joining member joined by this method.
[0010]
That is, the present invention relates to amorphous alloy materials, or an amorphous alloy material and a crystal material while being pressed at a pressure of 5 MPa or more, and the peak value of the pulse current is 0.15 kA / mm 2 between the materials. As described above, by applying a pulse current in which the time from the rise of the pulse current to the half of the peak is 0.1 second or less, a part or all of the joined portion of the amorphous alloy material is rapidly heated to a molten state. with the formation of the projecting portion due to the flow deformation of the joint portion, the amorphous alloy material together, characterized that you joined while holding the amorphous state of an amorphous alloy material, or amorphous alloy This is a method of joining a material and a crystalline material.
[0012]
Further, the present invention is characterized in that the amorphous alloy material which exhibits glass transition at a heating rate of 0.67 K / s and has a difference between the glass transition temperature and the crystallization temperature of 30 K or more is bonded. It is a joining method.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to bonding of an amorphous alloy material having a glass transition and high amorphous forming ability, and a pulsed large current is allowed to flow between the bonding materials in a very short time in a pressurized state. As shown in FIG. 2 by rapidly raising the bonding interface to a temperature higher than the melting point, rapidly cooling the melting and heat affected zone by heat conduction to the base material and heat radiation to the outside air, and pressurizing during welding, It is characterized in that the overhanging portion C having a length X is formed, and only the joint is heated. This is a method that enables welding of a crystalline alloy material and a crystalline alloy material.
[0015]
FIG. 1 conceptually shows a configuration of a joining apparatus using pulse energization, in which a joining material A and a joining material B are attached to an electrode 1 and an electrode 2, and an electrode 1 and an electrode 2 are attached to a transformer 4 connected to a capacitor 3. Connect. First, predetermined electricity is stored in the capacitor 3 by adjusting the voltage, and at the moment when the pressure applied between the joining materials by pressing the electrode B in the axial direction with the hydraulic press 7 reaches the predetermined pressure, the electricity stored in the capacitor is stored. Is discharged at once. The toroidal core 5 detects the welding current, and the current recorder 6 records the current detected by the toroidal core 5. As a result, the current waveform flowing between the bonding materials AB, the maximum value of the current, and the time during which the current flows can be measured.
[0016]
In the method of the present invention, it is necessary to heat the joint only to a temperature equal to or higher than the melting point and to firmly weld in a short time in a state in which the amorphous state is maintained while avoiding crystallization. 1) Melting of only the joint, (2) Adhesion of the joint melt surface between the joint materials, (3) Removal of the oxide film at the joint interface, (4) Amorphous retention of the weld, (5) Heat affected zone It is necessary to realize the amorphous retention.
[0017]
As a means to solve this problem, when thermal analysis is performed at a heating rate of 0.67 K / S, which is performed in normal thermal analysis, an amorphous alloy material whose difference between the crystallization temperature and the glass transition temperature is 30 K or more is used as a counterpart. Join the material.
[0018]
In addition, as a bonding condition, the pulse current time and peak current density are controlled, and the peak value of the pulse current is 0.15 kA / mm 2 or more and 0.3 kA / mm 2 or less, decreasing from the rise of the pulse current to half of the peak current. Time (half time) is 0.1 seconds or less, and the pressure applied between the materials during welding is 5 MPa or more and 500 MPa or less. If the current value is too low, it does not melt over the entire joint surface. If it is too high, the temperature of the joint surface will be too high, the volume of the melted part will be large, and the temperature of the heat affected zone will also be high, increasing the risk of crystallization. If the half time is too long, it will crystallize.
[0019]
When the applied pressure is too small, overhang formation is reduced and crystallization is facilitated. If it is too high, the heat-affected zone of the base material will be deformed. The length X of the overhang portion C is desirably 0.2 mm or more. When the length X of the overhanging portion C is less than 0.2 mm, the oxide is not sufficiently discharged, so that the oxide remains at the bonding interface, and high bonding strength cannot be obtained. In addition, the residual high temperature volume at the joint increases and the cooling of the joint slows down. As a result, the joint is easily crystallized.
[0020]
[Action]
According to this method, strong bonding can be obtained while maintaining the amorphous state by the following actions.
(1) Cleaning action of the joining surface by plasma generated in the early stage of discharge, (2) Joining in a molten state by heating the welding interface to a temperature above the melting point, (3) Welding heated above the glass transition temperature A strong joint can be obtained by adhesion of the joint surface and destruction / dispersion / discharge of the surface oxide film by forming a projecting part by causing a part of the part to undergo fluid deformation under pressure.
[0021]
In addition, with regard to retention of amorphous properties, (1) the welding point melts so that the current flowing between the bonding materials does not cross the crystallization time-temperature-transition curve (TTT curve) due to the rapid rise in a short time. (2) The heat of the welded part is effectively quenched by heat transfer to the base metal and heat radiation to the outside air due to a sudden decrease in the current flowing between the joining materials. (3) During welding As a result of the pressurization of the weld, an overhang is formed in the welded portion, and the volume of the high-temperature welded portion is reduced accordingly, so that the welded portion is effectively quenched, thereby maintaining an amorphous property without crystallization and being strong. Can be welded to.
[0022]
【Example】
Example 1
(1) A Zr55Al10Ni5Cu30 amorphous alloy material plate with a difference between glass transition temperature and crystallization temperature of approximately 82K at a heating rate of 0.67 K / s is processed to a thickness of 2 mm with a thickness of 13 mm × 4.5 mm and a joint specimen Was made. As shown in Fig. 1, this test piece is attached to an electrode, and with a load of 50 MPa applied, a pulse current with a maximum pulse current of 2 kA and a pulse current half-life of 0.02 seconds is applied to join the amorphous alloy material. did.
[0023]
As shown in FIG. 2, an overhang C having a length X was formed at the joint portion of the joint member. As a result of the tensile test of the bonded specimen, the tensile strength was 1500 MPa, the tensile strength of the Zr55Al10Ni5Cu30 amorphous alloy material itself was obtained, and it was revealed that the bonded specimen was firmly bonded.
[0024]
Moreover, as shown in FIG. 3, it was found that no defects were observed in the cross section of the bonded portion of the bonded test piece, and the entire bonded surface was firmly bonded. Further, as a result of the micro-area X-ray diffraction experiment of this cross section, as shown in FIG. 4, no diffraction peak corresponding to the crystal phase is seen in the diffraction pattern, and only the halo pattern peculiar to the amorphous alloy is seen. It was revealed that the amorphous phase was retained and bonded.
[0025]
Example 2
A Zr55Al10Ni5Cu30 amorphous alloy material plate with a difference between the glass transition temperature and the crystallization temperature of approximately 82K at a heating rate of 0.67 K / s was processed to a thickness of 2 mm at 13 mm x 4.5 mm to produce a joint specimen. . In the same manner as in Example 1, this test piece was attached to the electrode, and with a 50 MPa load applied, a pulse current with a maximum pulse current of 40 kA and a pulse current with a half-life of 0.04 seconds was applied to join the amorphous alloy material. did.
[0026]
It was found that no defects were observed in the cross section of the bonded portion of the bonded test piece, and the entire bonded surface was firmly bonded. Further, as a result of the micro area X-ray diffraction experiment of this cross section, a diffraction peak corresponding to the crystal phase was observed in the diffraction pattern, and it became clear that the crystal was crystallized.
[0027]
Example 3
A Zr55Al10Ni5Cu30 amorphous alloy material plate with a difference between the glass transition temperature and the crystallization temperature of approximately 82K at a heating rate of 0.67 K / s was processed to a thickness of 2 mm at 13 mm x 4.5 mm to produce a joint specimen. . This test piece was attached to the electrode, and with a load of 50 MPa, a pulse current having a maximum pulse current of 2 kA and a pulse current with a half-life of 0.2 seconds was applied to join the amorphous alloy material.
[0028]
It was found that no defects were observed in the cross section of the bonded portion of the bonded test piece, and the entire bonded surface was firmly bonded. Moreover, as a result of the micro area X-ray diffraction experiment of this cross section, the diffraction peak corresponding to the crystal phase was observed in the diffraction pattern, and it became clear that it was partially crystallized.
[0029]
Example 4
A round specimen of Pd40Ni40P20 amorphous alloy material with a difference between the glass transition temperature and the crystallization temperature of about 73 K at a heating rate of 0.67 K / s was processed to produce a 4 mm diameter joint specimen. This test piece was attached to the electrode, and with a load of 30 MPa, a pulse current having a maximum pulse current of 2 kA and a pulse current with a half-life of 0.02 seconds was applied to join the amorphous alloy material.
[0030]
As a result of the tensile test of the bonded specimen, it was found that the tensile strength was 1600 MPa, the tensile strength of the Pd40Ni40P20 amorphous alloy material itself was obtained, and it was firmly bonded. In addition, it was found that no defects were observed in the cross section of the bonded portion of the bonded test piece, and the entire bonded surface was firmly bonded.
[0031]
Further, as a result of micro-area X-ray diffraction of this cross section, the diffraction pattern does not show a diffraction peak corresponding to the crystal phase, only a halo pattern peculiar to the amorphous alloy is seen, and the amorphous phase It was clarified that they were held and joined.
[0032]
Example 5
A round specimen of Pd40Cu30Ni10P20 amorphous alloy material with a difference between the glass transition temperature and the crystallization temperature of about 85K at a heating rate of 0.67 K / s was processed to produce a 4 mm diameter joint specimen. This test piece was attached to the electrode, and with a load of 30 MPa, a pulse current having a maximum pulse current of 2 kA and a pulse current with a half-life of 0.02 seconds was applied to join the amorphous alloy material.
[0033]
As a result of the tensile test of the joint specimen, it was found that the tensile strength was 1600 MPa, the tensile strength of the Pd40Cu30Ni10P20 amorphous alloy material itself was obtained, and the joint was firmly joined. In addition, it was found that no defects were observed in the cross section of the bonded portion of the bonded test piece, and the entire bonded surface was firmly bonded.
[0034]
Further, as a result of micro-area X-ray diffraction of this cross section, the diffraction pattern does not show a diffraction peak corresponding to the crystal phase, only a halo pattern peculiar to the amorphous alloy is seen, and the amorphous phase It was clarified that they were held and joined.
[0035]
Example 6
A Zr47Ti8Cu7.5Ni10Be27.5 amorphous alloy material plate with a difference between the glass transition temperature and the crystallization temperature of about 120K at a heating rate of 0.67K / s is processed to a thickness of 2mm at 13mm x 4.5mm and a bonding test. A piece was made. With this test piece attached to the electrode and a load of 70 MPa applied, a pulse current having a maximum pulse current of 2 kA and a pulse current half-life of 0.02 seconds was applied to join the amorphous alloy material.
[0036]
As a result of the tensile test of the joining test piece, the tensile strength was 1900 MPa, the tensile strength of the Zr47Ti8Cu7.5Ni10Be27.5 amorphous alloy material itself was obtained, and it was revealed that the joint was firmly joined. In addition, it was found that no defects were observed in the cross section of the bonded portion of the bonded test piece, and the entire bonded surface was firmly bonded.
[0037]
Further, as a result of micro-area X-ray diffraction of this cross section, the diffraction pattern does not show a diffraction peak corresponding to the crystal phase, only a halo pattern peculiar to the amorphous alloy is seen, and the amorphous phase It was clarified that they were held and joined.
[0038]
Example 7
Zr55Al10Ni5Cu30 amorphous alloy material with a difference between glass transition temperature and crystallization temperature of about 82K at a heating rate of 0.67 K / s and a normal aluminum plate are processed to a thickness of 2 mm with a thickness of 13 mm × 4.5 mm. A test piece was prepared. This test piece was attached to the electrode, and with a load of 30 MPa, a pulse current having a maximum pulse current of 2 kA and a pulse current with a half-life of 0.02 seconds was applied to join the amorphous alloy material.
[0039]
As a result of the tensile test of the joining test piece, it was revealed that the tensile strength was 400 MPa, the tensile strength of the aluminum material itself was obtained, and the joint was firmly joined. In addition, it was found that no defects were observed in the cross section of the bonded portion of the bonded test piece, and the entire bonded surface was firmly bonded.
[0040]
Moreover, as a result of the micro area X-ray diffraction experiment of this cross section, the diffraction pattern corresponding to the crystal phase is not seen in the diffraction pattern of the amorphous alloy material portion, and only the halo pattern peculiar to the amorphous alloy is found. As a result, it was revealed that the amorphous phase was retained and bonded.
[0041]
Example 8
A Zr47Ti8Cu7.5Ni10Be27.5 amorphous alloy material with a difference between glass transition temperature and crystallization temperature of about 120K at a heating rate of 0.67 K / s and a normal mild steel plate are 13 mm × 4.5 mm and 2 mm thick. The joint test piece was produced by processing. The test piece was attached to the electrode, and with a load of 100 MPa, a pulse current having a maximum pulse current of 2.5 kA and a pulse current half-life of 0.03 seconds was applied to join the amorphous alloy material.
[0042]
As a result of the tensile test of the joining test piece, it was revealed that the tensile strength was 800 MPa, the tensile strength of the mild steel material itself was obtained, and it was firmly joined. In addition, it was found that no defects were observed in the cross section of the bonded portion of the bonded test piece, and the entire bonded surface was firmly bonded.
Moreover, as a result of the micro area X-ray diffraction experiment of this cross section, the diffraction pattern corresponding to the crystal phase is not seen in the diffraction pattern of the amorphous alloy material portion, and only the halo pattern peculiar to the amorphous alloy is found. As a result, it was revealed that the amorphous phase was retained and bonded.
[0043]
Comparative Example 1
A Zr55Al10Ni5Cu30 amorphous alloy material plate with a difference between the glass transition temperature and the crystallization temperature of about 82K at a heating rate of 0.67 K / s was processed to a thickness of 2 mm at 13 mm × 4.5 mm to produce a joint specimen. . The specimen was attached to the electrode, and with a load of 50 MPa, a pulse current having a maximum pulse current of 1 kA and a pulse current half-life of 0.02 seconds was applied to join the amorphous alloy material. However, since the current was small and it was not rapidly heated to the molten state, as a result of observing the cross section of the bonded portion of the bonded test piece, the original bonded interface was observed and partially bonded as shown in FIG. However, it was found that most of the joining surfaces were not joined.
[0044]
【The invention's effect】
The bonding method of the amorphous alloy material which can obtain a sufficient strength while maintaining the amorphous state of the present invention facilitates the bonding of the amorphous alloy material and can expand the application range of the amorphous alloy material. .
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a bonding apparatus using pulse energization according to a first embodiment.
2 is a side view showing the shape of an amorphous alloy joint member (Zr55Al10Ni5Cu30 amorphous alloy material / Zr55Al10Ni5Cu30 amorphous alloy material) welded in Example 1. FIG.
FIG. 3 is a drawing-substituting optical micrograph of a joint section of an amorphous alloy joint member welded in Example 1;
4 is a microarea X-ray diffraction pattern of a cross section of a bonded portion of an amorphous alloy bonded member welded in Example 1. FIG.
FIG. 5 is a drawing-substituting optical micrograph of a cross-section of the bonded portion of the amorphous alloy bonded member welded in Comparative Example 1 (Zr55Al10Ni5Cu30 amorphous alloy material / Zr55Al10Ni5Cu30 amorphous alloy material).

Claims (2)

非晶質合金材料同士、または非晶質合金材料と結晶材料を加圧力が 5MPa 以上で加圧しながら付き合わせ、その材料間にパルス電流のピーク値が 0.15kA/mm 2 以上であり、パルス電流の立ち上がりからピークの半減までの時間が 0.1 秒以下であるパルス電流を流すことにより、非晶質合金材料の接合部の一部あるいは全てが溶融状態まで急速加熱されると共に接合部の流動変形による張り出し部の形成を伴って、非晶質合金材料の非晶質状態を保持した状態で接合ることを特徴とする非晶質合金材料同士、または、非晶質合金材料と結晶材料の接合方法。Amorphous alloy materials or amorphous alloy materials and crystal materials are bonded together while applying a pressure of 5 MPa or more, and the peak value of the pulse current is 0.15 kA / mm 2 between the materials. As described above, by applying a pulse current in which the time from the rise of the pulse current to the half of the peak is 0.1 second or less, a part or all of the joined portion of the amorphous alloy material is rapidly heated to a molten state. with the formation of the projecting portion due to the flow deformation of the joint portion, the amorphous alloy material together, characterized that you joined while holding the amorphous state of an amorphous alloy material, or amorphous alloy Bonding method of material and crystal material. 加熱速度0.67K/s の場合に、ガラス遷移を示し、ガラス遷移温度と結晶化温度の差が30K 以上である非晶質合金材料を接合することを特徴とする請求項1に記載の接合方法。 2. The bonding method according to claim 1, wherein an amorphous alloy material exhibiting glass transition at a heating rate of 0.67 K / s and having a difference between the glass transition temperature and the crystallization temperature of 30 K or more is bonded. .
JP2001081754A 2001-03-21 2001-03-21 Pulse current welding method of amorphous alloy material Expired - Fee Related JP3857535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001081754A JP3857535B2 (en) 2001-03-21 2001-03-21 Pulse current welding method of amorphous alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001081754A JP3857535B2 (en) 2001-03-21 2001-03-21 Pulse current welding method of amorphous alloy material

Publications (2)

Publication Number Publication Date
JP2002283060A JP2002283060A (en) 2002-10-02
JP3857535B2 true JP3857535B2 (en) 2006-12-13

Family

ID=18937795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001081754A Expired - Fee Related JP3857535B2 (en) 2001-03-21 2001-03-21 Pulse current welding method of amorphous alloy material

Country Status (1)

Country Link
JP (1) JP3857535B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016078099A1 (en) * 2014-11-19 2016-05-26 东莞宜安科技股份有限公司 Method for combining amorphous alloy members and nonmetal member, and product thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100608534B1 (en) 2005-06-29 2006-08-03 신형섭 Friction welding method and apparatus for bulk metallic glass
JP5382759B2 (en) * 2007-09-26 2014-01-08 国立大学法人 熊本大学 Joining method between metallic glass and crystalline metal
JP2010188373A (en) * 2009-02-17 2010-09-02 Olympus Corp Bonding method of metallic member and composite member
JP5623022B2 (en) 2009-03-25 2014-11-12 国立大学法人熊本大学 Welding method design method, welding method and welded joint
JP5706193B2 (en) * 2011-03-02 2015-04-22 株式会社タカコ Manufacturing method of sliding member
CN105344972B (en) * 2015-12-01 2017-12-29 华中科技大学 A kind of quick forming method of non-crystaline amorphous metal part
CN112590196B (en) * 2020-12-11 2022-10-28 中国空间技术研究院 3D printing method and device based on pulse current
CN113732478A (en) * 2021-08-04 2021-12-03 广东工业大学 Electric welding forming method for large-size amorphous alloy and block amorphous alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016078099A1 (en) * 2014-11-19 2016-05-26 东莞宜安科技股份有限公司 Method for combining amorphous alloy members and nonmetal member, and product thereof

Also Published As

Publication number Publication date
JP2002283060A (en) 2002-10-02

Similar Documents

Publication Publication Date Title
US5358796A (en) Joined parts of Ni-Ti alloys with different metals and joining method therefor
US7984840B2 (en) Dissimilar metal joining method
JP3857535B2 (en) Pulse current welding method of amorphous alloy material
Wang et al. Investigation of welding crack in laser welding-brazing welded TC4/6061 and TC4/2024 dissimilar butt joints
KR20180114139A (en) A method for improving the quality of aluminum resistance spot welding
CN102369078B (en) Method of designing welding method, method of welding and weld joint
CN107931840A (en) A kind of titanium nickel dissimilar welded joint induced with laser monotectic and uniform grain Reaction Welding method
Shi et al. Laser micro-welding technology for Cu–Al dissimilar metals and mechanisms of weld defect formation
JP2021079416A (en) Resistance spot welding method
US20080041922A1 (en) Hybrid Resistance/Ultrasonic Welding System and Method
JP3821656B2 (en) Friction welding method of amorphous alloy and joining member
JP3862640B2 (en) Resistance spot welding method for aluminum-based materials
Fujiwara et al. Weldability of Zr50Cu30Al10Ni10 bulk glassy alloy by small-scale resistance spot welding
JP2007502214A (en) Nanostructured soldered or brazed joints formed using reactive multilayer foils
JP5382759B2 (en) Joining method between metallic glass and crystalline metal
US3693243A (en) Method and apparatus for cladding metals
JP7433663B2 (en) Dissimilar material solid phase joining method, dissimilar material solid phase joining structure, and dissimilar material solid phase joining device
JPS60170907A (en) Wound magnetic core and manufacture of the same
Casalino et al. Microstructural analysis of AISI 304 bars welded with high speed pulsed discharges
US7150799B2 (en) Weld nugget inoculation
JPH05185245A (en) Method for resistant-welding low electric resistant metal member
JP2737817B2 (en) Joint between Ni-Ti alloy and dissimilar metal and joining method thereof
KR20170141031A (en) Metal sheets spot welding with inoculation agents
JP3229759B2 (en) How to join metal members
JPH04356373A (en) Resistance spot welding method for aluminum materials

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees