JP3857108B2 - Electroless plating method - Google Patents

Electroless plating method Download PDF

Info

Publication number
JP3857108B2
JP3857108B2 JP2001345267A JP2001345267A JP3857108B2 JP 3857108 B2 JP3857108 B2 JP 3857108B2 JP 2001345267 A JP2001345267 A JP 2001345267A JP 2001345267 A JP2001345267 A JP 2001345267A JP 3857108 B2 JP3857108 B2 JP 3857108B2
Authority
JP
Japan
Prior art keywords
plated
sealed chamber
treated
plating
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001345267A
Other languages
Japanese (ja)
Other versions
JP2003147539A (en
Inventor
恭一 秋本
容宝 鄭
Original Assignee
電化皮膜工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電化皮膜工業株式会社 filed Critical 電化皮膜工業株式会社
Priority to JP2001345267A priority Critical patent/JP3857108B2/en
Publication of JP2003147539A publication Critical patent/JP2003147539A/en
Application granted granted Critical
Publication of JP3857108B2 publication Critical patent/JP3857108B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Chemically Coating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、処理液に被処理材を浸漬させることで、被処理材に無電解めっきを施す無電解めっき方法に関する。
【0002】
【従来の技術】
液相による表面処理方法には、例えば、金属部品等の被処理材の表面に金属膜等を電気化学的に成膜形成するめっき方法、被処理材の表面に不動態化膜を成膜させる不動態化処理、被処理材に化成膜を成膜させる化成処理、或いは被処理材に液相状態で研磨を施す化学研磨処理等がある。
【0003】
例えば、めっき方法は、セラミックやガラス、樹脂等の部品や金属製品等の被めっき材の耐食性、耐熱性や電磁気特性或いは装飾性等を高めるために、被めっき材の表面に金属めっき膜を成膜形成する方法である。めっき方法には、電解めっき方法と無電解めっき方法とがある。
【0004】
無電解めっき方法は、無電解めっき液中で起こる酸化還元反応により生成する金属を被めっき材の表面に析出させる。無電解めっき液は、被めっき材の表面に析出させる金属の塩とその金属の塩を酸化させる還元剤とを含有する溶液である。無電解めっき方法では、無電解めっき液中に含有される金属の塩の種類によって、ニッケル、銅、金或いは銀等の金属めっき膜を被めっき材の表面に成膜形成するめっき処理を施すことができる。無電解めっき方法は、このようにめっき液中で起こる酸化還元反応により被めっき材の表面に金属めっき膜を成膜形成することから、比較的簡昜な装置によって行われる。
【0005】
無電解めっき方法は、被めっき材とめっき液とが接触した被めっき材の表面に金属めっき膜が成膜形成されるため、被めっき材の表面にめっき液がよく行き渡るようにしてめっき欠けの発生を防止することが図られる。めっき液を行き渡らせる方法としては、例えば、めっき槽に攪拌羽根等を備える攪拌機構や超音波を発する超音波機構を備えめっき液を攪拌させる方法がある。無電解めっき方法は、金属以外にも樹脂やセラミック、ガラス等の様々な材質の表面に金属めっき膜を成膜形成することが可能であるといった特徴をもつ。
【0006】
【発明が解決しようとする課題】
しかしながら、上述した無電解めっき方法では、被めっき材に微小孔いわゆる直径が数ミクロン単位の貫通孔や有底穴、或いは表面に複雑な微細構造を有する場合にめっき液に被めっき材を浸漬させると、微小孔や微細構造内の空気等の気体がめっき液によって閉じ込められてしまうことがある。そして、無電解めっき方法では、上述したようにめっき液を攪拌機構等で攪拌をしても、被めっき材の微小孔や微細構造内に閉じ込められた気泡とめっき液との境界で作用する表面エネルギーによって、微小孔や微細構造内から気泡を除去することが困難であった。したがって、この無電解めっき方法では、微小孔や微細構造内に閉じ込められた気泡によって被めっき材の微小孔や微細構造の内面とめっき液とを接触させることが困難となり、微小孔や微細構造の内面にめっき欠けが発生してしまうことがあった。なお、上述した無電解めっき方法に限らず、他の液相による表面処理方法でも同様に皮膜欠けが発生してしまうことがある。
【0007】
そこで、本発明は、被処理材に形成された微小孔や表面の複雑な微細構造の内面に皮膜欠けが発生すること防止し、均一な膜厚の被膜を被処理材に施すことを可能とする無電解めっき方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上述した目的を達成する本発明にかかる無電解めっき方法は、微小孔及び/又は表面の複雑な微細構造を有する被処理材に無電解めっきを施すための処理液を充填した複数の処理槽と、複数の処理槽が収納される密閉可能な密閉チャンバーと、この密閉チャンバー内を減圧状態にする減圧手段と、被処理材を運搬する運搬手段とを備える液相表面処理装置が用いられ、被処理材を脱脂処理液中に浸漬し、減圧手段によって上記密閉チャンバー内を減圧状態にして被処理材に脱脂処理を施し、脱脂処理された被処理材を純水中に浸漬し、減圧手段によって密閉チャンバー内を減圧状態にして被処理材に第1の純水洗浄処理を施し、第1の純水洗浄処理された被処理材を酸性溶液中に浸漬し、減圧手段によって密閉チャンバー内を減圧状態にして被処理材に酸洗浄処理を施し、酸洗浄処理された被処理材をアルカリ溶液中に浸漬し、減圧手段によって密閉チャンバー内を減圧状態にして被処理材に中和処理を施し、中和処理された被処理材をめっき液中に浸漬し、減圧手段によって密閉チャンバー内を減圧状態にして被処理材にめっき処理を施し、めっき処理された被処理材を純水中に浸漬し、減圧手段によって密閉チャンバー内を減圧状態にして被処理材に第2の純水洗浄処理を施すことを特徴とする。
【0009】
この無電解めっき方法によれば、処理槽が収納される密閉チャンバー内を減圧機構によって減圧状態にすることで、処理液に浸漬させた被処理材の微小孔や微細構造内に閉じ込められた気泡の体積が大きくなることから、気泡の浮力が増して微小孔や微細構造の内面から気泡が除去され、被処理材の微小孔や微細構造の内面全面に処理液が接触するように処理液を行き渡らせることができる。したがって、無電解めっき方法によれば、脱脂処理、第1の純水洗浄処理、酸洗浄処理、中和処理、めっき処理、及び第2の純水洗浄処理の際、被処理材の微小孔や微細構造内の内面に皮膜欠けが発生することを防止し、均一な膜厚の被膜が成膜形成される。
【0010】
また、本発明にかかる液相による無電解めっき方法は、密閉チャンバー内の減圧状態を保持したまま、運搬手段によって被処理材に脱脂処理、第1の純水洗浄処理、酸洗浄処理、中和処理、めっき処理、及び第2の純水洗浄処理を順次施すことを特徴とする。
【0011】
この無電解めっき方法によれば、密閉チャンバー内の減圧状態を保持したまま、運搬手段によって被処理材に脱脂処理、第1の純水洗浄処理、酸洗浄処理、中和処理、めっき処理、及び第2の純水洗浄処理を順次施すことで、工程毎に減圧状態にして常圧状態に戻す作業を必要とせずに無電解めっきを施すことができる。したがって、製造工程が簡略され、製造コストの削減が図られる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して詳細に説明する。実施の形態として示す液相による表面処理方法は、図1に示すように被処理材である被めっき材2に対してニッケルめっき膜3を無電解ニッケルめっき方法により成膜形成させる方法をである。被めっき材2は、微小孔いわゆる数ミクロン単位の貫通孔や有底孔、アンダーカット部又は表面が複雑な微細構造等を有する金属や樹脂、セラミック、ガラス等の部材からなる。
【0013】
無電解めっき装置1は、めっき機構4と乾燥機構5とから構成されている。めっき機構4は、密閉チャンバー6と減圧ポンプ7と開閉弁8とから構成されている。密閉チャンバー6内には、被めっき材2にめっき処理を施すために複数の槽が設けられている。密閉チャンバー6には、具体的に脱脂槽9と、第1の純水洗浄槽10と、酸洗浄槽11と、中和槽12と、めっき槽13と、第2の純水洗浄槽14とが備えられている。なお、密閉チャンバー6は、各工程ごとに設けて各処理を行うことも可能である。
【0014】
脱脂槽9には、被めっき材2の表面に付着している油分を除去することが可能な脱脂液15が充填されている。脱脂槽9は、被めっき材2を脱脂液15に浸漬させることで、被めっき材2の表面に付着する油分を除去する。
【0015】
第1の純水洗浄槽10には、被めっき材2の表面に残留する脱脂液15を洗浄する純水16が充填されている。第1の純水洗浄槽10では、被めっき材2を純水16に浸漬させることで、被めっき材2の表面に付着した脱脂液15を除去する。
【0016】
酸洗浄槽11には、被めっき材2の表面に付着している酸化皮膜等の化学反応により吸着している汚れの除去を可能とする酸性溶液17が充填されている。酸洗浄槽11では、被めっき材2を酸性溶液17に浸漬させることで、被めっき材2の表面に付着している酸化皮膜等を除去する。
【0017】
中和槽12には、被めっき材2の表面に残留する酸性溶液17を中和するためのアルカリ溶液18が充填されている。中和槽12では、被めっき材2をアルカリ溶液18に浸漬させることで、被めっき材2の表面に付いている酸性溶液17を中和する。
【0018】
めっき槽13には、ニッケルを析出して被めっき材2の表面にニッケルめっき膜3を成膜形成することが可能な無電解ニッケルめっき液19が充填されている。無電解ニッケルめっき液19には、塩化ニッケル等の金属の塩と次亜リン酸ナトリウム等の還元剤とを含む混合溶液を用いる。めっき槽13は、被めっき材2を無電解ニッケルめっき液19に浸漬させることで、被めっき材2の表面にニッケルめっき膜3を成膜成形する。
【0019】
第2の純水洗浄槽14には、被めっき材2の表面に残留する無電解ニッケルめっき液19を洗浄するために、第1の純水洗浄槽10に充填されている純水16と同様の純水16が充填されている。第2の純水洗浄槽14は、ニッケルめっき膜3を成膜形成した被めっき材2を純水16に浸漬させることで、被めっき材2の表面に残留する無電解ニッケルめっき液19を除去する。
【0020】
上述した各槽には、それぞれ充填された溶液の濃度を均一に保ち、また溶液や純水16が被めっき材2の表面に十分接触するようにするため、溶液や純水16を攪拌させるための攪拌羽根20aを有する攪拌機構20や超音波による振動によって攪拌させる超音波機構21が備えられている。また、めっき槽13には、めっき槽13内に充填された無電解ニッケルめっき液19の液温を90〜100℃の範囲に保つための加熱機構22が備えられている。
【0021】
密閉チャンバー6は、減圧ポンプ7を駆動し、開閉弁を調節することにより内部の気体を排気させることで減圧状態とされる。
【0022】
開閉弁8は、減圧ポンプ7と密閉チャンバー6との間で接続管23a、23bによって接続されている。開閉弁8は、密閉チャンバー6と作動している減圧ポンプ7とを接続管23a、23bを介して連通するように開放操作することで、密閉チャンバー6内を減圧状態にする。また、開閉弁8は、密閉チャンバー6が所定の減圧状態に達した際に密閉チャンバー6と減圧ポンプ7とを遮断するように閉口操作することで、密閉チャンバー6内の圧力を一定の減圧状態に保持する。開閉弁8は、密閉チャンバー6と外部とを接続管23aを介して連通するように開放操作することで、密閉チャンバー6内の圧力を常圧状態にする。
【0023】
乾燥機構5は、密閉チャンバー6の外部に設けられており、例えば清浄エアーブローや加熱乾燥炉等を用いることで、めっき処理が施された被めっき材2の表面に残留する水分を除去する。
【0024】
上述した構成の無電解めっき装置1では、図2に示すように、被めっき材2にめっき処理を施す際に密閉チャンバー6内の圧力を減圧状態にすることで、被めっき材2の微小孔や微細構造内に閉じ込められた気泡24の除去を行う。
【0025】
具体的に、無電解めっき装置1は、図2(A)に示すように、減圧前の密閉チャンバー6内において、被めっき材2を無電解ニッケルめっき液19に浸漬させると、被めっき材2の微小孔や微細構造内に気泡24が閉じ込められてしまう。次に、無電解めっき装置1では、図2(B)に示すように、密閉チャンバー6内を減圧することによって、被めっき材2の微小孔や微細構造の内面2aに閉じ込められた気泡24の体積が増加する。次に、無電解めっき装置1では、図2(C)に示すように、被めっき材2の微小孔や微細構造内に閉じ込められた気泡24の体積が増加することによって浮力が増し、被めっき材2の微小孔や微細構造の内面2aから気泡が離脱する。次に、無電解めっき装置1では、図2(D)に示すように、被めっき材2の微小孔や微細構造内から気泡24が除去される。したがって、無電解めっき装置1では、めっき槽13において被めっき材2の微小孔や微細構造の内面2a全面に無電解ニッケルめっき液19が接触するように無電解ニッケルめっき液19を行き渡らせることができる。
【0026】
同様に、無電解めっき装置1では、被めっき材2にめっき処理を施す前の被めっき材2に脱脂、洗浄を行う際にも密閉チャンバー6内の圧力を減圧状態にする。 無電解めっき装置1では、例えば被めっき材2の表面を脱脂槽9で脱脂する場合、図3(A)に示すように、減圧前の密閉チャンバー6内において、脱脂液15に浸漬させた被めっき材2の微小孔や微細構造内の気体が脱脂液15によって閉じ込められてしまう。次に、無電解めっき装置1では、図3(B)に示すように、密閉チャンバー6を減圧することによって、被めっき材2の微小孔や微細構造内に閉じ込められた気泡24の体積が増加する。そして、無電解めっき装置1では、図3(C)に示すように、被めっき材2の微小孔や微細構造内に閉じ込められた気泡24の体積が増加することによって浮力が増し、被めっき材2の微小孔や微細構造の内面2aから離脱するとともに油脂25も除去される。次に、無電解めっき装置1では、図3(D)に示すように、被めっき材2の微小孔や微細構造内から気泡24が離脱する。これにより、無電解めっき装置1では、脱脂槽9において、被めっき材2の微小孔や微細構造の内面2a全面を適切に洗浄することが可能であり、微小孔や微細構造の内面2aに付着している油脂25も除去される。
【0027】
次に、上述した無電解めっき装置1を用いた無電解ニッケルめっき方法について説明する。上述した無電解めっき装置1を用いた無電解ニッケルめっき方法は、図4に示すように、脱脂工程S1と、第2の純水洗浄工程S2と、酸洗浄工程S3と、中和工程S4と、めっき処理工程S5と、第2の純水洗浄工程S6と、乾燥工程S7とを有する。
【0028】
先ず、被めっき材2には、脱脂工程S1が施される。脱脂工程S1では、被めっき材2に脱脂を施す際は、脱脂槽9に充填されている脱脂液15に被めっき材2を浸漬させる。脱脂液15には、アセトンやメタノール等の有機溶媒、洗剤等の脱脂液を用いる。次に、脱脂工程S1では、被めっき材2が浸漬されている脱脂液15に超音波機構21による周波数20KHz乃至50KHzの超音波と攪拌機構20による回転数5回/分の攪拌を加えながら、密閉チャンバー6と減圧ポンプ7とを接続管23a、23bを介して連通するように開閉弁8を開放操作して密閉チャンバー6内の圧力を大気圧に対して1Pa以下の減圧状態にする。このとき、脱脂工程S1では、密閉チャンバー6内を減圧することで被めっき材2の微小孔や微細構造物内に閉じ込められた気泡24が除去される。
【0029】
次に、脱脂工程S1では、密閉チャンバー6と外部とを接続管23aを介して連通するように開閉弁8を開放操作して、密閉チャンバー6内の圧力を常圧状態に戻す。次に、被めっき材2は、脱脂液15から取り出される。このようにして、脱脂工程S1では、被めっき材2に付着している油脂25を除去する。
【0030】
次に、被めっき材2には、第1の純水洗浄工程S2を施す。第1の純水洗浄工程S2では、被めっき材2に純水洗浄を行う際に、第1の純水洗浄槽10に充填されている純水16に被めっき材2を浸漬させる。次に、第1の純水洗浄工程S2は、被めっき材2を浸漬させている純水16に超音波機構21による周波数20乃至50KHzの超音波と攪拌機構20による回転数60回/分の攪拌を加えながら、密閉チャンバー6と減圧ポンプ7とを接続管23a、23bを介して連通するように開閉弁8を開放操作して、密閉チャンバー6内の圧力を大気圧に対して1Pa以下の減圧状態にする。このとき、第1の純水洗浄工程S2では、被めっき材2の微小孔や微細構造内に閉じ込められた気泡24が除去されるとともに、微小孔や微細構造の内面2a付着する前脱脂工程S1で用いた脱脂液15が押し出される。
【0031】
次に、第1の純水洗浄工程S2では、密閉チャンバー6と外部とを接続管23aを介して連通するように開閉弁8を開放操作して、密閉チャンバー6内の圧力を常圧状態に戻す。次に、被めっき材2は、純水16から取り出される。このようにして、第2の純水洗浄工程S2では、被めっき材2に付着する脱脂液15を除去する。
【0032】
次に、被めっき材2には、酸洗浄工程S3を施す。酸洗浄工程S3では、被めっき材2に酸洗浄を行う際に、酸洗浄槽11に充填されている酸性溶液17に被めっき材2を浸漬させる。酸性溶液17には、塩酸10%と硫酸10%の混合溶液を用いる。次に、酸洗浄工程S3では、被めっき材2を浸漬させている酸性溶液17に超音波機構21による周波数20〜40KHzの超音波と攪拌機構20による60回/分の攪拌とを加えながら、密閉チャンバー6と減圧ポンプ7とを接続管23を介して連通するように開閉弁8を開放操作して、密閉チャンバー6内の圧力を大気圧に対して1Pa以下の減圧状態にする。このとき、酸洗浄工程S3では、被めっき材2の微小孔や微細構造内に閉じ込められた気泡24が除去されるとともに、前第1の純水洗浄工程S2で用いた純水16が押し出される。
【0033】
次に、酸洗浄工程S3では、密閉チャンバー6と外気とを接続管23aを介して連通するように開閉弁8を開放操作して、密閉チャンバー6内を常圧状態に戻す。次に、被めっき材2は、酸性溶液17から取り出される。このようにして、酸洗浄工程S3では、被めっき材2に付着している酸化被膜を除去する。
【0034】
次に、被めっき材2には、中和工程S4を施す。中和工程S4では、被めっき材2に中和を行う際に、中和槽12に充填されているアルカリ溶液18に被めっき材2を浸漬させる。アルカリ溶液18は、5乃至10%のアルカリ溶液18を用いる。次に、中和工程S4では、常温下で、超音波機構21による周波数20乃至100KHzの超音波と攪拌機構20による回転数60回/分の攪拌を加えながら、密閉チャンバー6と減圧ポンプ7とを接続管23を介して連通するように開閉弁8を開放操作して、密閉チャンバー6内の圧力を大気圧に対して1Pa以下の減圧状態にする。このとき、中和工程S4では、被めっき材2の微小孔や微細構造内に閉じ込められた気泡24が除去されるとともに、前酸洗浄工程S3で用いた酸性溶液17が押し出される。
【0035】
次に、中和工程S4では、密閉チャンバー6と外部とを接続管23aを介して連通するように開閉弁8を開放操作して、密閉チャンバー6内の圧力を常圧状態に戻す。次に、被めっき材2は、アルカリ溶液18から取り出される。このようにして、中和工程S4では、被めっき材2に付着している酸性溶液17を中和する。
【0036】
次に、被めっき材2には、めっき処理工程S5を施す。めっき処理工程S5では、被めっき材2にめっき処理を行う際に、無電解ニッケルめっき液19に被めっき材2を浸漬させる。無電解ニッケルめっき液19には、塩化ニッケル等のニッケル塩を含む水溶液と次亜リン酸ナトリウム等の還元剤とを混合した混合溶液等、一般的な無電解ニッケルめっき液19を用いる。次に、めっき処理工程S5では、加熱機構22によって無電解ニッケルめっき液19を90〜100℃に保ちながら、攪拌機構20による回転数30回/分の攪拌を加える。次に、めっき処理工程S5では、密閉チャンバー6と減圧ポンプ7とを接続管23a、23bを介して連通するように開閉弁8を開放操作して、密閉チャンバー6内の圧力を大気圧に対して1Pa以下の減圧状態にする。このとき、めっき処理工程S5では、被めっき材2の微小孔や微細構造の内面2aに付着していた気泡24が除去されるとともに、前中和工程S4で用いたアルカリ溶液18が押し出される。
【0037】
次に、めっき処理工程S5では、密閉チャンバー6と外部とを接続管23aを介して連通するように開閉弁8を開放操作して、密閉チャンバー6内を常圧状態に戻す。次に、被めっき材2は、無電解ニッケルめっき液19から取り出される。
【0038】
このようにして、めっき処理工程S5では、図5に示すように、被めっき材2の微小孔や微細構造の内面2aにめっき欠けが発生することを防止し、均一な膜厚のニッケルめっき膜3が成膜形成される。
【0039】
次に、被めっき材2には、第2の純水洗浄工程S6を施す。第2の純水洗浄工程S6では、被めっき材2に純水洗浄を行う際に、純水16に被めっき材2を浸漬させる。次に、第2の純水洗浄工程S6では、常温中で超音波機構21による周波数20乃至100KHzの超音波と攪拌機構20による回転数60回/分の攪拌を加えながら、密閉チャンバー6と減圧ポンプ7とを接続管23a、23bを介して連通するように開閉弁8を開放操作して、密閉チャンバー6内の圧力を大気圧に対して1Pa以下の減圧状態にする。このとき、第2の純水洗浄工程S6では、被めっき材2の微小孔や微細構造内に閉じ込められていた気泡24が除去されるとともに、前めっき処理工程S5で用いた無電解ニッケルめっき液19が押し出される。
【0040】
次に、第2の純水洗浄工程S6では、密閉チャンバー6と外気とを接続管23aを介して連通するように開閉弁8を開放操作して、密閉チャンバー6内の圧力を常圧状態に戻す。次に、被めっき材2は、純水16から取り出される。このようにして、第2の純水洗浄工程S6では、ニッケルめっき膜3が施された被めっき材2を純水洗浄することができる。
【0041】
次に、被めっき材2には、乾燥工程S7を施す。乾燥工程S7を被めっき材2に施す際は、乾燥機構5に設けられた清浄エアーブローによってドライエアを被めっき材2に吹き付ける。乾燥工程S7では、常温、常圧中で、被めっき材2に付着している水分を除去する。次に、被めっき材2は、乾燥機構5から取り出される。以上のようにして、無電解めっき装置1では、被めっき材2の微小孔や微細構造の内面2aにめっき欠けが発生することを防止し、均一な膜厚のニッケルめっき膜3を成膜成形することができる。
【0042】
上述した、無電解ニッケルめっき方法では、密閉チャンバー6内を減圧ポンプ7によって減圧状態してめっき処理工程S5を行うことにより、無電解ニッケルめっき液19に浸漬させた被めっき材2の微小孔や微細構造の内面2aから気泡24が除去され、被めっき材2の微小孔や微細構造内にまで無電解ニッケルめっき液19を行き渡らせることができる。したがって、無電解ニッケルめっき方法では、被めっき材の微小孔や微細構造の内面2aにめっき欠けが発生することを防止し、均一な膜厚のニッケルめっき膜3を成膜形成することができる。
【0043】
また、無電解ニッケルめっき方法は、めっき処理工程S5を行う前に脱脂工程S1から中和工程S4を密閉チャンバー6内を減圧ポンプ7によって減圧状態にして行うことにより、被めっき材2の微小孔や微細構造の内面2aから気泡が除去され、被めっき材2の微小孔や微細構造の内面2a全面に洗浄液や純水を行き渡らせることができる。これにより、無電解ニッケルめっき方法は、被めっき材2の微小孔や微細構造の内面2a全面を洗浄する。
【0044】
したがって、無電解ニッケルめっき方法によれば、被めっき材2の微小孔や微細構造の内面2a全面を洗浄することが可能であり、微小孔や微細構造の内面2aに付着している不要物が除去されることから、微小孔や微細構造の内面2aとその内面2aに成膜形成されたニッケルめっき膜との結合が強固にされる。
【0045】
なお、上述した実施の形態において、被めっき材2にめっき処理を施すために無電解ニッケルめっき液19を用いたが、このことに限定されることなく、無電解銅めっき液、無電解金めっき液、無電解銀めっき液及び無電解コバルトめっき液等を用いてもよい。
【0046】
また、無電解ニッケルめっき方法は、各槽間を連結させて被めっき材2を移動させる自動運搬機構を利用して、各工程を被めっき材2に施すことにより、各工程毎の減圧状態にして常圧状態に戻す作業を行わず、大気圧に対して1Pa以下の減圧状態を保持したままで各工程を行える。これにより、無電解ニッケルめっき方法は、製造工程が簡略化され、製造コストの削減が図られる。
【0047】
【発明の効果】
以上、詳細に説明したように本発明によれば、被処理材に被膜を成膜形成する際に、減圧手段によって処理槽が収納されている密閉チャンバー内を減圧状態にすることにより、被処理材の微小孔や微細構造内に閉じ込められた気泡を除去できる。したがって、本発明によれば、脱脂処理、第1の純水洗浄処理、酸洗浄処理、中和処理、めっき処理、及び第2の純水洗浄処理の際、被処理材の微小孔や微細構造内の内面に皮膜欠けが発生することを防止し、均一な膜厚の被膜を得ることができる。
【0048】
また、本発明によれば、被処理材を処理槽に供給する前工程とする洗浄工程においても、減圧手段によって洗浄槽が収納された密閉チャンバー内を減圧状態にすることにより、被処理材の微小孔や微細構造内に閉じ込められた気泡や微小孔や微細構造の内面に付着した汚れ等を除去できる。したがって、本発明では、被処理材の微小孔や微細構造の内面全面に洗浄液が接触するように洗浄液を行き渡らせることで、微小孔や微細構造の内面とその内面に成膜形成された金属めっき膜との結合が強固にされる。また、密閉チャンバー内の減圧状態を保持したまま、運搬手段によって被処理材に脱脂処理、第1の純水洗浄処理、酸洗浄処理、中和処理、めっき処理、及び第2の純水洗浄処理を順次施すことで、工程毎に減圧状態にして常圧状態に戻す作業を必要とせずに無電解めっきを施すことができる。したがって、製造工程が簡略され、製造コストを削減することができる。
【図面の簡単な説明】
【図1】 本発明にかかる無電解ニッケルめっき方法に用いる無電解めっき装置の模式図である。
【図2】めっき工程における被めっき材のや微細構造の断面図であり、同図(A)は、チャンバー内の圧力が常圧状態における被めっき材の微小孔や微細構造内の断面図であり、同図(B)は、被めっき材の微小孔や微細構造の気泡の体積が増加した断面図であり、同図(C)は、気泡が離脱した被めっき材の微小孔や微細構造の断面図であり、同図(D)は、無電解ニッケルめっき液が入り込んだ被めっき材の微小孔や微細構造の断面図である。
【図3】脱脂浄工程における被めっき材の微小孔や微細構造の断面図であり、同図(A)は、密閉チャンバー内の圧力が常圧状態における微小孔や微細構造内の断面図であり、同図(B)は、減圧による微細孔内の気泡の断面図であり、同図(C)は、気泡が離脱した被めっき材の微小孔や微細構造の断面図であり、同図(D)は、脱脂液が入り込んだ被めっき材の微小孔や微細構造の断面図である。
【図4】本発明にかかる無電解ニッケルめっき方法のフローチャートである。
【図5】ニッケルめっき膜が成膜された被めっき材の微小孔や微細構造の断面図である。
【符号の説明】
1 無電解ニッケルめっき装置、2 被めっき材、3 ニッケルめっき膜、4めっき機構、5 乾燥機構、6 密閉チャンバー、7 減圧ポンプ、8 開閉弁、9 脱脂槽、10 第1の純水洗浄槽、11 酸洗浄槽、12 中和槽、13 めっき槽、14 第2の純水洗浄槽、15 脱脂液、16 純水、17 酸性溶液、18 アルカリ溶液、19 無電解ニッケルめっき液、20 攪拌機構、21 超音波機構、22 加熱機構、23 接続管、24 気泡、25 油脂
[0001]
BACKGROUND OF THE INVENTION
  The present invention provides a material to be treated by immersing the material to be treated in a treatment liquid.Electroless platingApplyElectroless platingRegarding the method.
[0002]
[Prior art]
The surface treatment method using a liquid phase includes, for example, a plating method in which a metal film or the like is electrochemically formed on the surface of a material to be processed such as a metal component, or a passivation film is formed on the surface of the material to be processed. There are a passivation treatment, a chemical conversion treatment for forming a chemical film on the material to be treated, or a chemical polishing treatment for polishing the material to be treated in a liquid phase.
[0003]
For example, in the plating method, a metal plating film is formed on the surface of the material to be plated in order to improve the corrosion resistance, heat resistance, electromagnetic properties, or decorative properties of the material to be plated such as ceramic, glass, resin, or metal parts. This is a method of forming a film. The plating method includes an electroplating method and an electroless plating method.
[0004]
In the electroless plating method, a metal generated by an oxidation-reduction reaction that occurs in an electroless plating solution is deposited on the surface of a material to be plated. The electroless plating solution is a solution containing a metal salt deposited on the surface of the material to be plated and a reducing agent that oxidizes the metal salt. In the electroless plating method, depending on the type of metal salt contained in the electroless plating solution, a plating process for forming a metal plating film such as nickel, copper, gold or silver on the surface of the material to be plated is performed. Can do. The electroless plating method is performed by a relatively simple apparatus because the metal plating film is formed on the surface of the material to be plated by the oxidation-reduction reaction that occurs in the plating solution.
[0005]
In the electroless plating method, a metal plating film is formed on the surface of the material to be plated which is in contact with the material to be plated, so that the plating solution is well spread over the surface of the material to be plated. It is possible to prevent the occurrence. As a method of spreading the plating solution, for example, there is a method of stirring the plating solution by providing a stirring mechanism provided with a stirring blade or the like in a plating tank or an ultrasonic mechanism that emits ultrasonic waves. The electroless plating method has a feature that a metal plating film can be formed on the surface of various materials such as resin, ceramic and glass in addition to metal.
[0006]
[Problems to be solved by the invention]
However, in the above-described electroless plating method, the material to be plated is immersed in the plating solution when the material to be plated has minute holes, that is, through holes or bottomed holes having a diameter of several microns, or a complicated fine structure on the surface. In some cases, a gas such as air in the minute holes or in the fine structure is trapped by the plating solution. In the electroless plating method, as described above, even when the plating solution is stirred by a stirring mechanism or the like, the surface that acts at the boundary between the micropores of the material to be plated and the bubbles confined in the microstructure and the plating solution It was difficult to remove bubbles from the inside of micropores and fine structures by energy. Therefore, in this electroless plating method, it is difficult to contact the plating solution with the micropores of the material to be plated or the inner surface of the microstructure due to the bubbles confined in the micropores or the microstructure. In some cases, chipping occurred on the inner surface. In addition, not only the electroless plating method described above, but also surface treatment methods using other liquid phases may cause chipping of the film.
[0007]
  Therefore, the present invention prevents the occurrence of film chipping on the inner surfaces of the minute holes formed on the material to be processed and the complicated fine structure on the surface, and makes it possible to apply a film having a uniform film thickness to the material to be processed. DoElectroless platingIt aims to provide a method.
[0008]
[Means for Solving the Problems]
  The present invention achieves the above-described object.Electroless platingThe method isFor applying electroless plating to materials to be processed having micropores and / or complex microstructures on the surfaceFilled with processing solutionpluralA treatment tank;pluralA hermetically sealed chamber in which the treatment tank is housed, and a decompression means for reducing the pressure in the sealed chamber;A transporting means for transporting the material to be treated;A liquid phase surface treatment apparatus comprising:DegreasingImmersion in processing solutionAndThe inside of the sealed chamber is decompressed by the decompression means.InFor processed materialsDegreasing treatmentGivingThen, the degreased material to be treated was immersed in pure water, the inside of the sealed chamber was depressurized by a decompression means, and the material to be treated was subjected to the first pure water washing treatment, and the first pure water washing treatment was performed. The material to be treated is immersed in an acidic solution, the inside of the sealed chamber is decompressed by a decompression means, the material to be treated is subjected to an acid cleaning treatment, and the material to be treated that has been subjected to the acid cleaning treatment is immersed in an alkaline solution, The inside of the sealed chamber is reduced in pressure by the step of neutralizing the material to be treated, the neutralized material to be treated is immersed in the plating solution, and the inside of the sealed chamber is reduced in pressure by the pressure reducing means. A plating process is performed, the plated material to be processed is immersed in pure water, the inside of the sealed chamber is decompressed by a decompression means, and the material is subjected to a second pure water cleaning process.It is characterized by that.
[0009]
  thisElectroless platingAccording to the method, the volume of the air bubbles confined in the micropores or the fine structure of the material to be processed immersed in the processing liquid is increased by making the inside of the sealed chamber in which the processing tank is accommodated into a reduced pressure state by the pressure reducing mechanism. As a result, the buoyancy of the bubbles is increased, the bubbles are removed from the inner surfaces of the micropores and the fine structure, and the processing liquid is spread so that the processing liquid contacts the entire inner surfaces of the micropores and the fine structure of the material to be processed. it can. Therefore,Electroless platingAccording to the methodDuring the degreasing process, the first pure water cleaning process, the acid cleaning process, the neutralization process, the plating process, and the second pure water cleaning process,It is possible to prevent film chipping from occurring on the micropores of the material to be processed and the inner surface of the microstructure, and to form a film with a uniform film thickness.
[0010]
  Also, according to the liquid phase according to the present inventionElectroless platingThe method isWhile maintaining the reduced pressure in the sealed chamber, the material to be treated is degreased, first pure water cleaning, acid cleaning, neutralization, plating, and second pure water cleaning by the transport means in order. ApplyIt is characterized by that.
[0011]
  According to this electroless plating method, the material to be treated is degreased by the transporting means, the first pure water washing treatment, the acid washing treatment, the neutralization treatment, the plating treatment, while the reduced pressure state in the sealed chamber is maintained. By sequentially performing the second pure water cleaning treatment, it is possible to perform electroless plating without requiring a work of reducing the pressure to a normal pressure for each process. Therefore, the manufacturing process is simplified and the manufacturing cost is reduced.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The surface treatment method using a liquid phase shown as an embodiment is a method of forming a nickel plating film 3 on a material to be plated 2 as a material to be treated by electroless nickel plating as shown in FIG. . The to-be-plated material 2 consists of metal, resin, ceramics, glass, or the like having minute holes, so-called through holes or bottomed holes in units of several microns, undercut portions, or a fine structure with a complicated surface.
[0013]
The electroless plating apparatus 1 includes a plating mechanism 4 and a drying mechanism 5. The plating mechanism 4 includes a sealed chamber 6, a decompression pump 7, and an on-off valve 8. A plurality of tanks are provided in the sealed chamber 6 in order to perform the plating process on the material to be plated 2. Specifically, the sealed chamber 6 includes a degreasing tank 9, a first pure water cleaning tank 10, an acid cleaning tank 11, a neutralization tank 12, a plating tank 13, and a second pure water cleaning tank 14. Is provided. The sealed chamber 6 can be provided for each process to perform each process.
[0014]
The degreasing tank 9 is filled with a degreasing liquid 15 that can remove oil adhering to the surface of the material to be plated 2. The degreasing tank 9 removes oil adhering to the surface of the material to be plated 2 by immersing the material 2 to be plated in the degreasing liquid 15.
[0015]
The first pure water cleaning tank 10 is filled with pure water 16 for cleaning the degreasing liquid 15 remaining on the surface of the material to be plated 2. In the 1st pure water washing tank 10, the degreasing liquid 15 adhering to the surface of the to-be-plated material 2 is removed by immersing the to-be-plated material 2 in the pure water 16. FIG.
[0016]
The acid cleaning tank 11 is filled with an acidic solution 17 that enables removal of dirt adsorbed by a chemical reaction such as an oxide film adhering to the surface of the material to be plated 2. In the acid cleaning tank 11, the plating film 2 attached to the surface of the material to be plated 2 is removed by immersing the material to be plated 2 in the acidic solution 17.
[0017]
The neutralization tank 12 is filled with an alkaline solution 18 for neutralizing the acidic solution 17 remaining on the surface of the material to be plated 2. In the neutralization tank 12, the acidic solution 17 attached to the surface of the material to be plated 2 is neutralized by immersing the material to be plated 2 in the alkaline solution 18.
[0018]
The plating tank 13 is filled with an electroless nickel plating solution 19 capable of depositing nickel and forming the nickel plating film 3 on the surface of the material to be plated 2. As the electroless nickel plating solution 19, a mixed solution containing a metal salt such as nickel chloride and a reducing agent such as sodium hypophosphite is used. The plating tank 13 forms the nickel plating film 3 on the surface of the material to be plated 2 by immersing the material to be plated 2 in the electroless nickel plating solution 19.
[0019]
The second pure water cleaning tank 14 is similar to the pure water 16 filled in the first pure water cleaning tank 10 in order to clean the electroless nickel plating solution 19 remaining on the surface of the material 2 to be plated. Of pure water 16 is filled. The second pure water cleaning tank 14 removes the electroless nickel plating solution 19 remaining on the surface of the plated material 2 by immersing the plated material 2 on which the nickel plating film 3 is formed in the pure water 16. To do.
[0020]
In each of the above-described tanks, the solution and pure water 16 are agitated in order to keep the concentration of the filled solution uniform and to make the solution and pure water 16 sufficiently contact the surface of the material 2 to be plated. The agitating mechanism 20 having the agitating blade 20a and the ultrasonic mechanism 21 for agitation by ultrasonic vibration are provided. The plating tank 13 is provided with a heating mechanism 22 for keeping the temperature of the electroless nickel plating solution 19 filled in the plating tank 13 in the range of 90 to 100 ° C.
[0021]
The sealed chamber 6 is decompressed by driving the decompression pump 7 and exhausting the internal gas by adjusting the on-off valve.
[0022]
The on-off valve 8 is connected between the decompression pump 7 and the sealed chamber 6 by connecting pipes 23a and 23b. The on-off valve 8 opens the sealed chamber 6 in a decompressed state by opening the sealed chamber 6 and the operating decompression pump 7 so as to communicate with each other via the connecting pipes 23a and 23b. The on-off valve 8 is closed so that the sealed chamber 6 and the decompression pump 7 are shut off when the sealed chamber 6 reaches a predetermined decompressed state, so that the pressure in the sealed chamber 6 is kept at a constant decompressed state. Hold on. The on-off valve 8 opens the sealed chamber 6 and the outside so as to communicate with each other via the connecting pipe 23a, thereby bringing the pressure in the sealed chamber 6 into a normal pressure state.
[0023]
The drying mechanism 5 is provided outside the sealed chamber 6, and removes moisture remaining on the surface of the material 2 to be plated by using, for example, a clean air blow or a heating / drying furnace.
[0024]
In the electroless plating apparatus 1 having the above-described configuration, as shown in FIG. 2, when the plating material 2 is subjected to a plating process, the pressure in the sealed chamber 6 is reduced, so that the micropores of the plating material 2 are reduced. In addition, the bubbles 24 trapped in the fine structure are removed.
[0025]
Specifically, as shown in FIG. 2 (A), the electroless plating apparatus 1 immerses the material to be plated 2 in the electroless nickel plating solution 19 in the sealed chamber 6 before decompression. The bubbles 24 are confined in the micropores and microstructure. Next, in the electroless plating apparatus 1, as shown in FIG. 2B, by reducing the pressure in the sealed chamber 6, the bubbles 24 confined in the micropores of the material to be plated 2 or the inner surface 2 a of the fine structure are formed. Volume increases. Next, in the electroless plating apparatus 1, as shown in FIG. 2 (C), the buoyancy is increased by increasing the volume of the fine holes or the bubbles 24 confined in the fine structure of the material 2 to be plated, Bubbles are released from the minute holes of the material 2 and the inner surface 2a of the microstructure. Next, in the electroless plating apparatus 1, as shown in FIG. 2D, the bubbles 24 are removed from the minute holes and the fine structure of the material to be plated 2. Therefore, in the electroless plating apparatus 1, the electroless nickel plating solution 19 can be distributed in the plating tank 13 so that the electroless nickel plating solution 19 contacts the entire micropores of the material to be plated 2 and the entire inner surface 2 a of the microstructure. it can.
[0026]
Similarly, in the electroless plating apparatus 1, the pressure in the sealed chamber 6 is reduced even when the material to be plated 2 before being plated is degreased and cleaned. In the electroless plating apparatus 1, for example, when the surface of the material to be plated 2 is degreased in the degreasing tank 9, as shown in FIG. 3A, the object to be immersed in the degreasing liquid 15 in the sealed chamber 6 before decompression. The fine holes in the plating material 2 and the gas in the fine structure are confined by the degreasing liquid 15. Next, in the electroless plating apparatus 1, as shown in FIG. 3B, the volume of the bubbles 24 confined in the minute holes or the fine structure of the material to be plated 2 is increased by depressurizing the sealed chamber 6. To do. In the electroless plating apparatus 1, as shown in FIG. 3C, the buoyancy is increased by increasing the volume of the bubbles 24 confined in the micropores or the fine structure of the material 2 to be plated. 2 and the oil 25 are also removed. Next, in the electroless plating apparatus 1, as shown in FIG. 3D, the bubbles 24 are detached from the minute holes and the fine structure of the material to be plated 2. Thereby, in the electroless plating apparatus 1, in the degreasing tank 9, it is possible to appropriately clean the fine holes of the material to be plated 2 and the entire inner surface 2a of the fine structure, and adhere to the inner surfaces 2a of the fine holes and the fine structure. The oil / fat 25 is removed.
[0027]
Next, an electroless nickel plating method using the above-described electroless plating apparatus 1 will be described. As shown in FIG. 4, the electroless nickel plating method using the electroless plating apparatus 1 described above includes a degreasing step S1, a second pure water cleaning step S2, an acid cleaning step S3, and a neutralization step S4. , A plating treatment step S5, a second pure water washing step S6, and a drying step S7.
[0028]
First, the degreasing step S1 is performed on the material to be plated 2. In the degreasing step S <b> 1, when the material to be plated 2 is degreased, the material to be plated 2 is immersed in the degreasing liquid 15 filled in the degreasing tank 9. As the degreasing liquid 15, an organic solvent such as acetone or methanol, or a degreasing liquid such as a detergent is used. Next, in the degreasing step S1, while adding ultrasonic waves having a frequency of 20 KHz to 50 KHz by the ultrasonic mechanism 21 and stirring by the stirring mechanism 20 to the degreasing liquid 15 in which the material to be plated 2 is immersed, The on-off valve 8 is opened so that the sealed chamber 6 and the decompression pump 7 communicate with each other through the connecting pipes 23a and 23b, and the pressure in the sealed chamber 6 is reduced to 1 Pa or less with respect to the atmospheric pressure. At this time, in the degreasing step S1, the inside of the sealed chamber 6 is depressurized to remove the fine holes of the material to be plated 2 and the bubbles 24 confined in the fine structure.
[0029]
Next, in the degreasing step S1, the on-off valve 8 is opened so that the sealed chamber 6 communicates with the outside via the connecting pipe 23a, and the pressure in the sealed chamber 6 is returned to the normal pressure state. Next, the material to be plated 2 is taken out from the degreasing liquid 15. Thus, in the degreasing step S1, the oil and fat 25 adhering to the material to be plated 2 is removed.
[0030]
Next, the material 2 to be plated is subjected to a first pure water cleaning step S2. In the first pure water cleaning step S <b> 2, when the material to be plated 2 is cleaned with pure water, the material to be plated 2 is immersed in the pure water 16 filled in the first pure water cleaning tank 10. Next, in the first pure water cleaning step S2, ultrasonic waves with a frequency of 20 to 50 KHz by the ultrasonic mechanism 21 and a rotation speed of 60 times / minute by the stirring mechanism 20 in the pure water 16 in which the material to be plated 2 is immersed. While adding agitation, the on-off valve 8 is opened so that the sealed chamber 6 and the decompression pump 7 communicate with each other via the connecting pipes 23a and 23b, and the pressure in the sealed chamber 6 is reduced to 1 Pa or less with respect to the atmospheric pressure. Reduce pressure. At this time, in the first pure water cleaning step S2, the bubbles 24 confined in the fine holes and the fine structure of the material to be plated 2 are removed, and the pre-degreasing step S1 for attaching the inner surface 2a of the fine holes and the fine structure. The degreasing liquid 15 used in the above step is extruded.
[0031]
Next, in the first pure water cleaning step S2, the on-off valve 8 is opened so that the sealed chamber 6 and the outside communicate with each other through the connecting pipe 23a, and the pressure in the sealed chamber 6 is brought to a normal pressure state. return. Next, the material to be plated 2 is taken out from the pure water 16. In this way, in the second pure water cleaning step S2, the degreasing liquid 15 attached to the material to be plated 2 is removed.
[0032]
Next, the material to be plated 2 is subjected to an acid cleaning step S3. In the acid cleaning step S <b> 3, when performing the acid cleaning on the material to be plated 2, the material to be plated 2 is immersed in the acidic solution 17 filled in the acid cleaning tank 11. As the acidic solution 17, a mixed solution of 10% hydrochloric acid and 10% sulfuric acid is used. Next, in the acid cleaning step S3, while adding the ultrasonic wave having a frequency of 20 to 40 KHz by the ultrasonic mechanism 21 and the stirring by the stirring mechanism 20 to the acidic solution 17 in which the material to be plated 2 is immersed, The on-off valve 8 is opened so that the sealed chamber 6 and the decompression pump 7 communicate with each other via the connection pipe 23, and the pressure in the sealed chamber 6 is reduced to 1 Pa or less with respect to the atmospheric pressure. At this time, in the acid cleaning step S3, the micropores of the material to be plated 2 and the bubbles 24 confined in the fine structure are removed, and the pure water 16 used in the first pure water cleaning step S2 is pushed out. .
[0033]
Next, in the acid cleaning step S3, the open / close valve 8 is opened so that the sealed chamber 6 communicates with the outside air via the connecting pipe 23a, and the inside of the sealed chamber 6 is returned to the normal pressure state. Next, the material to be plated 2 is taken out from the acidic solution 17. In this manner, in the acid cleaning step S3, the oxide film attached to the material to be plated 2 is removed.
[0034]
Next, the to-be-plated material 2 is subjected to a neutralization step S4. In neutralization process S4, when performing neutralization to the to-be-plated material 2, the to-be-plated material 2 is immersed in the alkaline solution 18 with which the neutralization tank 12 is filled. As the alkaline solution 18, a 5 to 10% alkaline solution 18 is used. Next, in the neutralization step S4, while adding ultrasonic waves with a frequency of 20 to 100 KHz by the ultrasonic mechanism 21 and stirring at a rotational speed of 60 times / minute by the stirring mechanism 20 at room temperature, the sealed chamber 6 and the vacuum pump 7 Is opened so as to communicate with each other via the connecting pipe 23, and the pressure in the sealed chamber 6 is reduced to 1 Pa or less with respect to the atmospheric pressure. At this time, in the neutralization step S4, the micropores of the material to be plated 2 and the bubbles 24 confined in the fine structure are removed, and the acidic solution 17 used in the pre-acid cleaning step S3 is pushed out.
[0035]
Next, in the neutralization step S4, the opening / closing valve 8 is opened so that the sealed chamber 6 communicates with the outside via the connecting pipe 23a, and the pressure in the sealed chamber 6 is returned to the normal pressure state. Next, the material to be plated 2 is taken out from the alkaline solution 18. Thus, in neutralization process S4, the acidic solution 17 adhering to the to-be-plated material 2 is neutralized.
[0036]
Next, a plating treatment step S5 is performed on the material to be plated 2. In the plating process S <b> 5, when the plating material 2 is plated, the plating material 2 is immersed in the electroless nickel plating solution 19. As the electroless nickel plating solution 19, a general electroless nickel plating solution 19 such as a mixed solution obtained by mixing an aqueous solution containing a nickel salt such as nickel chloride and a reducing agent such as sodium hypophosphite is used. Next, in the plating treatment step S5, stirring is performed at a rotation speed of 30 times / minute by the stirring mechanism 20 while keeping the electroless nickel plating solution 19 at 90 to 100 ° C. by the heating mechanism 22. Next, in the plating treatment step S5, the opening / closing valve 8 is opened so that the sealed chamber 6 and the decompression pump 7 communicate with each other via the connecting pipes 23a and 23b, and the pressure in the sealed chamber 6 is reduced to the atmospheric pressure. The pressure is reduced to 1 Pa or less. At this time, in the plating treatment step S5, the bubbles 24 attached to the minute holes of the material to be plated 2 and the inner surface 2a of the microstructure are removed, and the alkaline solution 18 used in the pre-neutralization step S4 is pushed out.
[0037]
Next, in the plating treatment step S5, the opening / closing valve 8 is opened so that the sealed chamber 6 and the outside communicate with each other via the connecting pipe 23a, and the inside of the sealed chamber 6 is returned to the normal pressure state. Next, the material to be plated 2 is taken out from the electroless nickel plating solution 19.
[0038]
In this way, in the plating step S5, as shown in FIG. 5, it is possible to prevent the occurrence of lack of plating in the minute holes of the material to be plated 2 or the inner surface 2a of the fine structure, and the nickel plating film having a uniform film thickness. 3 is formed.
[0039]
Next, a second pure water cleaning step S6 is performed on the material 2 to be plated. In the second pure water cleaning step S <b> 6, the material to be plated 2 is immersed in the pure water 16 when the material to be plated 2 is cleaned with pure water. Next, in the second pure water cleaning step S6, the sealed chamber 6 and the reduced pressure are added while applying ultrasonic waves with a frequency of 20 to 100 KHz by the ultrasonic mechanism 21 and stirring at a rotational speed of 60 times / minute by the stirring mechanism 20 at room temperature. The on-off valve 8 is opened so as to communicate with the pump 7 via the connecting pipes 23a and 23b, and the pressure in the sealed chamber 6 is reduced to 1 Pa or less with respect to the atmospheric pressure. At this time, in the second pure water cleaning step S6, the micropores of the material to be plated 2 and the bubbles 24 confined in the fine structure are removed, and the electroless nickel plating solution used in the pre-plating treatment step S5. 19 is extruded.
[0040]
Next, in the second pure water cleaning step S6, the on-off valve 8 is opened so that the sealed chamber 6 and the outside air communicate with each other through the connection pipe 23a, and the pressure in the sealed chamber 6 is brought to a normal pressure state. return. Next, the material to be plated 2 is taken out from the pure water 16. Thus, in the 2nd pure water washing | cleaning process S6, the to-be-plated material 2 to which the nickel plating film 3 was given can be washed with pure water.
[0041]
Next, the to-be-plated material 2 is subjected to a drying step S7. When the drying step S <b> 7 is performed on the material to be plated 2, dry air is blown onto the material to be plated 2 by a clean air blow provided in the drying mechanism 5. In the drying step S7, moisture adhering to the material to be plated 2 is removed at room temperature and normal pressure. Next, the material to be plated 2 is taken out from the drying mechanism 5. As described above, in the electroless plating apparatus 1, it is possible to prevent the occurrence of lack of plating in the minute holes of the material to be plated 2 or the inner surface 2a of the fine structure, and to form the nickel plating film 3 having a uniform film thickness. can do.
[0042]
In the electroless nickel plating method described above, the inside of the sealed chamber 6 is decompressed by the decompression pump 7 and the plating treatment step S5 is performed, so that the micropores of the material 2 to be plated immersed in the electroless nickel plating solution 19 The bubbles 24 are removed from the inner surface 2a of the fine structure, and the electroless nickel plating solution 19 can be spread into the minute holes and the fine structure of the material 2 to be plated. Therefore, in the electroless nickel plating method, it is possible to prevent the occurrence of lack of plating in the minute holes of the material to be plated and the inner surface 2a of the microstructure, and to form the nickel plating film 3 having a uniform film thickness.
[0043]
In addition, the electroless nickel plating method performs the degreasing step S1 to the neutralization step S4 in the sealed chamber 6 with a reduced pressure pump 7 before the plating treatment step S5. In addition, air bubbles are removed from the inner surface 2a of the fine structure, and the cleaning liquid and pure water can be spread over the micropores of the material to be plated 2 and the entire inner surface 2a of the fine structure. As a result, the electroless nickel plating method cleans the micropores of the material to be plated 2 and the entire inner surface 2a of the fine structure.
[0044]
Therefore, according to the electroless nickel plating method, it is possible to clean the micropores of the material to be plated 2 and the entire inner surface 2a of the fine structure, and there is no unnecessary matter attached to the microholes or the inner surface 2a of the fine structure. Since it is removed, the bonding between the inner surface 2a of the minute hole or microstructure and the nickel plating film formed on the inner surface 2a is strengthened.
[0045]
In the above-described embodiment, the electroless nickel plating solution 19 is used for plating the material to be plated 2. However, the electroless copper plating solution and the electroless gold plating are not limited thereto. A solution, an electroless silver plating solution, an electroless cobalt plating solution, or the like may be used.
[0046]
In addition, the electroless nickel plating method uses an automatic conveyance mechanism that moves the material to be plated 2 by connecting the tanks to each other, and applies each step to the material to be plated 2 to obtain a reduced pressure state for each step. Thus, each step can be performed while maintaining a reduced pressure state of 1 Pa or less with respect to the atmospheric pressure without performing the operation of returning to the normal pressure state. Thereby, the electroless nickel plating method simplifies the manufacturing process and reduces the manufacturing cost.
[0047]
【The invention's effect】
  As described above in detail, according to the present invention, when a coating film is formed on a material to be treated, the inside of the sealed chamber in which the treatment tank is housed is decompressed by the decompression means, thereby being treated. It is possible to remove bubbles trapped in the micropores and microstructures of the material. Therefore, according to the present invention,During the degreasing process, the first pure water cleaning process, the acid cleaning process, the neutralization process, the plating process, and the second pure water cleaning process,It is possible to prevent a film chip from occurring on the micropores of the material to be processed and the inner surface of the microstructure, and to obtain a film having a uniform film thickness.
[0048]
  Further, according to the present invention, even in the cleaning step that is a pre-process for supplying the material to be processed to the processing tank, the inside of the sealed chamber in which the cleaning tank is housed is reduced by the pressure reducing means. It is possible to remove bubbles confined in the micropores and the fine structure, dirt attached to the inner surfaces of the micropores and the fine structure, and the like. Therefore, in the present invention, the cleaning liquid is spread so that the cleaning liquid contacts the entire inner surface of the micropores and microstructure of the material to be processed, so that the metal plating formed on the inner surface of the micropores and microstructure and the inner surface thereof is formed. Bonding with the membrane is strengthened.In addition, the material to be treated is degreased by the transport means, the first pure water washing treatment, the acid washing treatment, the neutralization treatment, the plating treatment, and the second pure water washing treatment while maintaining the reduced pressure in the sealed chamber. By sequentially applying the electroless plating, it is possible to perform electroless plating without requiring a work of reducing the pressure to a normal pressure for each step. Therefore, the manufacturing process is simplified and the manufacturing cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic view of an electroless plating apparatus used in an electroless nickel plating method according to the present invention.
FIG. 2 is a cross-sectional view of the fine structure of the material to be plated in the plating process, and FIG. 2 (A) is a cross-sectional view of the fine hole and fine structure of the material to be plated when the pressure in the chamber is normal pressure. FIG. 5B is a cross-sectional view in which the volume of micropores and fine structure bubbles in the material to be plated is increased, and FIG. FIG. 4D is a cross-sectional view of a minute hole and a fine structure of a material to be plated into which an electroless nickel plating solution has entered.
FIG. 3 is a cross-sectional view of the micropores and microstructure of the material to be plated in the degreasing process, and FIG. 3A is a cross-sectional view of the micropores and microstructure in a state where the pressure in the sealed chamber is normal pressure. FIG. 4B is a cross-sectional view of the bubbles in the micropores due to the reduced pressure, and FIG. 4C is a cross-sectional view of the micropores and the fine structure of the material to be plated from which the bubbles are released. (D) is sectional drawing of the micropore and fine structure of the to-be-plated material which the degreasing liquid entered.
FIG. 4 is a flowchart of an electroless nickel plating method according to the present invention.
FIG. 5 is a cross-sectional view of minute holes and microstructures of a material to be plated on which a nickel plating film is formed.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electroless nickel plating apparatus, 2 to-be-plated material, 3 nickel plating film, 4 plating mechanism, 5 drying mechanism, 6 sealed chamber, 7 pressure reduction pump, 8 on-off valve, 9 degreasing tank, 10 1st pure water washing tank, DESCRIPTION OF SYMBOLS 11 Acid washing tank, 12 Neutralization tank, 13 Plating tank, 14 2nd pure water washing tank, 15 Degreasing liquid, 16 Pure water, 17 Acidic solution, 18 Alkaline solution, 19 Electroless nickel plating solution, 20 Stirring mechanism, 21 Ultrasonic mechanism, 22 Heating mechanism, 23 Connection tube, 24 Air bubble, 25 Oil

Claims (2)

微小孔及び/又は表面の複雑な微細構造を有する被処理材に無電解めっきを施すための処理液を充填した複数の処理槽と、
上記複数の処理槽が収納される密閉可能な密閉チャンバーと、
この密閉チャンバー内を減圧状態にする減圧手段と
上記被処理材を運搬する運搬手段とを備える液相表面処理装置が用いられ、
上記被処理材を脱脂処理液中に浸漬し、上記減圧手段によって上記密閉チャンバー内を減圧状態にして上記被処理材に脱脂処理を施し
上記脱脂処理された被処理材を純水中に浸漬し、上記減圧手段によって上記密閉チャンバー内を減圧状態にして上記被処理材に第1の純水洗浄処理を施し、
上記第1の純水洗浄処理された被処理材を酸性溶液中に浸漬し、上記減圧手段によって上記密閉チャンバー内を減圧状態にして上記被処理材に酸洗浄処理を施し、
上記酸洗浄処理された被処理材をアルカリ溶液中に浸漬し、上記減圧手段によって上記密閉チャンバー内を減圧状態にして上記被処理材に中和処理を施し、
上記中和処理された被処理材をめっき液中に浸漬し、上記減圧手段によって上記密閉チャンバー内を減圧状態にして上記被処理材にめっき処理を施し、
上記めっき処理された被処理材を純水中に浸漬し、上記減圧手段によって上記密閉チャンバー内を減圧状態にして上記被処理材に第2の純水洗浄処理を施す
ことを特徴とする無電解めっき方法。
A plurality of treatment tanks filled with a treatment liquid for performing electroless plating on a material to be treated having minute holes and / or a complicated fine structure on the surface ;
A hermetically sealed chamber in which the plurality of treatment tanks are stored;
Pressure reducing means for reducing the pressure in the sealed chamber ;
A liquid phase surface treatment apparatus comprising a conveying means for conveying the material to be treated is used,
The material to be treated is immersed in a degreasing treatment liquid, the inside of the sealed chamber is decompressed by the decompression means , and the material to be treated is degreased ,
The degreased material to be treated is immersed in pure water, the inside of the sealed chamber is depressurized by the decompression means, and the material to be treated is subjected to a first pure water cleaning treatment,
The material to be treated that has been subjected to the first pure water cleaning treatment is immersed in an acidic solution, and the sealed material is subjected to an acid cleaning treatment by reducing the pressure in the sealed chamber by the pressure reducing means.
The acid-cleaned material to be treated is immersed in an alkaline solution, the inside of the sealed chamber is decompressed by the decompression means, and the material to be treated is neutralized.
The neutralized material to be treated is immersed in a plating solution, the inside of the sealed chamber is decompressed by the decompression means, and the material to be treated is plated.
The treated material which is the plating was immersed in pure water, and characterized by applying a second deionized water cleaning process on the workpiece in the vacuum state the sealed chamber by the pressure reducing means electroless Plating method.
上記密閉チャンバー内の減圧状態を保持したまま、上記運搬手段によって上記被処理材に上記脱脂処理、上記第1の純水洗浄処理、上記酸洗浄処理、上記中和処理、上記めっき処理、及び上記第2の純水洗浄処理を順次施すことを特徴とする請求項1に記載の無電解めっき方法。 The degreasing treatment, the first pure water washing treatment, the acid washing treatment, the neutralization treatment, the plating treatment, and the above are performed on the material to be treated by the transporting means while maintaining the reduced pressure state in the sealed chamber. The electroless plating method according to claim 1, wherein the second pure water cleaning treatment is sequentially performed .
JP2001345267A 2001-11-09 2001-11-09 Electroless plating method Expired - Lifetime JP3857108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001345267A JP3857108B2 (en) 2001-11-09 2001-11-09 Electroless plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001345267A JP3857108B2 (en) 2001-11-09 2001-11-09 Electroless plating method

Publications (2)

Publication Number Publication Date
JP2003147539A JP2003147539A (en) 2003-05-21
JP3857108B2 true JP3857108B2 (en) 2006-12-13

Family

ID=19158634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001345267A Expired - Lifetime JP3857108B2 (en) 2001-11-09 2001-11-09 Electroless plating method

Country Status (1)

Country Link
JP (1) JP3857108B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5651848B2 (en) * 2012-01-18 2015-01-14 トーカロ株式会社 Fluoride cermet composite coating member and method for producing the same
FR3077825B1 (en) * 2018-02-14 2020-02-28 3D Plus METHOD FOR METALLIZING HOLES OF AN ELECTRONIC MODULE BY LIQUID PHASE DEPOSITION
CN112831775A (en) * 2021-01-22 2021-05-25 镇江阿尔法特种镀膜科技有限公司 Surface metallization roughening process and equipment for carbon fiber reinforced epoxy resin composite material

Also Published As

Publication number Publication date
JP2003147539A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
JPH04211192A (en) Method of pretreating surface for plating polyimide surface
KR20010007593A (en) A brushless multipass silicon wafer cleaning process for post chemical mechanical polishing using immersion
KR102440121B1 (en) Method for manufacturing a printed wiring board
JPH0310084A (en) Processing method of polyether imide substrate and article obtained thereby
JP3857108B2 (en) Electroless plating method
KR100555928B1 (en) Method of pretreatment of material to be electrolessly plated
CN106852007A (en) It is applied to the double layer nickel gold process of PCB surface treatment
WO2000050666A1 (en) Method for treating magnesium-based metal formed article and treating solution therefor
FR2530083A1 (en) MICROWAVE CIRCUIT PLATES AND METHOD OF MANUFACTURING THE SAME
JPH11315385A (en) Plating method of substrate and its device
US7147896B2 (en) Electroless nickel plating method for the preparation of zirconia ceramic
JP2006219724A (en) Electroless plating process
US4948674A (en) Method of applying a metal layer of large adhesive strength on enamels
JPH0587593B2 (en)
KR20230121047A (en) Etching liquid for silver and manufacturing method of printed wiring board using the same
JP2005081163A (en) Production method of carrier plate
JPH0536661A (en) Cleaning method
CN113828584B (en) Graphite boat cleaning method and equipment
JP4761694B2 (en) Method for cleaning printed wiring board or copper-clad laminate and printed wiring board
KR101164128B1 (en) Ceramic heater for high temperature and the manufacturing method of the same
JPH06506727A (en) Means for selectively forming a thin oxide layer
FR2647780A1 (en) DORAGE METHOD WITHOUT CURRENT
JP4616490B2 (en) Plating method for CVT pulley
JPS634617A (en) Cleaning method
JP2000160349A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060913

R150 Certificate of patent or registration of utility model

Ref document number: 3857108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150922

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term