JP3856371B2 - Sediment removal equipment - Google Patents

Sediment removal equipment Download PDF

Info

Publication number
JP3856371B2
JP3856371B2 JP2001309409A JP2001309409A JP3856371B2 JP 3856371 B2 JP3856371 B2 JP 3856371B2 JP 2001309409 A JP2001309409 A JP 2001309409A JP 2001309409 A JP2001309409 A JP 2001309409A JP 3856371 B2 JP3856371 B2 JP 3856371B2
Authority
JP
Japan
Prior art keywords
dam
diameter
pipe
sediment
lake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001309409A
Other languages
Japanese (ja)
Other versions
JP2003119758A (en
Inventor
井 清 之 堀
田 宏 吉
地 正 博 伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemical Grouting Co Ltd
Original Assignee
Chemical Grouting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemical Grouting Co Ltd filed Critical Chemical Grouting Co Ltd
Priority to JP2001309409A priority Critical patent/JP3856371B2/en
Publication of JP2003119758A publication Critical patent/JP2003119758A/en
Application granted granted Critical
Publication of JP3856371B2 publication Critical patent/JP3856371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Barrages (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ダムの堆砂問題を解消する技術に関する。
【0002】
【従来の技術】
従来のダム湖湖底に堆積した堆砂を除去する方法としては、ダム湖に浚渫船を浮かべて、堆砂を浚渫しているのが実情である。
しかしダム湖湖底に堆積した堆砂量は、浚渫船の浚渫能力に比較して、遥かに大きく、浚渫船では有効な解決策とはならない。
【0003】
【発明が解決しようとする課題】
本発明は上述した従来技術に鑑みて提案されたものであり、ダムの堆砂を効率的に除去することが出来て、堆砂除去コストを極めて低く抑えることが出来る様なダム湖湖底の堆砂の除去装置を提供することを目的としている。
【0004】
【課題を解決するための手段】
本発明によれば、ダム湖底に堆積した堆砂2aを除去するためにその堆砂を吸引するように一端3aeがダム湖の湖底2c近傍に配置され配管3を備え、その配管3はダム1に設けた貫通孔1bに挿入され、他端がダム1の下流側1cに延在するように配置された堆砂除去装置において、その配管3はダム湖内に2股に分岐されて一方の分岐管3aが前記湖底2c近傍に配置されて一端3acを有し、分岐された他方の分岐管3bはダム湖の水2bを吸引するようにその端部3beが堆砂2aよりも上方に配置され、前記他方の分岐管3bの径Dbは合流部3cの径Dcより小さく、その合流部3cの径Dcは下流側のダムを越えた位置で湖面2dよりレベルが下がった位置の径Deより小さくなっており、その配管3の下流側の堆砂搬送用配管30は空気流入配管30fが直角に合流するように設けた固気液3相流流過部30abfを有し、その固気液3相流流過部30abfの径Dは上流側の固液2相流流過部30abの径Dより大である。
【0005】
また本発明によれば、ダム湖底に堆積した堆砂2aを除去するためにその堆砂を吸引するように一端3aeがダム湖の湖底2c近傍に配置され配管3を備え、その配管3はダム1に設けた貫通孔1bに挿入され、他端がダム1の下流側1cに延在するように配置された堆砂除去装置において、その配管3はダム湖内に2股に分岐されて一方の分岐管3aが前記湖底2c近傍に配置されて一端3acを有し、分岐された他方の分岐管3bはダム湖の水2bを吸引するようにその端部3beが堆砂2aよりも上方に配置され、前記他方の分岐管3bの径Dbは合流部3cの径Dcより小さく、その合流部3cの径Dcは下流側のダムを越えた位置で湖面2dよりレベルが下がった位置の径Deより小さくなっており、その配管3の下流側の堆砂搬送用配管30は空気流入配管30fが斜め後方向きに合流するように設けた固気液3相流流過部30abfを有し、その固気液3相流流過部30abfの径Dは上流側の固液2相流流過部30abの径Dより大である。
【0006】
係る構成を具備する本発明によれば、前記合流した配管3c内を流れる堆砂2aと水2bとの固液2相流2abは、サイフォンの原理により、ダム1を越えて、ダム下流側1cに流過する。ここで、堆砂2aと水2bとの固液2相流2abは、サイフォンの原理に従ってダム湖湖底2cから吸引されるので、従来の浚渫船を用いた場合とは異なり、ダム湖湖面2dと下流側1cの河川との間に高低差(レベル差)が存在する限り、堆砂2aの吸引、除去作業が連続して行うことができる。
【0007】
そして他方の分岐管3bの径Dbが合流した配管3cの径Dcより小さいので、前記他方の分岐管3bと前記一方の分岐管3aとの合流点3dの静圧が低下し、前記一方の分岐管3aの堆砂2a吸引量が増加するからである。
【0008】
また、パイプ3の合流点3dから下流側(ダムを越えて、レベルが下がった部分1c)の径寸法を「De」とすれば、 De>Dc>Db となっているので、サイフォン効果がより良好に発揮される。
【0011】
また、堆砂及び水を包含する固液2相流2abに、空気流入用配管30fを介して空気Fを混合しているので、固気液3相流2abfとなり、固相である砂・泥と管壁との摩擦抵抗を軽減して、圧力損失を軽減することが出来る。
【0021】
【発明の実施の形態】
図1の堆砂除去(吸引)装置を示す実施形態において、2股に分岐した配管3を、ダム1を有するダム湖2中に配置する。
【0022】
前記配管3の一方の分岐管3aは、堆砂(砂,泥,その他の沈降物)2aを吸引する様にその端部3aeがダム湖湖底2c近傍(堆砂2aの層内をも含む)に配置され、他方の分岐管3bは、水(貯水)2bを吸引する様にその端部3beは堆砂2aよりも上方に配置されている。
【0023】
前記配管3の前記二つの分岐管3a、3bが合流した配管部3cはダム1に設けた貫通孔1bに貫通する様に挿入され、端部がダム1の下流側1cに延在するように配置される。
【0024】
したがって、サイフォンの原理により、堆砂(砂・泥)2aを吸引して、ダム湖湖底2cより除去出来る。
従って、自然の力、即ちダム湖2の貯水のポテンシャルエネルギのみで、燃料やその他のエネルギを投与することなくダム湖湖底2cの堆砂2aを除去出来る。
【0025】
図2に示すように、他方の分岐管3bの径Dbと、合流管部3cの合流点の下流側で合流点近傍の径Dcと、合流管部3cの下流側のダムを越えた位置で湖面2dよりもレベルが下がった位置の径Deでは各径の寸法が相違させている。
即ち、各管部の径の大小関係は、De>Dc>Dbにするのが好ましい。
【0026】
このように構成することにより、サイフォンの原理をさらに効果的に行うことが出来る。
【0027】
図3、図4は本発明で用いる堆砂搬送抵抗低減配管を示すものであり、前述の図1、図2の堆砂除去装置で吸引された土砂を、搬送するための配管である。
【0028】
図3において、堆砂搬送用配管30は、固液2相流流過部30abと、該固液2相流流過部30abに連続する固気液3相流流過部30abfとを有する。
前記固気液3相流流過部30abfの前記固液2相流流過部30abに連続する位置の近傍には、空気流入口30feを設けた空気流入用配管30fを固気液3相流流過部30abfに直角に合流する様に設けてある。
【0029】
前記固液2相流流過部30abの直径をD0、前記固気液3相流流過部30abfの直径をD1とすれば、D0<D1の関係にある。
【0030】
又、図4は、図3では空気流入用配管30fを固気液3相流流過部30abfに対して直交していたものを斜め後方向きに設けた点が異なるのみである。
尚、図4中、符号R、TR、TSは夫々河川、河川流、土砂(堆砂)流を示す。
【0031】
係る構成を具備する堆砂搬送抵抗低減工法及び配管の実施形態によれば、図3中、符号30dで示す合流点での静圧は空気圧(大気圧)よりも低くなり、その結果、固液2相流2abを固気液3相流2abfにせしめる。
さらに空気Fの流入によって、固相である砂・泥と管壁30gとの摩擦抵抗を軽減して、圧力損失を軽減することが出来、堆砂の円滑な除去が可能となる。
【0052】
【発明の効果】
以下に本発明の効果を列記する。
(1) 堆砂と水との固液2相流は、サイフォンの原理に従ってダム湖湖底から吸引され、除去作業が連続して行われる。
(2) 堆砂及び水を包含する固液2相流に、空気流入用配管を介して空気を混合することにより固気液3相流にせしめ、固相である砂・泥と管壁との搬送時の摩擦抵抗を軽減することが出来る。
(3) 河川の流れを用いて堆砂及び水を包含する固液2相流に運動エネルギを与え、或いは堆砂を搬送しているので、運動エネルギの負荷や搬送に別途動力源を必要としない。
【図面の簡単な説明】
【図1】 本発明の堆砂除去装置の第1実施形態を示す模式図。
【図2】 本発明の堆砂除去装置の第2実施形態における要部断面図。
【図3】 本発明で用いる堆砂搬送抵抗低減装置の一例を示す断面図。
【図4】 本発明で用いる堆砂搬送抵抗低減装置の他の例を示す断面図。
【符号の簡単な説明】
1・・・ダム
2・・・ダム湖
3・・・配管
2a・・・堆砂
2b・・・水
2c・・・ダム湖湖底
3a・・・一方の分岐管
3b・・・他方の分岐管
3c・・・合流した配管
2ab・・・固液2相流
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for solving the dam sedimentation problem.
[0002]
[Prior art]
As a conventional method for removing the sediment deposited on the bottom of the dam lake, the actual situation is that a dredger is floated on the dam lake and the sediment is dredged.
However, the amount of sediment deposited on the bottom of the dam lake is much larger than the dredging capacity of dredgers, which is not an effective solution for dredgers.
[0003]
[Problems to be solved by the invention]
The present invention has been proposed in view of the above-described prior art, and the sediment at the bottom of the dam lake that can efficiently remove the sediment of the dam and can keep the sediment removal cost extremely low. The object is to provide a sand removal device.
[0004]
[Means for Solving the Problems]
According to the present invention, one end 3ae is arranged in the vicinity of the bottom 2c of the dam lake so as to suck the sediment 2a deposited on the bottom of the dam lake, and the pipe 3 includes the dam 1 In the sediment removal device which is inserted into the through hole 1b provided in the dam 1 and is arranged so that the other end extends to the downstream side 1c of the dam 1, the pipe 3 is branched into two branches in the dam lake. A branch pipe 3a is arranged in the vicinity of the lake bottom 2c and has one end 3ac, and the other branch pipe 3b is arranged above the sediment 2a so that the other branch pipe 3b sucks the water 2b of the dam lake. The diameter Db of the other branch pipe 3b is smaller than the diameter Dc of the merging portion 3c, and the diameter Dc of the merging portion 3c is smaller than the diameter De at a position where the level is lower than the lake surface 2d at a position beyond the downstream dam. It is small and used for sediment transport on the downstream side of the pipe 3 Tube 30 has a gas-solid-liquid three phases Nagareryu over parts 30abf provided as an air inflow pipe 30f are joined at right angles, the diameter D 1 of the Part gas-solid-liquid three phases Nagareryu over part 30abf the upstream solid it is larger than the diameter D 0 of the liquid two-phase Nagareryu over section 30ab.
[0005]
Further, according to the present invention, one end 3ae is arranged in the vicinity of the lake bottom 2c of the dam lake so as to suck the sediment 2a deposited on the bottom of the dam lake, and the pipe 3 is provided with the dam. In the sediment removal device which is inserted into the through hole 1b provided in 1 and arranged so that the other end extends to the downstream side 1c of the dam 1, the pipe 3 is branched into two branches in the dam lake. The branch pipe 3a is disposed in the vicinity of the lake bottom 2c and has one end 3ac, and the other branch pipe 3b that is branched has its end 3be above the sediment 2a so as to suck in the water 2b of the dam lake. The diameter Db of the other branch pipe 3b is smaller than the diameter Dc of the merging portion 3c, and the diameter Dc of the merging portion 3c is a diameter De at a position where the level is lower than the lake surface 2d at a position beyond the downstream dam. It is smaller and the sediment is transported downstream of the pipe 3 Use pipe 30 has a gas-solid-liquid three phases Nagareryu over parts 30abf provided as an air inflow pipe 30f joins the obliquely rearward facing, the diameter D 1 of the Part gas-solid-liquid three phases Nagareryu over parts 30abf upstream It is larger than the diameter D 0 of the solid-liquid two-phase flow overflow portion 30ab on the side.
[0006]
According to the present invention having such a configuration, the solid-liquid two-phase flow 2ab of the sediment 2a and the water 2b flowing in the merged pipe 3c exceeds the dam 1 by the siphon principle, and the dam downstream side 1c. To flow into. Here, since the solid-liquid two-phase flow 2ab of the sediment 2a and the water 2b is sucked from the dam lake bottom 2c according to the siphon principle, unlike the case of using a conventional dredger, the dam lake surface 2d and the downstream As long as there is a difference in level (level difference) between the river on the side 1c, the sedimentation and removal of the sediment 2a can be performed continuously.
[0007]
Since the diameter Db of the other branch pipe 3b is smaller than the diameter Dc of the joined pipe 3c, the static pressure at the junction 3d between the other branch pipe 3b and the one branch pipe 3a decreases, and the one branch This is because the suction amount of the sediment 2a in the pipe 3a increases.
[0008]
Also, if the diameter dimension of the pipe 3 downstream from the junction 3d (the portion 1c where the level has dropped over the dam) is “De”, since De>Dc> Db, the siphon effect is more effective. Good performance.
[0011]
In addition, since the air F is mixed with the solid-liquid two-phase flow 2ab including sediment and water through the air inflow pipe 30f, the solid-liquid three-phase flow 2abf is obtained, and the solid sand / mud. The pressure loss can be reduced by reducing the frictional resistance between the pipe and the pipe wall.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
In the embodiment showing the sediment removal (suction) device of FIG. 1, a pipe 3 branched into two branches is arranged in a dam lake 2 having a dam 1.
[0022]
One branch pipe 3a of the pipe 3 has an end 3ae near the dam lake bottom 2c (including the inside of the sediment 2a) so as to suck the sediment (sand, mud, other sediment) 2a. The other branch pipe 3b has its end 3be disposed above the sediment 2a so as to suck in water (water storage) 2b.
[0023]
The pipe portion 3c where the two branch pipes 3a and 3b of the pipe 3 are joined is inserted so as to penetrate the through hole 1b provided in the dam 1, and the end portion extends to the downstream side 1c of the dam 1. Be placed.
[0024]
Therefore, the sediment (sand / mud) 2a can be sucked and removed from the dam lake bottom 2c by the siphon principle.
Therefore, the sediment 2a on the dam lake bottom 2c can be removed only by natural power, that is, the potential energy of the water stored in the dam lake 2, without administering fuel or other energy.
[0025]
As shown in FIG. 2, the diameter Db of the other branch pipe 3b, the diameter Dc in the vicinity of the merging point on the downstream side of the merging point of the merging pipe part 3c, and the position beyond the dam on the downstream side of the merging pipe part 3c. In the diameter De at the position where the level is lower than the lake surface 2d, the dimensions of the diameters are different.
That is, it is preferable that the size relationship between the diameters of the pipe portions is De>Dc> Db.
[0026]
With this configuration, the siphon principle can be performed more effectively.
[0027]
3 and 4 show the sediment transport resistance reducing pipe used in the present invention, which is a pipe for transporting the earth and sand sucked by the sediment removal apparatus of FIGS. 1 and 2 described above.
[0028]
In FIG. 3, the sediment transport pipe 30 includes a solid-liquid two-phase flow passage portion 30ab and a solid-gas / liquid three-phase flow passage portion 30abf continuous to the solid-liquid two-phase flow passage portion 30ab.
An air inflow pipe 30f provided with an air inlet 30fe is provided in the vicinity of a position continuous with the solid-liquid two-phase flow excess portion 30ab of the solid-liquid three-phase flow excess portion 30abf. It is provided so as to merge at a right angle with the flow-through portion 30abf.
[0029]
If the diameter of the solid-liquid two-phase flow passage portion 30ab is D0 and the diameter of the solid-gas / liquid three-phase flow passage portion 30abf is D1, the relationship is D0 <D1.
[0030]
FIG. 4 is different from FIG. 3 only in that the air inflow pipe 30f is orthogonal to the solid-gas / liquid three-phase flow passage 30abf and is provided obliquely rearward.
In FIG. 4, symbols R, TR, and TS indicate a river, a river flow, and a sediment (sediment) flow, respectively.
[0031]
According to the embodiment of the sediment transport resistance reduction method and the piping having such a configuration, the static pressure at the junction indicated by reference numeral 30d in FIG. 3 is lower than the air pressure (atmospheric pressure). The two-phase flow 2ab is turned into a solid-gas / liquid three-phase flow 2abf.
Furthermore, the inflow of air F can reduce the frictional resistance between the solid phase sand / mud and the pipe wall 30g, reduce the pressure loss, and the sediment can be removed smoothly.
[0052]
【The invention's effect】
The effects of the present invention are listed below.
(1) Solid-liquid two-phase flow of sediment and water is sucked from the bottom of the dam lake according to the principle of siphon, and the removal work is performed continuously.
(2) A solid-liquid two-phase flow containing sediment and water is mixed with air via an air inflow pipe to make a solid-gas-liquid three-phase flow. The frictional resistance at the time of conveyance can be reduced.
(3) Since the kinetic energy is given to the solid-liquid two-phase flow including sediment and water using the river flow or the sediment is being transported, a separate power source is required for the load and transport of the kinetic energy. do not do.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a first embodiment of a sand removal device of the present invention.
FIG. 2 is a cross-sectional view of a main part in a second embodiment of the sediment removal device of the present invention.
FIG. 3 is a cross-sectional view showing an example of a sediment transport resistance reducing device used in the present invention.
FIG. 4 is a cross-sectional view showing another example of the sediment transport resistance reducing apparatus used in the present invention.
[Brief description of symbols]
DESCRIPTION OF SYMBOLS 1 ... Dam 2 ... Dam lake 3 ... Pipe 2a ... Sediment 2b ... Water 2c ... Dam lake bottom 3a ... One branch pipe 3b ... The other branch pipe 3c: Merged pipe 2ab: Solid-liquid two-phase flow

Claims (2)

ダム湖底に堆積した堆砂(2a)を除去するためにその堆砂を吸引するように一端(3ae)がダム湖の湖底(2c)近傍に配置され配管(3)を備え、その配管(3)はダム(1)に設けた貫通孔(1b)に挿入され、他端がダム(1)の下流側(1c)に延在するように配置された堆砂除去装置において、その配管(3)はダム湖内に2股に分岐されて一方の分岐管(3a)が前記湖底(2c)近傍に配置されて一端(3ac)を有し、分岐された他方の分岐管(3b)はダム湖の水(2b)を吸引するようにその端部(3be)が堆砂(2a)よりも上方に配置され、前記他方の分岐管(3b)の径(Db)は合流部(3c)の径(Dc)より小さく、その合流部(3c)の径(Dc)は下流側のダムを越えた位置で湖面(2d)よりレベルが下がった位置の径(De)より小さくなっており、その配管(3)の下流側の堆砂搬送用配管(30)は空気流入配管(30f)が直角に合流するように設けた固気液3相流流過部(30abf)を有し、その固気液3相流流過部(30abf)の径(D)は上流側の固液2相流流過部(30ab)の径(D)より大であることを特徴とする堆砂除去装置。One end (3ae) is disposed near the bottom (2c) of the dam lake so as to suck the sediment (2a) accumulated on the bottom of the dam lake, and has a pipe (3). ) Is inserted into a through-hole (1b) provided in the dam (1) and the other end of the sediment removal apparatus is arranged to extend to the downstream side (1c) of the dam (1). ) Is bifurcated into the dam lake, one branch pipe (3a) is arranged near the lake bottom (2c) and has one end (3ac), and the other branched pipe (3b) is a dam The end (3be) is arranged above the sediment (2a) so as to suck in the lake water (2b), and the diameter (Db) of the other branch pipe (3b) is the same as that of the junction (3c). The diameter (Dc) is smaller than the diameter (Dc), and the diameter (Dc) of the merged part (3c) is larger than the lake surface (2d) at a position beyond the downstream dam. The diameter (De) of the position where the bell is lowered is smaller, and the sediment transport pipe (30) on the downstream side of the pipe (3) is fixed so that the air inflow pipe (30f) joins at a right angle. The gas-liquid three-phase flow excess portion (30abf) has a diameter (D 1 ) of the solid-gas-liquid three-phase flow excess portion (30abf) of the upstream solid-liquid two-phase flow excess portion (30ab). A sediment removal device characterized by being larger than the diameter (D 0 ). ダム湖底に堆積した堆砂(2a)を除去するためにその堆砂を吸引するように一端(3ae)がダム湖の湖底(2c)近傍に配置され配管(3)を備え、その配管(3)はダム(1)に設けた貫通孔(1b)に挿入され、他端がダム(1)の下流側(1c)に延在するように配置された堆砂除去装置において、その配管(3)はダム湖内に2股に分岐されて一方の分岐管(3a)が前記湖底(2c)近傍に配置されて一端(3ac)を有し、分岐された他方の分岐管(3b)はダム湖の水(2b)を吸引するようにその端部(3be)が堆砂(2a)よりも上方に配置され、前記他方の分岐管(3b)の径(Db)は合流部(3c)の径(Dc)より小さく、その合流部(3c)の径(Dc)は下流側のダムを越えた位置で湖面(2d)よりレベルが下がった位置の径(De)より小さくなっており、その配管(3)の下流側の堆砂搬送用配管(30)は空気流入配管(30f)が斜め後方向きに合流するように設けた固気液3相流流過部(30abf)を有し、その固気液3相流流過部(30abf)の径(D)は上流側の固液2相流流過部(30ab)の径(D)より大であることを特徴とする堆砂除去装置。One end (3ae) is disposed near the bottom (2c) of the dam lake so as to suck the sediment (2a) accumulated on the bottom of the dam lake, and has a pipe (3). ) Is inserted into a through-hole (1b) provided in the dam (1) and the other end of the sediment removal apparatus is arranged to extend to the downstream side (1c) of the dam (1). ) Is bifurcated into the dam lake, one branch pipe (3a) is arranged near the lake bottom (2c) and has one end (3ac), and the other branched pipe (3b) is a dam The end (3be) is arranged above the sediment (2a) so as to suck in the lake water (2b), and the diameter (Db) of the other branch pipe (3b) is the same as that of the junction (3c). The diameter (Dc) is smaller than the diameter (Dc), and the diameter (Dc) of the merged part (3c) is larger than the lake surface (2d) at a position beyond the downstream dam. The diameter (De) of the position where the bell is lowered is smaller, and the sediment transport pipe (30) on the downstream side of the pipe (3) is provided so that the air inflow pipe (30f) joins diagonally backward. The solid-liquid-liquid three-phase flow excess portion (30abf) has a diameter (D 1 ) of the solid-gas-liquid three-phase flow excess portion (30abf). ) Is larger than the diameter (D 0 ).
JP2001309409A 2001-10-05 2001-10-05 Sediment removal equipment Expired - Lifetime JP3856371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001309409A JP3856371B2 (en) 2001-10-05 2001-10-05 Sediment removal equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001309409A JP3856371B2 (en) 2001-10-05 2001-10-05 Sediment removal equipment

Publications (2)

Publication Number Publication Date
JP2003119758A JP2003119758A (en) 2003-04-23
JP3856371B2 true JP3856371B2 (en) 2006-12-13

Family

ID=19128564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001309409A Expired - Lifetime JP3856371B2 (en) 2001-10-05 2001-10-05 Sediment removal equipment

Country Status (1)

Country Link
JP (1) JP3856371B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5240790B2 (en) * 2009-11-26 2013-07-17 典政 佐々木 Dam lake low-level water discharge device
KR200454616Y1 (en) * 2010-06-09 2011-07-15 코지텍 주식회사 Siphon Filtration with Sediment Removal
JP6063779B2 (en) * 2013-03-06 2017-01-18 伊藤 博 System for moving and discharging sediment sediment in reservoirs by utilizing dam discharge energy
JP6033195B2 (en) * 2013-09-27 2016-11-30 丸尾興商株式会社 Dam dredging system
JP6472689B2 (en) * 2015-03-19 2019-02-20 株式会社不動テトラ Method and apparatus for transporting insoluble transport in ground improvement work or dredging work
CN112176943B (en) * 2020-09-16 2021-12-31 浙江省水利河口研究院(浙江省海洋规划设计研究院) Negative-pressure sand discharge device and method utilizing tidal energy

Also Published As

Publication number Publication date
JP2003119758A (en) 2003-04-23

Similar Documents

Publication Publication Date Title
JP3895505B2 (en) Equipment for collecting and transferring sediment
JP3856371B2 (en) Sediment removal equipment
US4992000A (en) Underwater trenching system
JP5209624B2 (en) Underwater concentration cell, sediment separator and sediment concentration method
JP2004522877A5 (en)
JP2007002437A (en) Transportation system of dredged sediment
EP1346107A1 (en) Method for hydraulic subsea dredging
JP4663145B2 (en) Underwater sediment flow method using hydrostatic pressure, pipe with opening and underwater sediment flow facility
CN201003179Y (en) Reservoir deposit mud discharging device
JP3723852B2 (en) Bottom sediment removal apparatus and bottom sediment removal method
JP4675061B2 (en) Sediment flow transfer equipment
JP2006214092A (en) Method and equipment for transporting sediment accumulated on bottom of water
CN108532563A (en) The remote sand flushing system of reservoir
JP2000120050A (en) Method for scouring sedimentary sand on bottom and device therefor
JP2005220598A (en) Equipment for cleaning accumulated sediment on bottom of river
JP5100705B2 (en) Sediment flow transfer equipment
CN206737003U (en) A kind of silt remover floating support device
JP2003247221A (en) Dredging method and device for sedimentary soil in reservoir
JP2006241790A (en) System and method for transporting dredged sediment
JPH11324008A (en) Removing method for sediment in dam
CN209507783U (en) A kind of priming device of whole gravity flow
CN219952006U (en) Road construction shallow sand precipitation device
JP4601339B2 (en) 浚 渫 Method
JP2017206837A (en) Method to move deposit
JPS58153827A (en) Method and apparatus for dredging work

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6