JP2006241790A - System and method for transporting dredged sediment - Google Patents

System and method for transporting dredged sediment Download PDF

Info

Publication number
JP2006241790A
JP2006241790A JP2005057728A JP2005057728A JP2006241790A JP 2006241790 A JP2006241790 A JP 2006241790A JP 2005057728 A JP2005057728 A JP 2005057728A JP 2005057728 A JP2005057728 A JP 2005057728A JP 2006241790 A JP2006241790 A JP 2006241790A
Authority
JP
Japan
Prior art keywords
water
dredged
sea
pipeline
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005057728A
Other languages
Japanese (ja)
Other versions
JP3999788B2 (en
Inventor
Akio Kojima
朗夫 小島
Noriaki Kojima
徳明 小島
Saburo Sato
三郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAMDRE CORP
Original Assignee
DAMDRE CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAMDRE CORP filed Critical DAMDRE CORP
Priority to JP2005057728A priority Critical patent/JP3999788B2/en
Priority to PCT/JP2006/303943 priority patent/WO2006093214A1/en
Publication of JP2006241790A publication Critical patent/JP2006241790A/en
Application granted granted Critical
Publication of JP3999788B2 publication Critical patent/JP3999788B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F7/00Equipment for conveying or separating excavated material
    • E02F7/02Conveying equipment mounted on a dredger
    • E02F7/023Conveying equipment mounted on a dredger mounted on a floating dredger
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B8/00Details of barrages or weirs ; Energy dissipating devices carried by lock or dry-dock gates
    • E02B8/02Sediment base gates; Sand sluices; Structures for retaining arresting waterborne material

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently discharge a large amount of sediment, accumulated on the bottom of water in a large-capacity reservoir such as a dam, to the sea or a river near the sea, with relatively little energy at a relatively low cost, in consideration for preventing an influence on the natural environment to the utmost. <P>SOLUTION: This system comprises: a siphon pipe S for sucking out dredged sediment 1 in the large-capacity reservoir D such as the dam along with water by utilizing a siphon action; and a gravity flow path P which communicates with the downstream end of the siphon pipe S, and which makes the dredged sediment 1, sucked out by the siphon pipe S, and a fluid, including the water, gravitationally flow down to the sea O or the river R near the sea O by utilizing gravitation. The path P comprises a plurality of pipelines Pp which are mutually arranged in a column, and a relay pit Pm which is interposed between the pipelines Pp adjacent to each other and where the fluid flowing down from the upstream-side pipeline Pp can be temporarily stored and discharged to the downstream-side pipeline Pp. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、海から離れた高所に在って河川の水が流れ込むダム等の大容量貯水池の浚渫土砂を、該貯水池から海又はその近くの河川まで輸送するための浚渫土砂の輸送システム、並びにその輸送システムを利用した浚渫土砂の輸送方法に関する。   The present invention is a dredged sand transport system for transporting dredged sand from a large-capacity reservoir such as a dam where river water flows in a high place away from the sea from the reservoir to the sea or a nearby river, The present invention also relates to a method for transporting dredged sand using the transport system.

尚、本明細書において「浚渫土砂」とは、ダム等の大容量貯水池の底部を浚渫したときに生じる土砂、泥土、ヘドロ等、又はそれらの混合物を含む。また、本発明において「大容量貯水池」とは、ダムの他、河川上流側からの土砂の堆積による有効深度の低下が問題となる種々の大容量貯水池(例えば湖、遊水池等)が含まれ、人工物及び自然物の如何を問わない。   In addition, in this specification, "soil and sand" includes earth and sand, mud, sludge, etc., or a mixture thereof generated when dripping the bottom of a large-capacity reservoir such as a dam. In the present invention, the term “large capacity reservoir” includes various dams (for example, lakes, recreational ponds, etc.) in which a decrease in effective depth due to sediment accumulation from the upstream side of the river is a problem. Regardless of whether it is an artifact or a natural object.

水力発電や灌漑等に利用される既存のダムが抱える今日的な重要課題として、その上流側から流れてきた土砂が長年に亘りダムの水底に多量に堆積し、その有効深度を浅くしてしまうことによりダムの発電能力が低下したり或いは貯水量が減少する、ということが挙げられている。   As an important current issue for existing dams used for hydropower generation and irrigation, a large amount of sediment flowing from the upstream side accumulates on the bottom of the dam for many years, reducing its effective depth. As a result, the power generation capacity of the dam is reduced or the amount of stored water is reduced.

そこで、このような問題に対処するために、例えば、ダム水底の堆積土砂を浚渫してダム外に運び出すことが既に試みられており、またその浚渫に当たり、ダムの水底の堆積土砂をサイフォン管で吸い上げ、ダム周辺の回収場所まで輸送するようにした技術が既に提案されている(下記の特許文献1を参照)
特開平11−46515号公報
Therefore, in order to deal with such problems, for example, it has already been attempted to remove the sediment from the bottom of the dam and carry it out of the dam. A technique for sucking and transporting to a collection place around the dam has already been proposed (see Patent Document 1 below).
JP 11-46515 A

しかしながら、山中に設けられることが多く道路事情が余り良くないダムの近辺から、ダンプ車両等で多量の浚渫土砂を外部に搬出する作業には多大の手間とエネルギ(従ってコスト)を要するものであり、特にこの問題は、ダムの堆積土砂を、これが本来(ダムが無ければ)流れるべき海までダンプ輸送しようとする場合には顕著となり、更に交通渋滞等の原因ともなる。   However, it takes a lot of labor and energy (and therefore costs) to carry a large amount of dredged sand out of the vicinity of a dam that is often installed in the mountains and road conditions are not so good. In particular, this problem becomes prominent when dumping dam sedimentary sediment to the sea where it should flow (if there is no dam), and also causes traffic congestion.

なお、このような問題を回避しつつダムの浚渫土砂を海まで運ぶために、例えばその浚渫土砂をダムの直下流の河川に直接放出することも考えられるが、その場合には、下流河川の水質汚濁を生じ、河川の生態系にも影響を及ぼす虞れがある。   In order to transport the dam sediment to the sea while avoiding such problems, for example, it may be possible to release the dredged sediment directly to the river immediately downstream of the dam. It may cause water pollution and affect the river ecosystem.

本発明は、上記の事情に鑑み提案されたものであって、ダム等の大容量貯水池の水底に堆積する多量の土砂を、比較的少ないエネルギとコストで、しかも自然環境に極力影響が出ないよう配慮しながら、能率よく海又はその近くの河川まで排出できるようにした、新規な浚渫土砂の輸送システム及びその輸送方法を提供することを目的とする。   The present invention has been proposed in view of the above circumstances, and a large amount of earth and sand deposited on the bottom of a large-capacity reservoir such as a dam has a relatively low energy and cost and does not affect the natural environment as much as possible. It is an object of the present invention to provide a new dredged sand transport system and a transport method thereof that can efficiently discharge to the sea or a river near the sea.

上記目的を達成するために、請求項1の発明は、海から離れた高所に在って河川の水が流れ込む大容量貯水池の浚渫土砂を、該貯水池から海又はその近くの河川まで輸送する浚渫土砂の輸送システムであって、大容量貯水池の浚渫土砂をサイフォン作用で水と共に吸い出すサイフォン管と、このサイフォン管の下流端に連なり、同管で吸い出された浚渫土砂及び水を含む流動体を海又はその近くの河川まで重力を利用して自然流下させる自然流下経路とを少なくとも備え、前記自然流下経路が、相互に縦列配置される複数条のパイプラインと、その相隣なるパイプライン間に介在していて、上流側のパイプラインから流下してきた流動体を一時的に貯留し下流側のパイプラインに放流可能な中継枡とを有することを特徴としている。   In order to achieve the above object, the invention of claim 1 transports dredged sand of a large-capacity reservoir in a high place away from the sea into which river water flows from the reservoir to the sea or a river near it. A dredged sand transport system that siphons out dredged sand from a large-capacity reservoir together with water by a siphon, and a fluid containing dredged sand and water that is connected to the downstream end of the siphon pipe and sucked out by the pipe. At least a natural flow path that naturally flows down to the sea or a nearby river using gravity, and the natural flow path is between a plurality of pipelines arranged in tandem with each other and adjacent pipelines. And a relay rod that can temporarily store the fluid flowing down from the upstream pipeline and discharge it to the downstream pipeline.

また請求項2の発明は、請求項1の上記特徴に加えて、前記自然流下経路を経て流下してきた流動体より水を分離して海又はその近くの河川に放流可能であると共に、残余の浚渫土砂を一時的に貯留し且つその少なくとも一部を回収可能な水/土砂分離処理手段が、前記自然流下経路の最下流のパイプラインの下流端に連ねて配設されることを特徴としている。   In addition to the above feature of claim 1, the invention of claim 2 is capable of separating water from the fluid flowing down through the natural flow path and discharging it into the sea or a nearby river, and the remaining The water / sediment separation processing means capable of temporarily storing dredged soil and recovering at least a part of the dredged soil is arranged continuously to the downstream end of the most downstream pipeline of the natural flow path. .

また請求項3の発明は、請求項2の上記特徴に加えて、前記水/土砂分離処理手段は、前記自然流下経路を経て流下してきた流動体を受容して該流動体中の浚渫土砂を沈殿させる複数の沈殿槽が、その各々の沈殿槽内の流動体中の上澄み水を順次下流の沈殿槽にオーバフローさせ得るように配列して構成され、その最下流の沈殿槽からオーバフローした上澄み水を海又はその近くの河川に放流するようにしたことを特徴とする。   Further, the invention of claim 3 is characterized in that, in addition to the above feature of claim 2, the water / sediment separation means receives the fluid that has flowed down through the natural flow path and receives dredged soil in the fluid. A plurality of settling tanks are arranged so that the supernatant water in the fluid in each settling tank can be sequentially overflowed to the downstream settling tank, and the supernatant water overflowed from the most downstream settling tank It is characterized by the fact that it was released into the sea or a river near it.

また請求項4の発明は、請求項3の上記特徴に加えて、前記複数の沈殿槽は、その各々の上面が開放されていて、河口の河川敷にその上流側から下流側に順次、直列状態で配設されることを特徴とする。   In addition to the above feature of claim 3, the invention of claim 4 is characterized in that the plurality of sedimentation tanks are open at their upper surfaces, and are sequentially connected in series from the upstream side to the downstream side of the riverbed of the estuary. It is arranged by these.

また請求項5の発明は、請求項1〜4の上記各特徴に加えて、各中継枡が、上流側のパイプラインが接続される入口部と、下流側のパイプラインが接続される出口部とを備えており、それら入口部及び出口部にそれぞれ開閉弁が設けられることを特徴とする。   In addition to the above features of claims 1 to 4, the invention of claim 5 is characterized in that each relay rod has an inlet portion to which an upstream pipeline is connected and an outlet portion to which a downstream pipeline is connected. And an opening / closing valve is provided at each of the inlet portion and the outlet portion.

また請求項6の発明は、請求項1〜5の上記各特徴に加えて、前記サイフォン管または少なくとも1部の前記パイプラインの内部に無数の微細気泡を供給するためのマイクロバブル供給手段を備えることをことを特徴とする。   In addition to the above features of claims 1 to 5, the invention of claim 6 includes microbubble supply means for supplying countless fine bubbles into the siphon tube or at least a part of the pipeline. It is characterized by that.

また請求項7の発明は、請求項1〜6の何れかに記載の輸送システムを用いた浚渫土砂の輸送方法であって、少なくとも1つの中継枡内に沈殿、堆積した浚渫土砂の少なくとも一部を回収して、下流側のパイプラインに流れないようにしたことを特徴とする。   The invention of claim 7 is a method for transporting dredged sand using the transport system according to any one of claims 1 to 6, wherein at least part of the dredged sediment deposited and deposited in at least one relay dredger. Is collected so that it does not flow into the downstream pipeline.

また請求項8の発明は、請求項1〜6の何れかに記載の輸送システムを用いた浚渫土砂の輸送方法であって、少なくとも一部の中継枡内に、その近隣にある他の大容量貯水池より吸い出した水及び浚渫土砂を含む流動体を供給することを特徴とする。   Further, the invention of claim 8 is a method for transporting dredged sand using the transport system according to any one of claims 1 to 6, wherein at least a part of the relay pad has another large capacity in the vicinity thereof. A fluid containing water sucked out from a reservoir and dredged soil is supplied.

以上のように本発明によれば、海から離れた高所に在る大容量貯水池の浚渫土砂を、サイフォン管のサイフォン作用で水と共に吸い出し、次いで自然流下通路を経由して海又はその近くの河川まで自然流下させるようにしたので、重力を利用して大容量貯水池の浚渫土砂を海又はその近くの河川まで無理なく且つ緩やかに輸送することができ、その輸送のためのエネルギ節減とコスト低減を図ることができ、また途中の河川水域を浚渫土砂で汚濁したり生態系に影響を与える心配がなく、更にダンプ車両による輸送の場合のように交通渋滞等の不具合を招く虞れもない。また上記自然流下経路が、相互に縦列配置される複数条のパイプラインと、その相隣なるパイプライン間に介在していて、上流側のパイプラインから流下してきた流動体を一時的に貯留し下流側に放流可能な中継枡とを有するので、個々のパイプラインの内圧を軽減できてその耐久性を高めることができ、またパイプラインに対するメンテナンスも、中継枡で区切られたパイプライン単位で行えるため、そのメンテナンス作業が比較的容易となる。   As described above, according to the present invention, dredged sand of a large-capacity reservoir located at a high place away from the sea is sucked out together with water by the siphon action of the siphon tube, and then is passed through the natural flow passage or near the sea. Since it was allowed to flow down naturally to the river, dredged sand in the large-capacity reservoir can be transported to the sea or nearby rivers without any difficulty using gravity, saving energy and reducing costs for the transport. In addition, there is no fear of polluting the river water area on the way with dredged soil or affecting the ecosystem, and there is no possibility of causing problems such as traffic congestion as in the case of transportation by dump truck. The natural flow path is interposed between a plurality of pipelines arranged in tandem with each other and adjacent pipelines, and temporarily stores the fluid flowing down from the upstream pipeline. Since it has a relay rod that can be discharged downstream, the internal pressure of each pipeline can be reduced and its durability can be increased, and maintenance on the pipeline can also be performed in units of pipelines separated by relay rods. Therefore, the maintenance work becomes relatively easy.

また特に請求項2の発明によれば、自然流下経路の最下流のパイプラインの下流端に連ねて配設される水/土砂分離処理手段によって、自然流下経路を経て流下してきた流動体より比較的清浄な水だけを海又はその近くの河川に放流可能であり、しかもその水/土砂分離処理手段に残余の浚渫土砂を一時的に貯留し且つその少なくとも一部を回収できることから、浚渫土砂の全部が海又はその近くの河川にそのまま放出される場合と比べて、海又はその近くの河川の水質汚濁や生態系への影響を極力抑えることができる。   Further, in particular, according to the invention of claim 2, the water / sediment separation processing means arranged continuously to the downstream end of the most downstream pipeline of the natural flow path is compared with the fluid flowing down through the natural flow path. Only clean water can be discharged to the sea or nearby rivers, and the remaining dredged sand can be temporarily stored in the water / sand separating means, and at least a part of it can be recovered. Compared with the case where the whole is discharged as it is to the sea or a nearby river, the water pollution of the sea or a nearby river and the influence on the ecosystem can be suppressed as much as possible.

また特に請求項3の発明によれば、前記水/土砂分離処理手段は、自然流下経路を経て流下してきた流動体を受容して該流動体中の浚渫土砂を沈殿させる複数の沈殿槽が、その各々の沈殿槽内の流動体中の上澄み水を順次下流の沈殿槽にオーバフローさせ得るように配列して構成され、その最下流の沈殿槽からオーバフローした上澄み水を海又はその近くの河川に放流するようにしたので、その放流水の清浄度を高めることができて、海又はその近くの河川の水質汚濁や生態系への影響を一層効果的に抑えることができる。   In particular, according to the invention of claim 3, the water / sediment separation processing means includes a plurality of settling tanks for receiving the fluid flowing down through the natural flow path and precipitating the dredged sand in the fluid. The supernatant water in the fluid in each sedimentation tank is arranged so that it can overflow into the downstream sedimentation tank in sequence, and the supernatant water overflowing from the most downstream sedimentation tank is sent to the sea or a river near it. Since it was made to discharge, the cleanliness of the discharged water can be improved, and the water pollution of the sea or the river near it and the influence on an ecosystem can be suppressed more effectively.

また特に請求項4の発明によれば、前記複数の沈殿槽は、その各々の上面が開放されていて、河口近くの河川敷にその上流側から下流側に順次、直列状態で配設されるので、河口近くの河川敷の広いスペースを利用して、比較的大きな沈殿槽を何段にも配置でき、それだけ水の清浄化機能を高めることができる。また洪水等で河口の河川敷が水没した場合には、その川の濁流で各沈殿槽内の堆積土砂を容易に押し流すことができる。   In particular, according to the invention of claim 4, each of the plurality of sedimentation tanks has an open upper surface, and is disposed in series in the river bed near the mouth from the upstream side to the downstream side. By using a large space in the riverbed near the river mouth, a relatively large settling tank can be arranged in multiple stages, and the water purification function can be enhanced accordingly. In addition, when the riverbed at the estuary is submerged due to flooding, the sediment in each sedimentation tank can be easily washed away by the muddy flow of the river.

また特に請求項5の発明によれば、各中継枡が、上流側のパイプラインが接続される入口部と、下流側のパイプラインが接続される出口部とを備えており、それら入口部及び出口部にそれぞれ開閉弁が設けられるので、それら開閉弁の適宜開閉により、前述のパイプラインのメンテナンス作業を一層能率よく的確に行うことが可能となり、また個々のパイプラインを流れる流動体の流速調整や緊急時等の流動停止も比較的容易となる。   Further, in particular, according to the invention of claim 5, each relay rod includes an inlet portion to which an upstream pipeline is connected and an outlet portion to which a downstream pipeline is connected. Since each of the outlets is provided with an on-off valve, the above-mentioned pipeline maintenance work can be performed more efficiently and accurately by appropriately opening and closing the on-off valves, and the flow rate of the fluid flowing through each pipeline can be adjusted. It is also relatively easy to stop the flow during an emergency.

また特に請求項6の発明によれば、サイフォン管または少なくとも1部のパイプラインの内部に無数の微細気泡を供給するためのマイクロバブル供給手段を備えるので、その無数の微細気泡の流動体中への混入分散効果により、流動体と、サイフォン管又はパイプライン内面との間の摩擦抵抗を効果的に低減できる上、流動体の密度を軽減できるようになって、流動体をスムーズに流動させることが可能となる。また上記流動体中の好気性微生物と微細気泡の酸素とを十分に接触させることができて、その微生物を活性化させることができるため、海又は河口近くに達した流動体の臭気・濁度が向上し、溶存酸素量も増えて、環境対策上、有利である。   Further, particularly according to the invention of claim 6, since the microbubble supply means for supplying countless fine bubbles to the inside of the siphon tube or at least a part of the pipeline is provided, the fluid of countless fine bubbles is provided. In addition to effectively reducing frictional resistance between the fluid and the inner surface of the siphon tube or pipeline, the density of the fluid can be reduced and the fluid can smoothly flow. Is possible. Also, since the aerobic microorganisms in the fluid can be sufficiently brought into contact with oxygen in the microbubbles and the microorganisms can be activated, the odor and turbidity of the fluid reaching the sea or near the estuary And the amount of dissolved oxygen increases, which is advantageous for environmental measures.

また特に請求項7の発明によれば、少なくとも1つの中継枡内に沈殿、堆積した浚渫土砂の少なくとも一部を回収して、下流側のパイプラインに流れないようにしたので、中継枡の近隣の地域で浚渫土砂を建設資材、農業用資材等として再利用する場合に好都合であり、またその再利用分だけ浚渫土砂の海側への流動分を減少させることができる。   In particular, according to the invention of claim 7, since at least a part of the dredged sediment deposited and accumulated in at least one relay dredger is collected so as not to flow into the downstream pipeline, This is convenient when reclaiming dredged soil as construction material, agricultural material, etc., and can reduce the flow of dredged soil to the sea by that amount.

また特に請求項8の発明によれば、少なくとも一部の中継枡内に、その近隣にある他の大容量貯水池より吸い出した水及び浚渫土砂を含む流動体を供給するようにしたので、複数の大容量貯水池からの浚渫土砂を中継枡において容易に合流させ、その下流側のパイプラインを利用して海側に自然流下させることができる。   In particular, according to the invention of claim 8, at least a part of the relay dredger is supplied with a fluid containing water sucked from other large-capacity reservoirs in the vicinity thereof and dredged soil. The dredged sand from the large-capacity reservoir can be easily merged at the relay dredger, and can be naturally flowed to the sea side using the pipeline on the downstream side.

以下、本発明の実施の形態を、添付図面に例示した本発明の実施例に基づいて以下に具体的に説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below based on examples of the present invention illustrated in the accompanying drawings.

添付図面において、図1〜図8は、本発明の第1実施例を示すものであって、図1は、浚渫土砂輸送システムの概要を示す全体概略縦断面図、図2は図1の2矢視部拡大図、図3は図1の3矢視部拡大図、図4は図3の4−4線拡大断面図、図5は図1の5矢視部拡大図、図6は図5の6矢視平面図である。また図7は、本発明の第2実施例を示す要部拡大縦断面図である。   In the accompanying drawings, FIGS. 1 to 8 show a first embodiment of the present invention. FIG. 1 is an overall schematic longitudinal sectional view showing an outline of a dredged sand transport system, and FIG. Fig. 3 is an enlarged view of the portion indicated by the arrow 3 in Fig. 1, Fig. 4 is an enlarged sectional view taken along line 4-4 of Fig. 3, Fig. 5 is an enlarged view of the portion indicated by arrow 5 in Fig. 1, and Fig. 6 is a diagram. FIG. FIG. 7 is an enlarged vertical sectional view showing the main part of a second embodiment of the present invention.

先ず、第1実施例について説明する。図1において、浚渫土砂輸送システムは、海Oから離れた高所に在って河川Rの水が流れ込む大容量貯水池としてのダムDで行われた浚渫作業により生じた浚渫土砂1を、該ダムDから海O又はその近くの河川Rまで重力を利用して輸送するために用いられる。   First, the first embodiment will be described. In FIG. 1, the dredged sediment transport system includes dredged sediment 1 generated by dredging work performed in a dam D as a large-capacity reservoir in a high place away from the sea O and into which water of the river R flows. It is used to transport from D to the sea O or the river R nearby by using gravity.

このシステムは、ダムDの浚渫土砂1をサイフォン作用で水と共に吸い出すサイフォン管Sと、このサイフォン管Sの下流端に連なり、同管Sで吸い出された浚渫土砂1及び水を含む流動体を海O又はその近くの河川Rまで重力を利用して自然流下させる自然流下経路Pと、この自然流下経路Pを経て流下してきた前記流動体より水を分離して海O又はその近くの河川Rに放流可能であると共に残余の浚渫土砂1を一時的に貯留し且つその少なくとも一部を回収可能な水/土砂分離処理手段SEとを備える。   This system includes a siphon pipe S that sucks dredged sand 1 of dam D together with water by siphon action, and a fluid containing dredged sand 1 and water that is connected to the downstream end of the siphon pipe S and sucked out by the pipe S. A natural flow path P that naturally flows down to the sea O or a river R near it by using gravity, and a water R separated from the fluid that has flowed through the natural flow path P, and a river R near the sea O And water / sediment separation processing means SE capable of temporarily storing the remaining dredged soil 1 and recovering at least a part thereof.

前記サイフォン管Sは、図示例ではダムDの貯留水面上を任意に移動可能な浚渫作業船Bに設けられて吸込口Ueが水中で昇降可能な可動吸込管Uと、この可動吸込管Uの下流端に一端が連なり且つその他端がダムDの直下流側で且つダムDよりも低位置に設けた中継枡Pm0までダムDの堰を越えて下方に長く延びる搬送管Aとを備えており、前記可動吸込管U及び搬送管Aが互いに協働してサイフォン管Sを構成する。   In the illustrated example, the siphon pipe S is provided on a dredger work ship B that can be arbitrarily moved on the reservoir water surface of the dam D, and a movable suction pipe U in which the suction port Ue can be raised and lowered in water, and the movable suction pipe U The other end is connected to the downstream end, and the other end is provided on the downstream side of the dam D and at a position lower than the dam D. The movable suction pipe U and the transport pipe A cooperate with each other to form a siphon pipe S.

而して可動吸込管Uの吸込口UeをダムDの水底の堆積土砂1又はその近傍に臨ませ、浚渫作業船B上の吸水ポンプ(図示せず)に呼び水機能を発揮させてサイフォン管Sのサイフォン作用を開始させる。これにより、サイフォン管Sは、その吸込口Ueよりダム水底の堆積土砂1を水と共に吸い上げ、その管内を通して中継枡Pm0まで徐々に且つ連続的に流動させることができる。   Thus, the suction port Ue of the movable suction pipe U faces the sediment 1 or the vicinity of the bottom of the dam D, and the water suction pump (not shown) on the dredger work boat B exhibits a priming function so that the siphon pipe S Start siphoning. As a result, the siphon pipe S can suck up the sediment 1 from the bottom of the dam together with the water from the suction port Ue, and can gradually and continuously flow through the pipe to the relay rod Pm0.

またサイフォン管Sの途中には、その管を随時に遮断して前記サイフォン作用を一時的に中断し得る開閉弁(図示せず)と、その管内に空気を混入させて該サイフォン管Sのサイフォン作用による吸込力の調整を行なうための混気手段(図示せず)とが設けられる。また浚渫作業船Bには、可動吸込管Uの吸込口Ueを任意の高さに昇降駆動し得る駆動手段2が設けられており、また該作業船Bを自力走行させるための推進手段(図示せず)も設けられる。   Further, in the middle of the siphon tube S, an open / close valve (not shown) capable of interrupting the siphon action by interrupting the tube at any time and a siphon of the siphon tube S by mixing air into the tube. Air-mixing means (not shown) for adjusting the suction force by the action is provided. Further, the dredger work ship B is provided with drive means 2 capable of moving the suction port Ue of the movable suction pipe U up and down to an arbitrary height, and propulsion means for causing the work ship B to travel on its own (see FIG. (Not shown) is also provided.

前記中継枡Pm0は、サイフォン管Sからサイフォン作用で自然流下してきた浚渫土砂1及び水を含む流動体を一時的に貯留し下流側に徐々に放流可能としたものであって、その構造は、後述する自然流下経路Pにおいて設けられる中継枡Pmと基本的に同じである。即ち、その枡本体3は、容量の大きい水槽状に形成されて地面に定置されており、その枡本体3の比較的高位置に開口した入口部3iには、サイフォン管S(図示例では搬送管A)の下流端が接続され、またその枡本体3の比較的低位置に開口した出口部3oには、自然流下経路Pにおいて最上流に位置するパイプラインPpの上流端が接続される。またその枡本体3の入口部3i及び出口部3oには、その各々を個別に開閉可能とすべく開閉弁Vi,Veがそれぞれ設けられる。   The relay dredging Pm0 temporarily stores the dredged soil 1 and water containing the dredged soil 1 that have flowed down naturally from the siphon pipe S and can be gradually discharged to the downstream side. This is basically the same as the relay rod Pm provided in the natural flow path P described later. That is, the main body 3 is formed in a large-capacity water tank shape and is fixed on the ground, and a siphon tube S (conveyed in the illustrated example) is provided at the inlet 3i that is opened at a relatively high position of the main body 3. The downstream end of the pipe A) is connected, and the upstream end of the pipeline Pp located at the uppermost stream in the natural flow path P is connected to the outlet portion 3o opened at a relatively low position of the main body 3 of the pipe A). In addition, on the inlet 3i and outlet 3o of the bag main body 3, on-off valves Vi and Ve are respectively provided so that each can be opened and closed individually.

前記自然流下経路Pは、相互に縦列配置される複数条のパイプラインPp…と、その相隣なるパイプラインPp,Pp間に介在していて、上流側のパイプラインPpから流下してきた浚渫土砂1及び水を含む流動体を一時的に貯留し下流側のパイプラインPpに徐々に放流可能な中継枡Pmとを備える。その中継枡Pmは、前記自然流下経路Pの全長と、その自然流下経路Pの上,下流端間の高低差等を踏まえて、各パイプラインPpにおける流動体のスムーズな自然流下を確保すべく適当な距離をおいて且つ適当な高低差を以って複数設置されるが、下流側の中継枡Pmになるほど、低位置に置かれることは勿論である。また各パイプラインPpは、基本的には下り傾斜又は水平に配置されるが、途中の地形等によっては一部が上り傾斜であってもよい。   The natural flow path P is interposed between a plurality of pipelines Pp, which are arranged in tandem with each other, and the adjacent pipelines Pp, Pp, and the dredged sand that has flowed down from the upstream pipeline Pp. 1 and a relay rod Pm that temporarily stores a fluid containing water and can be gradually discharged to the downstream pipeline Pp. The relay rod Pm should ensure smooth natural flow of the fluid in each pipeline Pp based on the total length of the natural flow path P and the height difference between the upper and downstream ends of the natural flow path P. A plurality of them are installed at an appropriate distance and with an appropriate height difference, but needless to say, the downstream relay rod Pm is placed at a lower position. Each pipeline Pp is basically arranged in a downward slope or horizontally, but a part of the pipeline Pp may be an upward slope depending on the terrain on the way.

相隣なる2つの中継枡Pm間を接続する1条のパイプラインPpは、相互に縦列配置される多数条のパイプライン要素4…を直列に接続して構成されており、その少なくとも一部のパイプライン要素4は、パイプラインPpの長さ方向に互いに間隔をおいて地面に立設固定したコンクリート製の支持枠5に支持される。   One pipeline Pp connecting two adjacent relay rods Pm is configured by connecting a plurality of pipeline elements 4 arranged in series with each other in series, and at least a part of the pipeline Pp is connected. The pipeline element 4 is supported by a concrete support frame 5 that is erected and fixed on the ground at intervals in the length direction of the pipeline Pp.

また各々の中継枡Pmは、サイフォン管S下流端の前記中継枡Pm0と基本的に同じ構造であり、その枡本体3の入口部3iには上流側のパイプラインPpの下流端が接続され、またその出口部3eには下流側のパイプラインPpの上流端が接続される。そして、それら入口部3i及び出口部3eには開閉弁Vi,Veが各々設けられる。   Each relay rod Pm has basically the same structure as the relay rod Pm0 at the downstream end of the siphon pipe S, and the downstream end of the upstream pipeline Pp is connected to the inlet portion 3i of the rod body 3. An upstream end of the downstream pipeline Pp is connected to the outlet 3e. The inlet portion 3i and the outlet portion 3e are provided with on-off valves Vi and Ve, respectively.

少なくとも一部(図示例では全部)の中継枡Pmには、パイプラインPpの内部に直径が100μm以下の非常に小さな無数の微細気泡(空気)を供給するためのマイクロバブル供給手段Mが付設される。このマイクロバブル供給手段Mは、中継枡Pm内より水を汲み上げて加圧するポンプ6と、そのポンプ6で加圧された水の中に微細気泡を十分に分散、混合させた混相流を発生させる混相流発生装置7と、その混相流発生装置7で発生した混相流を下流側のパイプラインPpに合流させて、そのパイプラインPpを流れる前記流動体に微細気泡を混合させる配管8とを備える。尚、このような微細気泡を水中に大量に混合させる混相流発生装置は、従来公知であって既に工業的にも量産されている(例えば特開2000-447号公報、特開平7-265057号公報等を参照)。   At least a part (all in the illustrated example) of the relay rods Pm is provided with microbubble supply means M for supplying innumerable microbubbles (air) having a diameter of 100 μm or less inside the pipeline Pp. The The microbubble supply means M generates a mixed phase flow in which fine bubbles are sufficiently dispersed and mixed in the pump 6 that pumps water from the relay rod Pm and pressurizes it, and in the water pressurized by the pump 6. A multiphase flow generator 7 and a pipe 8 that joins the multiphase flow generated in the multiphase flow generator 7 to a downstream pipeline Pp and mixes fine bubbles with the fluid flowing in the pipeline Pp. . Incidentally, such a multi-phase flow generator for mixing a large amount of fine bubbles in water is conventionally known and has already been mass-produced industrially (for example, JP 2000-447 A, JP 7-265057 A). (See the official gazette).

上記微細気泡は、いわゆる「マイクロバブル」と呼ばれるものであって、単にマクロサイズの気泡が小さくなったというだけではなく、そのサイズ効果により様々な物理化学特性を発揮する。例えば、この微細気泡は水中で恰も静止している如く非常に緩やかに上昇し、また水中で気泡相互が優れた均一性、分散性を発揮し、更に水中への気体吸収効率が高く、酸素溶存量を迅速に上昇させることができる等の特徴がある。そして、このような無数の微細気泡を、パイプラインPp中の浚渫土砂と水を含む流動体中に混合、分散させると、その流動体とパイプラインPp内面との間の摩擦抵抗を効果的に低減できてパイプラインPpの耐久性が向上し、その上、流動体の密度を軽減できるようになって、比較的小さな高低差であっても流動体をスムーズに流下させることが可能となる。また上記流動体中の好気性微生物と微細気泡の酸素とを十分に接触させることができて、その微生物を活性化させることができるため、海Oの近くまで到達したときの流動体の臭気・濁度が向上し、溶存酸素量も増えることから、海Oへ放流される水の水質も良好となり、環境対策上、有利である。   The fine bubbles are so-called “micro bubbles”, and not only the macro-sized bubbles are reduced, but also exhibit various physicochemical properties due to the size effect. For example, these fine bubbles rise very slowly as if the soot remains stationary in water, and the bubbles exhibit excellent uniformity and dispersibility in water. Furthermore, the gas absorption efficiency in water is high and oxygen is dissolved. There is a feature that the amount can be increased quickly. And, when such countless fine bubbles are mixed and dispersed in the fluid containing dredged sand and water in the pipeline Pp, the frictional resistance between the fluid and the inner surface of the pipeline Pp is effectively increased. In addition, the durability of the pipeline Pp can be improved, and the density of the fluid can be reduced, and the fluid can flow smoothly even with a relatively small height difference. In addition, since the aerobic microorganisms in the fluid can be sufficiently brought into contact with oxygen in the fine bubbles and the microorganisms can be activated, the odor of the fluid when reaching near the sea O Since the turbidity is improved and the amount of dissolved oxygen is increased, the quality of water discharged into the sea O is improved, which is advantageous for environmental measures.

上記マイクロバブル供給手段Mは、これを浚渫作業船B上や、サイフォン管Sの下流端に設けた中継枡Pm0に併設してもよく、これにより、サイフォン管S内や最上流のパイプラインPp内を流れる浚渫土砂1及び水を含む流動体にも上記微細気泡を分散、混合させることができる。   The micro-bubble supplying means M may be provided on the dredger work ship B or on the relay dredger Pm0 provided at the downstream end of the siphon pipe S, so that the inside of the siphon pipe S or the most upstream pipeline Pp The fine bubbles can also be dispersed and mixed in the fluid containing the dredged sand 1 and water flowing inside.

次に図5,図6を併せて参照して、前記水/土砂分離処理手段SEの構造を説明する。この水/土砂分離処理手段SEは、自然流下経路Pの最下流のパイプラインPpの下流端に連ねて配設されるものであり、図示例では、河口Reの河川敷10に配設される。   Next, the structure of the water / sediment separation means SE will be described with reference to FIGS. This water / sediment separation processing means SE is arranged continuously to the downstream end of the most downstream pipeline Pp of the natural flow path P, and in the illustrated example, is arranged at the riverbed 10 at the estuary Re.

この水/土砂分離処理手段SEは、前記自然流下経路Pを経て流下してきた浚渫土砂1及び水を含む流動体を受容して該流動体中の浚渫土砂1を沈殿させる複数の沈殿槽A1〜A3が、その各々の沈殿槽A1〜A3内の流動体中の上澄み水を順次下流の沈殿槽にオーバフローさせ得るように配列して構成され、その最下流の沈殿槽A3からオーバフローした上澄み水を海Oを直接放流するようにしている。   The water / sediment separation treatment means SE receives the dredged sand 1 flowing down via the natural flow path P and a fluid containing water and precipitates dredged sand 1 in the fluid. A3 is arranged so that the supernatant water in the fluid in each of the settling tanks A1 to A3 can be sequentially overflowed to the downstream settling tank, and the supernatant water overflowed from the most downstream settling tank A3 The ocean O is discharged directly.

前記複数の沈殿槽A1〜A3は、その各々の上面が開放された比較的浅い水槽状に構成されていて、河口Re近くの河川敷10にその上流側から下流側に順次、直列状態で配設される。沈殿槽A1〜A3の各海側に設けられる堰11〜13は、下流側のもの程、低くなるように形成され、各沈殿槽A1〜A3には、下流側のものほど粒径の細かい浚渫土砂が沈殿するようになる。   The plurality of settling tanks A1 to A3 are configured in a relatively shallow water tank shape with their upper surfaces opened, and are arranged in series in the river bed 10 near the estuary Re from the upstream side to the downstream side sequentially. Is done. The weirs 11 to 13 provided on the sea sides of the settling tanks A1 to A3 are formed so as to be lower on the downstream side. Sediment begins to settle.

次に本実施例の作用を説明する。ダムDの水底の浚渫に当たっては、浚渫作業船BをダムDの周辺で組立てダムDの水面に浮かせる。次いでその浚渫作業船Bより可動吸込管Uの先部側を下降させ、その先端の吸込口Ueを水底の土砂堆積層に臨ませる。この状態で、サイフォン管Sに接続した図示しない吸水ポンプによる呼び水作用により、サイフォン管Sのサイフォン作用を開始させる。   Next, the operation of this embodiment will be described. When hitting the bottom of the dam D, the dredger B is assembled around the dam D and floated on the surface of the dam D. Next, the tip of the movable suction pipe U is lowered from the dredger work ship B, and the suction port Ue at the tip of the movable suction pipe U faces the sediment layer on the bottom of the water. In this state, the siphon action of the siphon pipe S is started by a priming action by a water pump (not shown) connected to the siphon pipe S.

そのサイフォン作用が一旦開始されると、吸水ポンプを停止させてもサイフォン作用は引き続き継続され、そのサイフォン作用により、ダムDの水底の堆積土砂1を水と共に吸い上げてダムDの直下流の中継枡Pm0内に徐々に且つ連続的に排出する。このような浚渫作業の進捗に伴い、浚渫作業船Bの位置を少しずつ移動させていき、かくして、少ないエネルギとコストでダムDの水底の堆積土砂1をその水底の略全域に亘って能率よく浚渫可能となる。   Once the siphon action is started, the siphon action continues even if the water absorption pump is stopped. By the siphon action, the sediment 1 on the bottom of the dam D is sucked up together with the water, and the relay dredging just downstream of the dam D is obtained. Discharge gradually and continuously into Pm0. As the dredging work progresses, the position of the dredging vessel B is moved little by little, and thus the sediment 1 on the bottom of the dam D can be efficiently spread over almost the entire bottom of the bottom of the dam D with less energy and cost. It becomes possible.

サイフォン管Sを経て最初の中継枡Pm0内に流下してきた浚渫土砂1及び水を含む流動体は、中継枡Pm0内で浚渫土砂1の一部が沈殿、堆積し、その残余の浚渫土砂1と水を含む流動体は、出口部3eより本発明の自然流下経路P(最上流のパイプラインPp)に放流され、その自然流下経路Pを重力により徐々に且つ連続的に自然流下する。   The fluid containing dredged sand 1 and water that has flowed into the first relay dredger Pm0 through the siphon pipe S is a part of dredged sediment 1 deposited and deposited in the relay dredger Pm0, and the remaining dredged sand 1 and The fluid containing water is discharged from the outlet portion 3e to the natural flow path P (uppermost pipeline Pp) of the present invention, and naturally flows down the natural flow path P gradually and continuously by gravity.

そして、浚渫土砂1及び水を含む流動体が前記自然流下経路Pを自然流下する間において、上流側のパイプラインPpを流下して次の中継枡Pm内に達した流動体は、その中継枡Pm0内で浚渫土砂1の一部が沈殿、堆積し、その残余の浚渫土砂1と水を含む流動体は、出口部3eより下流側のパイプラインPpに放流され、そのパイプラインPp内を重力により自然流下する。尚、この場合において、各々の中継枡Pm0,Pmの入口側の開閉弁Viの開度調節により、中継枡Pm0,Pm内への流動体の流入量調整が可能であり、また同中継枡Pm0,Pmの出口側の開閉弁Veの開度調節により、下流側のパイプラインPpへの流動体の流出量調整が可能である。   While the fluid containing dredged soil 1 and water naturally flows down the natural flow path P, the fluid that has flowed down the upstream pipeline Pp and reached the next relay rod Pm A part of dredged sand 1 precipitates and accumulates in Pm0, and the remaining fluid containing dredged sand 1 and water is discharged into the pipeline Pp on the downstream side from the outlet 3e, and gravity flows in the pipeline Pp. It flows down naturally. In this case, it is possible to adjust the amount of fluid flowing into the relay rods Pm0 and Pm by adjusting the opening of the on-off valve Vi on the inlet side of each relay rod Pm0 and Pm. By adjusting the opening degree of the opening / closing valve Ve on the outlet side of Pm, it is possible to adjust the flow amount of the fluid to the downstream pipeline Pp.

而して浚渫土砂1及び水を含む流動体は、各中継枡Pmにおいて上記の過程を繰り返して下流側に徐々に移動し、遂には河口Re近くの河川敷10にある水/土砂分離処理手段SEに達する。この水/土砂分離処理手段SEにおいては、河川敷10に川の流れ方向に沿って直列配置された複数の沈殿槽A1〜A3で、前記流動体が順次受容されて該流動体中の浚渫土砂1を順次沈殿させ、その各々の沈殿槽A1〜A3内の流動体中の上澄み水は順次下流の沈殿槽にオーバフローし、最後は最下流の沈殿槽A3からオーバフローした上澄み水が海Oに直接放流される。この場合、各沈殿槽A1〜A3には、下流側のものほど粒径の細かい浚渫土砂が沈殿、堆積するようになるので、その各沈殿槽A1〜A3に貯め置いた浚渫土砂1を外部より難なく採取することができて、それを、その粒径サイズに応じて建設資材、農業用資材その他の用途に有効に利用できる。このように浚渫土砂1の一部又は全部を各沈殿槽A1〜A3に集めて回収することにより、海Oには浚渫土砂1の殆どない又は全然ない比較的奇麗な水だけを放流できるため、水域の汚染防止に効果的である。   Thus, the fluid containing dredged soil 1 and water gradually moves downstream by repeating the above process in each relay dredger Pm, and finally the water / sediment separating means SE in the riverbed 10 near the estuary Re. To reach. In this water / sediment separation means SE, the fluid is sequentially received by the plurality of settling tanks A1 to A3 arranged in series along the river flow direction on the river bed 10, and the dredged soil 1 in the fluid is received. The supernatant water in the fluid in each of the sedimentation tanks A1 to A3 sequentially overflows to the downstream sedimentation tank, and finally the supernatant water overflowed from the most downstream sedimentation tank A3 is discharged directly into the sea O. Is done. In this case, since the sediments with finer particle sizes are deposited and deposited in the sedimentation tanks A1 to A3, the sediments 1 stored in the sedimentation tanks A1 to A3 are externally deposited. It can be collected without difficulty, and can be effectively used for construction materials, agricultural materials, and other uses according to the particle size. By collecting and collecting a part or all of the dredged soil 1 in the settling tanks A1 to A3 in this way, only relatively clean water with little or no dredged soil 1 can be discharged into the sea O. It is effective in preventing water pollution.

ところで浚渫土砂1の途中回収は、必要に応じて、水/土砂分離処理手段SEよりも上流側の少なくとも一部の中継枡Pm0,Pm…においても行うことが可能である。   By the way, it is possible to collect the dredged sand 1 in the middle of at least some of the relay dredgers Pm0, Pm... Upstream from the water / sediment separating means SE.

即ち、その各中継枡Pm0,Pm内に沈殿、堆積した浚渫土砂1は、その一部を上面開放の各中継枡Pm0,Pmより容易に採取、回収できて、それを建設用資材、農業用資材その他の用途に再利用できるため、その各中継枡Pm0,Pmより下流側のパイプラインPpには浚渫土砂1の含有量を減らした比較的奇麗な、浚渫土砂及び水を含む流動体を放流可能となり、従って、最下流での前記水/土砂分離処理手段SEによる浚渫土砂1の分離回収効果とも相俟って、海Oに放流する水の浄化を十分に行うことができ、放流水域の汚染防止に一層効果的となる。   That is, the sediment 1 deposited and accumulated in each of the relay rods Pm0, Pm can be easily collected and collected from each of the relay rods Pm0, Pm with the upper surface open, and it can be collected for construction materials and agriculture. Since it can be reused for materials and other purposes, the pipeline Pp downstream of each relay dredging Pm0, Pm is released with a relatively clean fluid containing dredged sand and water with a reduced content of dredged sand 1. Therefore, in combination with the separation and recovery effect of dredged soil 1 by the water / sediment separation means SE at the most downstream, the water discharged to the sea O can be sufficiently purified, More effective in preventing pollution.

以上、本実施例によれば、海Oから離れた高所に在るダムDの浚渫土砂1を、サイフォン管Sのサイフォン作用で水と共に吸い出し、次いで自然流下通路Pを経由して海Oまで自然流下させるので、重力を利用してダムDの浚渫土砂を海Oまで無理なく且つ緩やかに輸送することができ、その輸送のためのエネルギ節減とコスト低減を図ることができ、また途中の河川水域を浚渫土砂で汚濁したり生態系に影響を与える心配がなく、更にダンプ車両による輸送の場合のように交通渋滞、空気汚染、振動騒音等の不具合を招く虞れもない。また上記自然流下経路Pは、相互に縦列配置した複数条のパイプラインPpの相隣なるもの同士を中継枡Pmで接続して構成されるので、中継枡の無い場合と比べてパイプラインPpの内圧を十分に軽減できてその耐久性が高められ、またパイプラインPpに対するメンテナンスも、中継枡Pmで区切られたパイプラインPp単位で行えるため、そのメンテナンス作業が比較的容易となる。   As described above, according to the present embodiment, the dredged sand 1 of the dam D located at a high place away from the sea O is sucked together with water by the siphon action of the siphon pipe S, and then to the sea O via the natural flow path P. Since it is allowed to flow down naturally, the dredged soil of dam D can be transported to the sea O without any difficulty using gravity, and energy saving and cost reduction for the transportation can be achieved. There is no worry of polluting the water area with dredged soil or affecting the ecosystem, and there is no risk of inconveniences such as traffic congestion, air pollution, and vibration noise as in the case of transportation by dump truck. Further, the natural flow path P is configured by connecting adjacent ones of a plurality of pipelines Pp arranged in tandem with a relay rod Pm, so that the pipeline Pp is compared with the case where there is no relay rod. Since the internal pressure can be sufficiently reduced and the durability thereof is increased, and maintenance of the pipeline Pp can be performed in units of the pipeline Pp divided by the relay rod Pm, the maintenance work becomes relatively easy.

また上記自然流下経路Pの下流端に連なる水/土砂分離処理手段SEは、これを構成する複数の沈殿槽A1〜A3が各々上面を開放した状態で、河口Re近くの河川敷10にその上流側から下流側に順次、直列状態で配設されるため、その河川敷10の広いスペースを利用して、比較的大きな沈殿槽A1〜A3を何段にも配置でき、それだけ水の清浄化機能を高めることができる。また洪水等で河口Reの河川敷10が水没した場合には、その川の濁流で各沈殿槽A1〜A3内の堆積土砂は海Oに押し流されるが、濁流と一緒に流されることから水域汚濁の心配はない。   In addition, the water / sediment separation processing means SE connected to the downstream end of the natural flow path P is located upstream of the river bed 10 near the estuary Re in a state where the plurality of sedimentation tanks A1 to A3 constituting each of the natural flow path P are open. Since it is arranged in series in order from the downstream side to the downstream side, relatively large sedimentation tanks A1 to A3 can be arranged in many stages using the wide space of the riverbed 10 and the water purification function is increased accordingly. be able to. In addition, when the riverbed 10 at the estuary Re is submerged due to flooding, the sediment in the sedimentation tanks A1 to A3 is washed away into the sea O by the muddy flow of the river. Don't worry.

また図7には、本発明の第2実施例の要部が示される。この実施例では、少なくとも一部の中継枡Pm内に、その近隣にある他の大容量貯水池としてのダムD′よりサイフォン管S′で吸い出した水及び浚渫土砂を含む流動体を供給している。そのために、上記ダムD′の直下流近くにある中継枡Pmの枡本体3には、上記ダムD′の浚渫土砂1′をサイフォン管S′を経て流入させる第2の入口部3i′が増設され、またその第2の入口部3i′にも開閉弁Vi′が設けられる。この第2実施例のその他の構造は、第1実施例と基本的に同じである。   FIG. 7 shows a main part of the second embodiment of the present invention. In this embodiment, a fluid containing water and dredged soil that has been sucked out by a siphon pipe S ′ from a dam D ′ as another large-capacity reservoir in the vicinity thereof is supplied into at least some of the relay dredging Pm. . For this purpose, the second main entrance 3i 'for allowing the dredged sand 1' of the dam D 'to flow in via the siphon pipe S' is added to the main body 3 of the relay dredger Pm near the downstream of the dam D '. In addition, the second inlet 3i ′ is also provided with an on-off valve Vi ′. The other structure of the second embodiment is basically the same as that of the first embodiment.

而して、この第2実施例では、先の第1実施例と同等の作用効果を達成できる上、他のダムD′からの浚渫土砂1及び水を含む流動体を中継枡Pmに受け入れることができる。そして、その両方のダムD、D′からの浚渫土砂1,1′を中継枡Pmにおいて容易に合流させ、その下流側のパイプラインPpを利用して共に海O側に自然流下させることができる。尚、この第2実施例では、図示を簡略化するために、サイフォン管S′の構造を簡略的に示したが、この第2実施例の他のダムD′においても、ダムDでの浚渫に用いた浚渫作業船Bを用いて、ダムDにおける浚渫と同様の大掛かりな浚渫作業を行うようにしてもよい。また第2実施例において、上記他のダムD′の浚渫作業に当たっては、サイフォン管S′を用いないで、ポンプで吸い上げた水及び浚渫土砂1′を中継枡Pm内に供給するようにしてもよい。   Thus, in the second embodiment, the same effect as that of the first embodiment can be achieved and the fluid containing dredged sand 1 and water from the other dam D 'is received in the relay rod Pm. Can do. And the dredged sands 1 and 1 'from both dams D and D' can be easily merged at the relay dredger Pm, and both can naturally flow down to the sea O side using the downstream pipeline Pp. . In the second embodiment, the structure of the siphon tube S ′ is shown in a simplified manner for simplification of illustration. However, the other dams D ′ in the second embodiment also have the same structure as that of the dam D. A large dredging work similar to the dredging in the dam D may be performed using the dredging work boat B used in the above. In the second embodiment, when dredging the other dam D ', the pumped water and dredged soil 1' are supplied into the relay dredger Pm without using the siphon pipe S '. Good.

以上、本発明の実施例を詳述したが、本発明は前記実施例に限定されるものでなく、種々の設計変更を行うことができる。   As mentioned above, although the Example of this invention was explained in full detail, this invention is not limited to the said Example, A various design change can be performed.

例えば、前記実施例では、水/土砂分離処理手段SEが最下流の沈殿槽A3からオーバフローした上澄み水を海Oに直接放流するようにしたものを示したが、本発明では、その上澄み水を海Oの近くの河川R、例えば河口Reに放流するようにしてもよい。   For example, in the above-described embodiment, the water / sediment separation processing means SE has shown that the supernatant water overflowed from the most downstream settling tank A3 is directly discharged into the sea O. In the present invention, the supernatant water is used. You may make it discharge | release to the river R near the sea O, for example, the river mouth Re.

また、前記実施例では、水/土砂分離処理手段SEを河口Re近くの河川敷10に設けたものを示したが、本発明では必ずしも河川敷に設ける必要はなく、少なくとも海O又はその近くの河川Rに直接放流できる場所であればよい。   In the above embodiment, the water / sediment separation means SE is provided in the riverbed 10 near the river mouth Re. However, in the present invention, it is not always necessary to provide it in the riverbed, and at least the sea O or the river R near it. Any place where it can be discharged directly into the sea.

また、前記実施例では、各中継枡Pm,Pm0内の水を全量下流側に流すようにしたものを示したが、本発明では、ダムD,D′からの落下水流を利用した水力発電設備により発電された電力で駆動される汲み上げポンプを設けて、このポンプの汲み上げ作用によりダムD,D′近くの中継枡Pm,Pm0内の水の少なくとも一部を適時、ダムD,D′側に戻すようにしてもよい。尚、この場合、上記電力で、マイクロバブル供給手段Mのポンプ6を駆動するようにしてもよい。   Moreover, in the said Example, although what was made to flow all the water in each relay rod Pm and Pm0 downstream was shown, in this invention, the hydroelectric power generation facility using the fall water flow from the dams D and D 'is shown. A pumping pump driven by the electric power generated by the pump is provided, and at least a part of the water in the relay rods Pm, Pm0 near the dams D, D ′ is appropriately transferred to the dams D, D ′ side by the pumping action of the pumps. You may make it return. In this case, the pump 6 of the microbubble supply means M may be driven by the electric power.

本発明の第1実施例を示す浚渫土砂輸送システムの概要を示す全体概略縦断面図Whole schematic longitudinal cross-sectional view which shows the outline | summary of the dredged sand transport system which shows 1st Example of this invention 図1の2矢視部拡大図Enlarged view of the part indicated by arrow 2 in FIG. 図1の3矢視部拡大図Fig. 3 is an enlarged view of the portion indicated by the arrow 3 in Fig. 1. 図3の4−4線拡大断面図4-4 enlarged sectional view of FIG. 図1の5矢視部拡大図Enlarged view of the part indicated by arrow 5 in FIG. 図5の6矢視平面図Plan view from arrow 6 in FIG. 本発明の第2実施例を示す要部拡大縦断面図Main part enlarged longitudinal sectional view showing a second embodiment of the present invention

符号の説明Explanation of symbols

A1〜A3・・沈殿槽
D・・・・ダム(大容量貯水池)
D′・・・ダム(他の大容量貯水池)
M・・・・マイクロバブル供給手段 O・・・・海
P・・・・自然流下経路 Pp・・・パイプライン Pm・・・中継枡 R・・・・河川
Re・・・河口
S・・・・サイフォン管 SE・・・水/土砂分離処理手段 Vi,Ve・・開閉弁
1・・・・浚渫土砂
1′・・・浚渫土砂
3i・・・入口部 3e・・・出口部 10・・・河川敷
A1 ~ A3 ・ ・ Settling tank D ・ ・ ・ Dam (large capacity reservoir)
D '... Dam (other large-capacity reservoir)
M ··· Microbubble supply means O · · · Sea P · · · Natural flow path Pp · · · Pipeline Pm · · · Relay R · · · River Re ...・ Siphon tube SE: Water / sediment separation processing means Vi, Ve ... Opening / closing valve 1 ... Sediment sand 1 '... Sediment sand 3i ... Inlet part 3e ... Outlet part 10 ... Riverbed

Claims (8)

海(O)から離れた高所に在って河川(R)の水が流れ込む大容量貯水池(D)の浚渫土砂(1)を、該貯水池(D)から海(O)又はその近くの河川(R)まで輸送する浚渫土砂の輸送システムであって、
大容量貯水池(D)の浚渫土砂(1)をサイフォン作用で水と共に吸い出すサイフォン管(S)と、
このサイフォン管(S)の下流端に連なり、同管(S)で吸い出された浚渫土砂(1)及び水を含む流動体を海(O)又はその近くの河川(R)まで重力を利用して自然流下させる自然流下経路(P)とを少なくとも備え、
前記自然流下経路(P)は、相互に縦列配置される複数条のパイプライン(Pp)と、その相隣なるパイプライン(Pp)間に介在していて、上流側のパイプライン(Pp)から流下してきた流動体を一時的に貯留し下流側のパイプライン(Pp)に放流可能な中継枡(Pm)とを有することを特徴とする、浚渫土砂の輸送システム。
The high-capacity reservoir (D) dredged sand (1) at a high altitude away from the sea (O) flows from the reservoir (D) to the sea (O) or nearby river. (R) a dredged sand transport system,
A siphon tube (S) that siphons dredged sand (1) of the large capacity reservoir (D) with water,
Gravity is applied to fluids containing dredged soil (1) and water sucked out from the siphon tube (S) to the ocean (O) or nearby river (R). And at least a natural flow path (P) for natural flow,
The natural flow path (P) is interposed between a plurality of pipelines (Pp) arranged in tandem with each other and adjacent pipelines (Pp) from the upstream pipeline (Pp). A system for transporting dredged soil, comprising a relay dredger (Pm) that temporarily stores the fluid flowing down and can be discharged into a pipeline (Pp) on the downstream side.
前記自然流下経路(P)を経て流下してきた流動体より水を分離して海(O)又はその近くの河川(R)に放流可能であると共に、残余の浚渫土砂(1)を一時的に貯留し且つその少なくとも一部を回収可能な水/土砂分離処理手段(SE)が、前記自然流下経路(P)の最下流のパイプライン(Pp)の下流端に連ねて配設されることを特徴とする、請求項1に記載の浚渫土砂の輸送システム。   Water can be separated from the fluid flowing down through the natural flow path (P) and discharged into the sea (O) or the river (R) nearby, and the remaining dredged sand (1) is temporarily removed. Water / sediment separation processing means (SE) that can store and recover at least a part of the water / sediment separation processing means (SE) is disposed continuously to the downstream end of the most downstream pipeline (Pp) of the natural flow path (P). The dredged sand transport system according to claim 1, characterized in that 前記水/土砂分離処理手段(SE)は、前記自然流下経路(P)を経て流下してきた流動体を受容して該流動体中の浚渫土砂(1)を沈殿させる複数の沈殿槽(A1〜A3)が、その各々の沈殿槽(A1〜A3)内の流動体中の上澄み水を順次下流の沈殿槽にオーバフローさせ得るように配列して構成され、
その最下流の沈殿槽(A3)からオーバフローした上澄み水を海(O)又はその近くの河川(R)に放流するようにしたことを特徴とする、請求項2に記載の浚渫土砂の輸送システム。
The water / sediment separation means (SE) receives a fluid that has flowed down through the natural flow path (P), and precipitates dredged sand (1) in the fluid (A1 to A1). A3) is arranged and configured so that the supernatant water in the fluid in each of the settling tanks (A1 to A3) can be sequentially overflowed to the downstream settling tank,
The dredged sand transport system according to claim 2, wherein the supernatant water overflowed from the most downstream sedimentation tank (A3) is discharged into the sea (O) or a river (R) nearby. .
前記複数の沈殿槽(A1〜A3)は、その各々の上面が開放されていて、河口(Re)近くの河川敷(10)にその上流側から下流側に順次、直列状態で配設されることを特徴とする、請求項3に記載の浚渫土砂の輸送システム。   Each of the plurality of sedimentation tanks (A1 to A3) has an open upper surface, and is arranged in series from the upstream side to the downstream side in the river bed (10) near the estuary (Re). The transport system for dredged sand according to claim 3. 各中継枡(Pm)は、上流側のパイプライン(Pp)が接続される入口部(3i)と、下流側のパイプライン(Pp)が接続される出口部(3e)とを備えており、それら入口部(3i)及び出口部(3e)にそれぞれ開閉弁(Vi,Ve)が設けられることを特徴とする、請求項1〜4の何れかに記載の浚渫土砂の輸送システム。   Each relay rod (Pm) includes an inlet portion (3i) to which an upstream pipeline (Pp) is connected and an outlet portion (3e) to which a downstream pipeline (Pp) is connected. The system for transporting dredged sand according to any one of claims 1 to 4, wherein the inlet part (3i) and the outlet part (3e) are provided with on-off valves (Vi, Ve), respectively. 前記サイフォン管(S)または少なくとも1部の前記パイプライン(Pp)の内部に無数の微細気泡を供給するためのマイクロバブル供給手段(M)を備えることをことを特徴とする、請求項1〜5の何れかに記載の浚渫土砂の輸送システム。   The microsiphon supply means (M) for supplying innumerable fine bubbles to the inside of the siphon tube (S) or at least a part of the pipeline (Pp) is provided. The dredged soil transport system according to any one of 5 above. 請求項1〜6の何れかに記載の輸送システムを用いた浚渫土砂の輸送方法であって、
少なくとも1つの中継枡(Pm)内に沈殿、堆積した浚渫土砂(1)の少なくとも一部を回収して、下流側のパイプライン(Pp)に流れないようにしたことを特徴とする、浚渫土砂の輸送方法。
A method for transporting dredged sand using the transport system according to claim 1,
The dredged material sand characterized in that at least a part of the dredged material sediment (1) precipitated and deposited in at least one relay dredger (Pm) is collected so as not to flow into the downstream pipeline (Pp). Transportation method.
請求項1〜6の何れかに記載の輸送システムを用いた浚渫土砂の輸送方法であって、
少なくとも一部の中継枡(Pm)内に、その近隣にある他の大容量貯水池(D′)より吸い出した水及び浚渫土砂(1′)を含む流動体を供給することを特徴とする、浚渫土砂の輸送方法。
A method for transporting dredged sand using the transport system according to claim 1,
At least a part of the relay dredger (Pm) is supplied with a fluid containing water sucked from another large-capacity reservoir (D ′) in the vicinity thereof and dredged soil (1 ′). Transportation method of earth and sand.
JP2005057728A 2005-03-02 2005-03-02 Long-distance transportation system for dredged soil and its transportation method Active JP3999788B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005057728A JP3999788B2 (en) 2005-03-02 2005-03-02 Long-distance transportation system for dredged soil and its transportation method
PCT/JP2006/303943 WO2006093214A1 (en) 2005-03-02 2006-03-02 Transportation system and transportation method for dredged sediment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005057728A JP3999788B2 (en) 2005-03-02 2005-03-02 Long-distance transportation system for dredged soil and its transportation method

Publications (2)

Publication Number Publication Date
JP2006241790A true JP2006241790A (en) 2006-09-14
JP3999788B2 JP3999788B2 (en) 2007-10-31

Family

ID=36941243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005057728A Active JP3999788B2 (en) 2005-03-02 2005-03-02 Long-distance transportation system for dredged soil and its transportation method

Country Status (2)

Country Link
JP (1) JP3999788B2 (en)
WO (1) WO2006093214A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107688086A (en) * 2017-08-18 2018-02-13 中国农业科学院农业环境与可持续发展研究所 A kind of quantitative expression method of shallow gully erosion transportability of sediments

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944298B1 (en) * 2009-04-14 2011-10-28 Aldo Urtiti ECOLOGICAL REHABILITATION OF THE NILE DELTA RECREATING THE NATURAL CONDITIONS BEFORE THE CONSTRUCTION OF THE NASSER DAM

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585796A (en) * 1978-12-21 1980-06-28 Shimizu Construction Co Ltd Aggregate gathering facility
JPH08158397A (en) * 1994-12-09 1996-06-18 Tadao Tomiyama Method and equipment for removing sludge, etc.
JP2003001282A (en) * 2001-06-22 2003-01-07 Kitayama Haruichi Waste water treating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107688086A (en) * 2017-08-18 2018-02-13 中国农业科学院农业环境与可持续发展研究所 A kind of quantitative expression method of shallow gully erosion transportability of sediments
CN107688086B (en) * 2017-08-18 2020-12-04 中国农业科学院农业环境与可持续发展研究所 Quantitative expression method for shallow trench erosion sand transportation capability

Also Published As

Publication number Publication date
WO2006093214A1 (en) 2006-09-08
JP3999788B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
JP3277489B2 (en) Sediment discharge mechanism for water storage area and method for discharging sediment from water storage area
JP2007002437A (en) Transportation system of dredged sediment
WO1998020208A1 (en) Dredging method and dredging apparatus
JP5209624B2 (en) Underwater concentration cell, sediment separator and sediment concentration method
JP2015074913A (en) Inflow sediment collection and discharge device and sediment discharge method using the same
JP5305439B2 (en) Suction pipe for transporting underwater sediment logistics, underwater sediment inflow device, and underwater sediment inflow method using the same
JP3999788B2 (en) Long-distance transportation system for dredged soil and its transportation method
MXPA03005839A (en) Method for hydraulic subsea dredging.
JP6084897B2 (en) Floating suspended material recovery device and method
JP2005205251A (en) System and apparatus for classifying dredged soil by using pneumatic conveying system
JP2003138598A (en) Method and device for dredging by use of pipe having opening part in bent part
WO2013084303A1 (en) Facility for transporting underwater sedimentation by suction and method for capturing foreign matter
JP2006082005A (en) Muddy water treatment system and muddy water treatment method therefor
JP4675061B2 (en) Sediment flow transfer equipment
JP2005291171A (en) Bubble jet type airlift pump
JP2005220598A (en) Equipment for cleaning accumulated sediment on bottom of river
KR101183533B1 (en) Jointed treatment facility for muddy water
JP2017002534A (en) System and method for recovering bottom mud
CN216515814U (en) Environment-friendly dredging device for hydraulic engineering
JP2001029995A (en) System for treating sand sediment of dam
EP0526448A1 (en) Serpent sediment-sluicing system.
JP4114512B2 (en) Reservoir sand discharging method and sand discharging device
JP5100705B2 (en) Sediment flow transfer equipment
JPH11324008A (en) Removing method for sediment in dam
JP5599069B2 (en) Suction pipe for transporting submerged sediment, submerged sediment transport device, and submerged sediment transport method using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070809

R150 Certificate of patent or registration of utility model

Ref document number: 3999788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250