JP3854026B2 - CMP polishing method - Google Patents

CMP polishing method Download PDF

Info

Publication number
JP3854026B2
JP3854026B2 JP36433099A JP36433099A JP3854026B2 JP 3854026 B2 JP3854026 B2 JP 3854026B2 JP 36433099 A JP36433099 A JP 36433099A JP 36433099 A JP36433099 A JP 36433099A JP 3854026 B2 JP3854026 B2 JP 3854026B2
Authority
JP
Japan
Prior art keywords
liquid
polishing
surfactant
cmp
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36433099A
Other languages
Japanese (ja)
Other versions
JP2001179610A (en
Inventor
圭三 平井
剛史 櫻田
浩二 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP36433099A priority Critical patent/JP3854026B2/en
Publication of JP2001179610A publication Critical patent/JP2001179610A/en
Application granted granted Critical
Publication of JP3854026B2 publication Critical patent/JP3854026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子製造工程のうち、層間絶縁膜の平坦化工程またはシャロー・トレンチ分離の形成工程等において好適に使用されるCMP(Chemical Mechanical Polishing)研磨方法に関する。
【0002】
【従来の技術】
超大規模集積回路の分野において実装密度を高めるために種々の微細加工技術が研究、開発されており、既に、デザインルールは、サブハーフミクロンのオーダーになっている。このような厳しい微細化要求を満足するための技術の一つにCMP技術がある。
この技術は、半導体装置の製造工程において、露光を施す層を完全に平坦化し、露光技術の負担を軽減し、歩留まりを安定させることができるため、例えば、層間絶縁膜の平坦化やシャロー・トレンチ分離等を行う際に必須となる技術である。
【0003】
従来、半導体装置の製造工程において、プラズマ−CVD(Chemical Vapor Deposition、化学的蒸着法)、低圧−CVD等の方法で形成される酸化珪素絶縁膜等を平坦化するためのCMP研磨液として、コロイダルシリカを研磨粒子とする高PH(ペーハー)の研磨液が多用されてきた。
しかしながら、この研磨液には、酸化珪素膜の研磨速度が十分ではない、ウエハ全面が均一に削れない(すなわち高平坦化できない)、あるいはスクラッチと呼ばれる研磨傷が多い等の問題がある。
【0004】
CMP研磨液は、上記した絶縁膜の平坦化以外に、シャロー・トレンチ分離の形成工程においても使用されている。デザインルール0.5μm以上の世代では、集積回路内の素子分離にLOCOS(シリコン局所酸化)法が用いられてきたが、素子分離幅をより狭くするため、シャロー・トレンチ分離法が用いられている。
シャロー・トレンチ分離法では、基板上に成膜した余分の酸化珪素膜を除くためにCMPが使用され、研磨を停止させるために、酸化珪素膜の下に窒化珪素膜がストッパとして形成されるのが一般的である。したがって、酸化珪素膜研磨速度は窒化珪素膜研磨速度よりできるだけ大きいことが望ましい。しかし、従来のコロイダルシリカを用いた研磨液は、酸化珪素膜と窒化珪素膜の研磨速度比が高々3程度と小さく、シャロー・トレンチ分離用としては実用的ではない。
【0005】
一方、フォトマスクやレンズ等のガラス表面研磨剤としては、酸化セリウムを用いた研磨液が多用されている。酸化セリウム研磨液は研磨傷が発生し難く、また、研磨速度が早いという特長を有する。そのため、酸化セリウム研磨液を半導体用研磨液として適用する検討が近年行われているが、未だコロイダルシリカを用いた研磨液にとって変わるには至っていない。その理由は、コロイダルシリカを用いた研磨液の問題点のうち研磨速度については、特定の酸化セリウム粒子を用いることで良い結果が得られつつあるが、高平坦化、酸化珪素と窒化珪素の研磨速度比及び傷の点で十分な特性を示す研磨液及び研磨方法がなかったためである。
【0006】
【発明が解決しようとする課題】
発明は、安定した研磨速度で被研磨面を選択的に研磨することができ、高平坦化することが可能であるCMP研磨方法を提供するものである。
【0007】
【課題を解決するための手段】
本発明は、酸化セリウム粒子、界面活性剤及び水を含有する液Aと、界面活性剤及び水を含有する液Bとを容器に仕込み、攪拌羽根を回転させて容器内で攪拌して得た混合液を研磨パッド上に供給して基板を研磨することを特徴とするCMP研磨方法に関する。
また、本発明は、20分間以上容器内で攪拌を継続して混合液を得る前記のCMP研磨方法に関する。
また、本発明は、容器の直径の1/5以上の直径を有する攪拌羽根を周速度毎分2000cm以上で回転させ攪拌する前記のCMP研磨方法に関する。
【0008】
【発明の実施の形態】
本発明における酸化セリウム粒子は、例えば、炭酸セリウム、硝酸セリウム、硫酸セリウム、しゅう酸セリウム等のセリウムの塩を焼成、過酸化水素等によって酸化することで作製できる。但し、これらの方法により製造された直後の酸化セリウム粒子は凝集しているため、機械的に粉砕することが好ましい。粉砕方法としては、ジェットミル等による乾式粉砕や遊星ビーズミル等による湿式粉砕方法が好ましい。
【0009】
本発明における液Aの酸化セリウム粒子の濃度は、0.5〜10重量%であることが好ましく、0.5重量%未満の場合は研磨速度が劣る傾向があり、10重量%を超える場合は酸化セリウム粒子の分散安定性が劣る傾向がある。
【0010】
本発明における界面活性剤としては、例えば、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤等が挙げられ、これら各々について低分子型のもの、高分子型(重量平均分子量:ゲルパーミエーションクロマトグラフで測定し、標準ポリスチレン換算した値が1,000〜100,000程度)のものがある。
【0011】
具体的には、アルフォオレフィンスルホン酸塩、アルキルベンゼンスルホン酸、アルキルベンゼンスルホン酸塩、アルキル硫酸エステル塩、アルキルエーテル硫酸エステル塩、メチルタウリン酸塩、アラニネート塩、スルホコハク酸塩、エーテルスルホン酸塩、エーテルカルボン酸、エーテルカルボン酸塩、アミノ酸塩、ポリカルボン酸型ポリマー、合成アルコール、天然アルコール、ポリオキシアルキレングリコール、脂肪酸エステル、アルキルアミン、アルキルアミド、アルキルアミンオキサイド、アミノ酸、ポリアクリル酸、ポリアクリル酸のアンモニウム塩、コポリ(アクリル酸メチル・アクリル酸)のアンモニウム塩、ポリメタクリル酸、ポリメタクリル酸のアンモニウム塩、コポリ(アクリル酸メチル・メタクリル酸)のアンモニウム塩等が挙げられる。
【0012】
液A及び液Bに添加する界面活性剤は、同じものを用いてもよいし、違うものを用いてもよく、また複数のものを同時に用いてもよいが、アニオン系またはノニオン系の高分子型の界面活性剤を用いることが好ましい。
【0013】
液Aの界面活性剤の濃度は、0.003〜0.3重量%とすることが好ましく、0.003重量%未満の場合は酸化セリウム粒子の水への分散性が劣る傾向があり、0.3重量%を超える場合は酸化セリウム粒子が凝集する傾向がある。
液Bの界面活性剤の濃度は、0.5〜10重量%とされ、0.5重量%未満の場合は選択研磨性、高平坦化性(ディッシング、エロージョン等が少ないこと)が劣る傾向があり、10重量%を超える場合は、研磨速度が小さくなる傾向がある。
【0014】
本発明では、酸化セリウム粒子、界面活性剤及び水を含有する液Aと、界面活性剤及び水を含有する液Bとを容器に仕込み、攪拌羽根を回転させて容器内で攪拌して得た混合液(CMP研磨液)を研磨パッド上に供給して基板をCMP研磨する。
【0015】
得られる研磨液の耐沈降性、研磨速度安定性、高選択研磨性、高平坦化性等の観点から、20分間以上容器内で攪拌を継続して混合液を得ることが好ましい。また、同様の観点から、容器の直径の1/5以上の直径を有する攪拌羽根を周速度毎分2000cm以上で回転させ攪拌することが好ましい。
【0016】
容器及び攪拌羽根の材質及び形状に特に制限はないが、容器は攪拌羽根を出し入れできる広口のものが、また、攪拌羽根はスクリュータイプのものか高さ0.5mm以上の板を2枚以上取り付けたものが好ましい。
【0017】
本発明のCMP研磨方法により、種々の基板を研磨でき、例えば、半導体基板に形成された酸化珪素膜だけでなく、所定の配線を有する配線板に形成された酸化珪素膜、ガラス、窒化珪素等の無機絶縁膜、フォトマスク・レンズ・プリズムなどの光学ガラス、ITO等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバーの端面、シンチレータ等の光学用単結晶、固体レーザ単結晶、青色レーザLED用サファイヤ基板、SiC、GaP、GaAS等の半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド等を研磨することができる。
【0018】
【実施例】
次に、実施例により本発明を説明するが、本発明はこれに限定されるものではない。
【0019】
実施例1
炭酸セリウム水和物2kgを白金製容器に入れ、850℃で2時間空気中で焼成することにより酸化セリウムを得た。酸化セリウム粉末が水に対して6重量%になるように脱イオン水を加え、アクリル酸とアクリル酸メチルを1:1で共重合した重量平均分子量10,000のコポリ(アクリル酸メチル・アクリル酸)のアンモニウム塩が酸化セリウム粉末に対して0.8重量%となるように混合し、横型湿式超微粒分散粉砕機を用いて1400min-1で120分間粉砕処理をした 。得られた液を液Aとする。
次に、重量平均分子量4、000のポリアクリル酸のアンモニウム塩が4重量%となるように水と混合し、液Bを得た。
【0020】
液Aを500g、液Bを1600g及び希釈水Cを400g、直径25cmの広口ポリ容器に仕込み、直径5cmのスクリューを周速度毎分4712cmで回転させて攪拌して得られる混合液を研磨パッド上に供給して8インチウエハ上の酸化珪素膜及び窒化珪素膜を荏原(株)製CMP研磨装置で研磨した(研磨荷重30kPa 、定盤回転数50min-1、研磨剤供給量毎分200ml)。
また、20μm角で高さが5000Åの凸部を100μm間隔で形成した酸化珪素膜を研磨し、凸部が研磨され終わったときの凸部と凸部の中間点のへこみ量(ディッシング量)を求めた。
容器内での攪拌時間を変えて得られたそれぞれの混合液を使用して研磨した結果を表1及び表2に示す。
【0021】
【表1】

Figure 0003854026
【0022】
【表2】
Figure 0003854026
【0023】
混合時間20分未満では酸化珪素膜の研磨速度が早いため酸化珪素膜の窒化珪素膜に対する研磨速度比が高くなる傾向があるが、ばらつきが極めて大きく、研磨量を正確に制御することができない。混合時間が20分以上の場合、研磨速度及び研磨速度比は安定し、良好な平坦性が達成される。
【0024】
【発明の効果】
本発明に係るCMP研磨方法は、安定した研磨速度で被研磨面を選択的に研磨することができ、高平坦化することが可能なものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a CMP (Chemical Mechanical Polishing) polishing method suitably used in a planarization process of an interlayer insulating film or a shallow trench isolation formation process in a semiconductor element manufacturing process.
[0002]
[Prior art]
Various microfabrication techniques have been researched and developed to increase the packaging density in the field of ultra-large scale integrated circuits, and the design rules are already in the order of sub-half microns. One of the techniques for satisfying such severe miniaturization requirements is the CMP technique.
Since this technique can completely planarize the layer to be exposed in the manufacturing process of a semiconductor device, reduce the burden of the exposure technique, and stabilize the yield, for example, planarization of an interlayer insulating film or shallow trench This technique is essential when performing separation or the like.
[0003]
Conventionally, colloidal as a CMP polishing liquid for planarizing a silicon oxide insulating film or the like formed by a method such as plasma-CVD (Chemical Vapor Deposition) or low-pressure CVD in a semiconductor device manufacturing process. A high PH (pH) polishing liquid using silica as abrasive particles has been frequently used.
However, this polishing solution has problems that the polishing rate of the silicon oxide film is not sufficient, the entire surface of the wafer cannot be evenly shaved (that is, it cannot be highly planarized), or there are many scratches called scratches.
[0004]
The CMP polishing liquid is used not only in the above-described planarization of the insulating film but also in a shallow trench isolation forming process. In generations with a design rule of 0.5 μm or more, the LOCOS (silicon local oxidation) method has been used for element isolation in an integrated circuit, but a shallow trench isolation method is used to narrow the element isolation width. .
In the shallow trench isolation method, CMP is used to remove excess silicon oxide film formed on the substrate, and a silicon nitride film is formed as a stopper under the silicon oxide film to stop polishing. Is common. Therefore, it is desirable that the silicon oxide film polishing rate be as large as possible than the silicon nitride film polishing rate. However, a conventional polishing liquid using colloidal silica has a polishing rate ratio between a silicon oxide film and a silicon nitride film as small as about 3 and is not practical for shallow trench isolation.
[0005]
On the other hand, a polishing liquid using cerium oxide is frequently used as a glass surface polishing agent for photomasks and lenses. The cerium oxide polishing liquid is characterized in that polishing scratches are less likely to occur and the polishing rate is high. For this reason, studies have been made in recent years to apply a cerium oxide polishing liquid as a semiconductor polishing liquid, but the polishing liquid using colloidal silica has not yet been changed. The reason for this is that among the problems of polishing liquid using colloidal silica, good results are being obtained by using specific cerium oxide particles for polishing speed, but high planarization, polishing of silicon oxide and silicon nitride This is because there was no polishing liquid and polishing method showing sufficient characteristics in terms of speed ratio and scratches.
[0006]
[Problems to be solved by the invention]
The present invention provides a CMP polishing method that can selectively polish a surface to be polished at a stable polishing rate and can achieve high planarization.
[0007]
[Means for Solving the Problems]
The present invention was obtained by charging a liquid A containing cerium oxide particles, a surfactant and water, and a liquid B containing a surfactant and water into a container, and rotating the stirring blade to stir in the container. The present invention relates to a CMP polishing method comprising polishing a substrate by supplying a mixed liquid onto a polishing pad.
The present invention also relates to the above-described CMP polishing method for obtaining a mixed liquid by continuing stirring in a container for 20 minutes or more.
The present invention also relates to the above-described CMP polishing method in which a stirring blade having a diameter of 1/5 or more of the diameter of the container is rotated and stirred at a peripheral speed of 2000 cm or more per minute.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The cerium oxide particles in the present invention can be produced, for example, by firing a cerium salt such as cerium carbonate, cerium nitrate, cerium sulfate, or cerium oxalate, and oxidizing it with hydrogen peroxide or the like. However, since the cerium oxide particles immediately after being produced by these methods are agglomerated, it is preferable to mechanically grind them. As the pulverization method, dry pulverization using a jet mill or the like, or wet pulverization using a planetary bead mill or the like is preferable.
[0009]
The concentration of the cerium oxide particles in the liquid A in the present invention is preferably 0.5 to 10% by weight. When the concentration is less than 0.5% by weight, the polishing rate tends to be inferior, and when the concentration exceeds 10% by weight. The dispersion stability of cerium oxide particles tends to be poor.
[0010]
Examples of the surfactant in the present invention include an anionic surfactant, a cationic surfactant, a nonionic surfactant, and the like. Each of these surfactants is a low molecular type, a high molecular type (weight average molecular weight: Some are measured with a gel permeation chromatograph and converted into standard polystyrene (about 1,000 to 100,000).
[0011]
Specifically, alfolefin sulfonate, alkylbenzene sulfonate, alkylbenzene sulfonate, alkyl sulfate ester salt, alkyl ether sulfate ester salt, methyl taurate, alaninate salt, sulfosuccinate, ether sulfonate, ether carboxyl Acid, ether carboxylate, amino acid salt, polycarboxylic acid type polymer, synthetic alcohol, natural alcohol, polyoxyalkylene glycol, fatty acid ester, alkylamine, alkylamide, alkylamine oxide, amino acid, polyacrylic acid, polyacrylic acid Ammonium salt, ammonium salt of copoly (methyl acrylate / acrylic acid), polymethacrylic acid, ammonium salt of polymethacrylic acid, ammo of copoly (methyl acrylate / methacrylic acid) Umm salts and the like.
[0012]
The same surfactant may be used for liquid A and liquid B, different ones may be used, or a plurality of surfactants may be used simultaneously. Anionic or nonionic polymers It is preferable to use a type of surfactant.
[0013]
The concentration of the surfactant in the liquid A is preferably 0.003 to 0.3% by weight. When the concentration is less than 0.003% by weight, the dispersibility of the cerium oxide particles in water tends to be inferior. When it exceeds 3% by weight, the cerium oxide particles tend to aggregate.
The concentration of the surfactant in the liquid B is 0.5 to 10% by weight, and when it is less than 0.5% by weight, the selective polishing property and high flatness (less dishing, erosion, etc.) tend to be inferior. In the case of exceeding 10% by weight, the polishing rate tends to be small.
[0014]
In the present invention, a liquid A containing cerium oxide particles, a surfactant and water and a liquid B containing a surfactant and water were charged in a container, and the stirring blade was rotated to obtain the liquid. A mixed liquid (CMP polishing liquid) is supplied onto the polishing pad to perform CMP polishing on the substrate.
[0015]
From the viewpoint of settling resistance, polishing rate stability, high selective polishing property, high flatness, and the like of the resulting polishing liquid, it is preferable to continue stirring in the container for 20 minutes or more to obtain a mixed liquid. From the same viewpoint, it is preferable to stir by rotating a stirring blade having a diameter of 1/5 or more of the diameter of the container at a peripheral speed of 2000 cm or more per minute.
[0016]
There are no particular restrictions on the material and shape of the container and the stirring blade, but the container has a wide opening that allows the stirring blade to be taken in and out, and the stirring blade is a screw type or two or more plates with a height of 0.5 mm or more. Are preferred.
[0017]
Various substrates can be polished by the CMP polishing method of the present invention. For example, not only a silicon oxide film formed on a semiconductor substrate but also a silicon oxide film formed on a wiring board having a predetermined wiring, glass, silicon nitride, etc. Inorganic insulating film, optical glass such as photomask / lens / prism, inorganic conductive film such as ITO, optical integrated circuit / optical switching element / waveguide composed of glass and crystalline material, end face of optical fiber, scintillator, etc. Optical single crystals, solid laser single crystals, sapphire substrates for blue laser LEDs, semiconductor single crystals such as SiC, GaP, and GaAS, glass substrates for magnetic disks, magnetic heads, and the like can be polished.
[0018]
【Example】
Next, the present invention will be described with reference to examples, but the present invention is not limited thereto.
[0019]
Example 1
Cerium oxide was obtained by placing 2 kg of cerium carbonate hydrate in a platinum container and firing in air at 850 ° C. for 2 hours. Copoly (methyl acrylate / acrylic acid) having a weight average molecular weight of 10,000 obtained by adding deionized water so that the cerium oxide powder is 6% by weight of water and copolymerizing acrylic acid and methyl acrylate in a ratio of 1: 1. ) Was mixed at 0.8% by weight with respect to the cerium oxide powder, and pulverized at 1400 min -1 for 120 minutes using a horizontal wet ultrafine particle dispersion pulverizer. Let the obtained liquid be liquid A.
Next, it mixed with water so that the ammonium salt of polyacrylic acid with a weight average molecular weight of 4,000 might be 4 weight%, and the liquid B was obtained.
[0020]
500 g of liquid A, 1600 g of liquid B and 400 g of diluting water C, charged into a wide-mouthed plastic container with a diameter of 25 cm, and a mixture obtained by rotating a screw with a diameter of 5 cm at a peripheral speed of 4712 cm / min on the polishing pad The silicon oxide film and the silicon nitride film on the 8-inch wafer were polished by a CMP polishing apparatus manufactured by EBARA Co., Ltd. (polishing load 30 kPa, surface plate rotation speed 50 min −1 , abrasive supply amount 200 ml per minute).
In addition, a silicon oxide film in which convex portions having a height of 5000 μm and a height of 5000 μm are formed at intervals of 100 μm is polished, and the dent amount (dishing amount) between the convex portions and the convex portions when the convex portions are polished. Asked.
Tables 1 and 2 show the results of polishing using each liquid mixture obtained by changing the stirring time in the container.
[0021]
[Table 1]
Figure 0003854026
[0022]
[Table 2]
Figure 0003854026
[0023]
If the mixing time is less than 20 minutes, the polishing rate of the silicon oxide film is high and the polishing rate ratio of the silicon oxide film to the silicon nitride film tends to be high, but the variation is extremely large, and the polishing amount cannot be controlled accurately. When the mixing time is 20 minutes or more, the polishing rate and the polishing rate ratio are stable, and good flatness is achieved.
[0024]
【The invention's effect】
CMP polishing method according to the present invention can be selectively polishing the surface at a steady polishing rate, it is intended that possible to highly planarized.

Claims (7)

酸化セリウム粒子、第1の界面活性剤及び水を含有する液Aを準備し、前記第1の界面活性剤とは異なる第2の界面活性剤及び水を含有する液Bを準備し、研磨に先立ち、液Aと液Bとを容器に仕込み、攪拌羽根を回転させて容器内で攪拌して得た混合液を研磨パッド上に供給して基板を研磨することを特徴とするCMP研磨方法。A liquid A containing cerium oxide particles, a first surfactant and water is prepared, and a liquid B containing a second surfactant and water different from the first surfactant is prepared for polishing. A CMP polishing method characterized in that liquid A and liquid B are first charged in a container, and a liquid mixture obtained by rotating the stirring blade and stirring in the container is supplied onto the polishing pad to polish the substrate. 20分間以上容器内で攪拌を継続して混合液を得る請求項1記載のCMP研磨方法。  2. The CMP polishing method according to claim 1, wherein stirring is continued in the container for 20 minutes or more to obtain a mixed solution. 容器の直径の1/5以上の直径を有する攪拌羽根を周速度毎分2000cm以上で回転させ攪拌する請求項1又は2記載のCMP研磨方法。  The CMP polishing method according to claim 1 or 2, wherein a stirring blade having a diameter of 1/5 or more of the diameter of the container is rotated and stirred at a peripheral speed of 2000 cm or more per minute. 酸化セリウム粒子、第1の界面活性剤及び水を混合する工程を含む、請求項1〜3のいずれか1項記載のCMP研磨方法に用いられる、酸化セリウム粒子、第1の界面活性剤及び水を含有する液Aの製造方法。 The cerium oxide particle | grains, 1st surfactant, and water which are used for the CMP grinding | polishing method of any one of Claims 1-3 including the process of mixing a cerium oxide particle, 1st surfactant, and water. The manufacturing method of the liquid A containing this. 第2の界面活性剤及び水を混合する工程を含む、請求項1〜3のいずれか1項記載のCMP研磨方法に用いられる、第2の界面活性剤及び水を含有する液Bの製造方法。 The manufacturing method of the liquid B containing the 2nd surfactant and water used for the CMP grinding | polishing method of any one of Claims 1-3 including the process of mixing a 2nd surfactant and water. . 請求項1〜3のいずれか1項記載のCMP研磨方法に用いられる、酸化セリウム粒子、第1の界面活性剤及び水を含有する液Aの使用方法The usage method of the liquid A containing the cerium oxide particle, the 1st surfactant, and water used for the CMP grinding | polishing method of any one of Claims 1-3. 請求項1〜3のいずれか1項記載のCMP研磨方法に用いられる、第2の界面活性剤及び水を含有する液Bの使用方法The usage method of the liquid B containing the 2nd surfactant and water used for the CMP grinding | polishing method of any one of Claims 1-3.
JP36433099A 1999-12-22 1999-12-22 CMP polishing method Expired - Fee Related JP3854026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36433099A JP3854026B2 (en) 1999-12-22 1999-12-22 CMP polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36433099A JP3854026B2 (en) 1999-12-22 1999-12-22 CMP polishing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002162318A Division JP4449277B2 (en) 2002-06-04 2002-06-04 CMP polishing method

Publications (2)

Publication Number Publication Date
JP2001179610A JP2001179610A (en) 2001-07-03
JP3854026B2 true JP3854026B2 (en) 2006-12-06

Family

ID=18481557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36433099A Expired - Fee Related JP3854026B2 (en) 1999-12-22 1999-12-22 CMP polishing method

Country Status (1)

Country Link
JP (1) JP3854026B2 (en)

Also Published As

Publication number Publication date
JP2001179610A (en) 2001-07-03

Similar Documents

Publication Publication Date Title
JP3649279B2 (en) Substrate polishing method
JP2007111856A (en) Abrasive and slurry
JP4555936B2 (en) CMP polishing liquid
JP2009182344A (en) Cerium oxide abrasive and method of polishing substrate
JP3525824B2 (en) CMP polishing liquid
JP3725357B2 (en) Element isolation formation method
JP4062977B2 (en) Abrasive and substrate polishing method
JP3854026B2 (en) CMP polishing method
JP4449277B2 (en) CMP polishing method
JP2006191134A (en) Abrasive powder and polishing method of substrate
JP2001358100A (en) Cmp abrasive and polishing method of substrate
JP2000160137A (en) Polishing agent and polishing process using the same
JP4604727B2 (en) Additive for CMP abrasives
JP2000160136A (en) Polishing agent and polishing process using the same
JP4501694B2 (en) Additive for CMP abrasives
JPH10102038A (en) Cerium oxide abrasive and grinding of substrate
JP3570543B2 (en) CMP polishing method
JP4608925B2 (en) Additive for CMP abrasives
JP2003064351A (en) Cmp polishing liquid
JP4878728B2 (en) CMP abrasive and substrate polishing method
JP2001308043A (en) Cmp-polishing agent and polishing method for substrate
JP2001332516A (en) Cmp abrasive and method for polishing substrate
JP2003017447A (en) Cmp abrasives and method for polishing substrate
JP2005333160A (en) Method for forming element isolation
JP2000252245A (en) Liquid for cmp

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041216

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050107

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees