JP3850469B2 - Water purification system - Google Patents

Water purification system Download PDF

Info

Publication number
JP3850469B2
JP3850469B2 JP27857795A JP27857795A JP3850469B2 JP 3850469 B2 JP3850469 B2 JP 3850469B2 JP 27857795 A JP27857795 A JP 27857795A JP 27857795 A JP27857795 A JP 27857795A JP 3850469 B2 JP3850469 B2 JP 3850469B2
Authority
JP
Japan
Prior art keywords
zeolite
water
treatment
treatment tank
purification system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27857795A
Other languages
Japanese (ja)
Other versions
JPH09117793A (en
Inventor
健二 田口
勝廣 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27857795A priority Critical patent/JP3850469B2/en
Publication of JPH09117793A publication Critical patent/JPH09117793A/en
Application granted granted Critical
Publication of JP3850469B2 publication Critical patent/JP3850469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【0001】
【発明が属する技術分野】
本発明は、オゾン処理と生物活性炭処理(以下、BAC処理という)とゼオライト処理を備えた高度浄水処理において、常に安定したNH4 −N除去性能を維持できる浄水処理システムに関する。
【0002】
【従来の技術】
近年、より良質でおいしい水を得るためにオゾンとBAC処理を用いた高度浄水処理が注目されている。オゾン処理はオゾンの強力な殺菌力と酸化力を利用し、BAC処理は粒状活性炭に微生物を生育させ、この粒状活性炭に生育させた微生物の代謝作用と粒状活性炭本来の物理化学的吸着作用とを利用して、原水中の汚染有機物質や異臭味等を除去するものである。
【0003】
図7は、高度浄水処理プラントにおける代表的な処理プロセスを示したフロー図である。なお、このフロー図では、前塩素処理工程が存在しないので、トリハロメタン等の有害物質を生成することはない。
【0004】
同図の処理プロセスに示すように、最初に原水に対して凝集沈澱処理工程1を実行した後、急速濾過処理工程2、オゾン処理工程3、BAC処理工程4及び後処理工程5の順に各工程を実行して浄水を得るように構成されている。
【0005】
まず、急速濾過処理工程2の代表例として砂濾過処理があげられる。この砂濾過処理では、水中に懸濁する浮遊物を除去するもので、原水の特性に応じてオゾン処理工程3の後或いはBAC処理工程4の後に行われることもある。
【0006】
オゾン処理工程3は、原水の異臭味除去、BACの微生物代謝に有効な有機物質の酸化、鉄・マンガンの酸化、色度除去等を行うものである。このオゾン処理工程3は、上述した急速濾過処理工程2の前に行われることがあり、また急速濾過処理工程2の前及びBAC処理工程4の前にて夫々行なわれることもある。
【0007】
後処理工程5は、現行の後塩素処理工程と同様、消毒の他に、低温時等においてBACから流出するNH4 −N除去等を行うためのものである。
このように、BAC処理工程4の前後の各処理プロセスユニットの配列が、原水の特性に応じて異なることはあっても、BAC処理工程4の基本処理特性は何ら変わることはない。
【0008】
【発明が解決しようとする課題】
ところで、上述したBAC処理工程4からのNH4 −Nの流出は、低温時の他に起こることがある。例えば、被処理水中のNH4 −Nが低濃度状態から急激にNH4 −N負荷が増大し、通常予想されるNH4 −N濃度より高いNH4 −Nを含んだ被処理水の流入時には、低温時と同様にBAC処理工程4からNH4 −Nが流出することがあり、後処理工程5における塩素注入率増加の主な原因となっていた。
【0009】
ところで、BAC処理工程4から流出したNH4 −Nは、後処理工程5における塩素注入率の増加で対応して除去しているため、浄水中に混入することはないが、塩素注入率の増加は、塩素臭(カルキ臭)などの異臭味の原因となり、水道水をまずくする原因の一つとなっていた。
【0010】
本発明は、上記状況に鑑みてなされたもので、その目的は、BAC処理から流出するNH4 −Nを温度やNH4 −Nの負荷変動に関係なく、常に安定して除去可能な浄水処理システムを提供することにある。
【0011】
【課題を解決するための手段】
まず、本発明の基本的考え方について説明する。
本発明の基本的な考え方は、BAC処理におけるNH4 −N除去が一時的に低下する現象は、流入する被処理水中のNH4 −N濃度が、0.05〜0.5mg/lに継続的に維持されている時は起こらず、0.05mg/l以下の低濃度が長時間継続した後、NH4 −N濃度が急上昇する場合に数多く起るという知見を得たことに基づくものである。
【0012】
すなわち、硝化菌の代謝基質であるNH4 −Nの不足状態が長く続くと、生物活性が弱まり、その後のNH4 −Nの増大があってもすぐに対応できず一時的な除去性能の極端な低下を示すものと考えられる。
【0013】
また、本発明は流入水中のNH4 −N濃度が0.05〜0.5mg/lに継続的に維持されているのにもかかわらず、流入水の水温が10〜15℃以下に下がると、NH4 −Nの除去特性が低下する現象が起こることにも基づいている。これは、硝化菌の生物活性を支配する要因の一つである水温が低下すると、硝化菌のNH4 −Nの代謝能力が低下するからである。
【0014】
以上の知見に基づいて、上記本発明の目的を達成するために、本発明の請求項1は、水を前処理する前処理プロセスと、前記前処理プロセスで処理された処理水をオゾン酸化処理するオゾン反応槽と、前記オゾン反応槽で処理されたオゾン処理水を導入して生物処理する生物活性炭処理槽を備えた浄水処理システムにおいて、前記生物活性炭処理槽の前後に設置されたアンモニア性窒素計測手段と、前記生物活性炭処理槽の後段に設置されたゼオライト処理槽と、前記生物活性炭処理槽の処理水を直接後処理プロセスへ導入する第1ラインと、前記生物活性炭処理槽の処理水を前記ゼオライト処理槽へ導入する第2ラインと、前記両ラインを切替える切替制御装置とを備えたことを特徴とする。
【0015】
本発明の請求項2は、請求項1記載の浄水処理システムにおいて、前記ゼオライト処理槽の出口から入口の間に循環水を通水させる循環ポンプと、前記ゼオライト処理槽の後段に設置されたNH4 −N計測手段とを備えたことを特徴とする。
【0016】
本発明の請求項3は、請求項1記載の浄水処理システムにおいて、前記ゼオライト処理槽の出口から入口の間に循環水を通水させる循環ポンプと、前記循環のラインに接続された植菌装置と、前記ゼオライト処理槽の後段に設置されたNH4 −N計測手段とを備えたことを特徴とする。
【0017】
本発明の請求項4は、請求項1記載の浄水処理システムにおいて、前記ゼオライト処理槽の出口から入口の間に循環水を通水させる循環ポンプと、前記循環のラインに設けた加温装置及び水温計測手段と、ゼオライト処理槽の後段に設置されたNH4 −N計測手段とを備えたことを特徴とする。
【0018】
本発明の請求項5は、請求項1記載の浄水処理システムにおいて、前記ゼオライト処理槽の出口から入口の間に循環水を通水させる循環ポンプと、前記循環のラインに設けた溶存酸素供給装置及び溶存酸素検出手段と、前記ゼオライト処理槽の後段に設置されたNH4 −N計測手段とを備えたことを特徴とする。
本発明の請求項6は、請求項1記載の浄水処理システムにおいて、前記生物活性炭処理槽の前段に水温計測手段を備えたことを特徴とする。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を図を参照して説明する。
図1は本発明の第1実施例(請求項1対応)である浄水処理システムの構成図である。
【0020】
同図に示すように、本実施例の浄水処理システムは、前処理プロセス6と、オゾン反応槽7と、BAC処理槽8と、BAC処理槽8の直前に設置されたNH4 −N計測手段9aと、BAC処理槽8の直後に設置されたNH4 −N計測手段9bと、ゼオライト処理槽10と、切替制御装置11と、後処理プロセス12と、開閉バルブ13〜15と、排水バルブ16とから構成されている。
【0021】
ところで、前処理プロセス6は、従来例として図7に説明した凝集沈澱処理1及び急速濾過処理2の処理プロセスで構成されている。
また、切替制御装置11は、NH4 −N計測手段9aによる計測値F1及びNH4 −N計測手段9bによる計測値F2とを読み込んでBAC処理水のゼオライト処理の有無を判断する。この切替制御装置11では前記ゼオライト処理の有無に連動するように開閉バルブ13〜15を適切に制御する。
後処理プロセス12は、BAC処理水またはゼオライト処理水を受けて、塩素注入によるNH4 −Nの後処理や消毒などを行ない、浄水として配水する。
【0022】
次に、本実施例の作用について説明する。
原水中に含まれるNH4 −Nは、前処理プロセス6やオゾン反応槽7では除去できないため、通常BAC処理槽8にてBACに生育した硝化菌の代謝作用により除去されている。BAC処理槽8にて、NH4 −Nが除去されている間は、BAC処理水のゼオライト処理が不必要なためBAC処理槽8からゼオライト処理槽10に接続するラインは開閉バルブ13により閉じられる。また、ゼオライト処理槽10から後処理プロセス12に接続するラインも開閉バルブ14により閉じられるとともに開閉バルブ15は開けられ、BAC処理水は直接後処理プロセス12に導入されるように切替制御装置11を用いて、各開閉バルブ13〜15は制御されている。また、排水バルブ16は、ゼオライト処理槽10の水抜きのため、休止時は通常開けられている。
【0023】
しかしながら、冬季などの低温時や急激なNH4 −N負荷増大時には、BAC処理槽8ではNH4 −Nが完全に除去しきれずに、BAC処理水中に残存することがある。BAC処理槽8の前後にそれぞれ設置されたNH4 −N計測手段9a及びNH4 −N計測手段9bを用いて、BAC処理前後のNH4 −N濃度は常時計測されている。
【0024】
本実施例において、NH4 −N計測手段9aの計測値F1がNH4 −N濃度としてF1≧1mg/l、またはNH4 −N計測手段9bの計測値F2がNH4 −N濃度として、F2≧0.05mg/lのときのみBAC処理水のゼオライト処理が実施されるように切替制御装置11で制御されている。つまり、NH4 −N濃度として、F1≧1mg/l又はF2≧0.05mg/lの条件を満たす時、切替制御装置11では排水バルブ16を閉じるとともに、開閉バルブ14及び開閉バルブ13を順次開けるように制御を行なう。また、これらの一連の動作が完了後、BAC処理槽8と後処理プロセス12とを接続するバイパスラインも開閉バルブ15により閉じられるように制御される。この一連の動作が完了すると、BAC処理水のゼオライト処理が開始され、NH4 −N濃度としてF1≧1mg/lまたは、F2≧0.05mg/lの間はゼオライト処理が継続される。
【0025】
一方、NH4 −N濃度としてF1≧1mg/l及びF2≧0.05mg/lの両者の条件を満たす場合は、BAC処理槽8からのNH4 −Nの流出はなくなったと判断され、ゼオライト処理開始時とは逆の動作で、ゼオライト処理から定常処理(BAC処理水を直接後処理プロセス12に導入)へ切替わる。
【0026】
なお、本実施例では、ゼオライト処理槽10が1系列の例を示したが、複数系列のゼオライト処理槽を切替えて処理することも可能であり、またNH4 −Nの吸着飽和に達したゼオライトは系外に取り出してアルカリ性溶液によるアルカリ再生が実施される。
【0027】
以上説明したように、本実施例によれば、BAC処理の後に切替式のゼオライト処理を追加することにより、ゼオライトの交換や再生に伴なう一時的なゼオライト処理の中断時期を除き、後処理プロセス12へ導入されるNH4 −N濃度を0.05mg/l未満にできる。従って、後処理プロセス12において、NH4 −Nによって消費される塩素量が大幅に減少する。これにより、実際に注入する塩素量も消毒と残留塩素を維持するための必要最小限の量となる。このため、後処理プロセス12における塩素注入率の低減と平滑化が同時に達成できる。
【0028】
よって、従来の塩素処理で問題となっていたトリハロメタン等の有機塩素系化合物の生成が大幅に抑制できた。また、過剰な塩素注入が抑えられるため、塩素臭等の異臭味の発生がほとんどなくなった。
【0029】
図2は本発明の第2実施例(請求項2対応)である浄水処理システムの構成図である。
同図に示すように、本実施例の浄水処理システムは、前処理プロセス6と、オゾン反応槽7と、BAC処理槽8と、BAC処理槽8の直前に設置されたNH4 −N計測手段9aと、BAC処理槽8の直後に設置されたNH4 −N計測手段9bと、ゼオライト処理槽10と、切替制御装置11と、後処理プロセス12と、開閉バルブ13〜15と、排水バルブ16と、ゼオライト処理槽8の出口から入口の間に循環水を通水させるための循環ポンプ17と、開閉バルブ18〜19と、ゼオライト処理槽10の後段に設置されたNH4 −N計測手段20とから構成されている。
【0030】
以上のように、本実施例は、図1の第1実施例に循環ポンプ17と、開閉バルブ18と、開閉バルブ19と、NH4 −N計測手段20とが付加された構成となっている。
【0031】
また、切替制御装置11は、それぞれNH4 −N計測手段9a及びNH4 −N計測手段9bの計測値F1及びF2と、NH4 −N計測手段20の計測値F3とを読み込んで、ゼオライト処理の有無の判断と開閉バルブ13〜15の開閉制御と、排水バルブ16の開閉制御と、循環水によるゼオライト再生のための循環ポンプ17の起動・停止及び循環ポンプ17の起動・停止に連動した開閉バルブ18〜19の開閉制御を行なう。
【0032】
次に、本実施例の作用について説明する。
本実施例では、図1の第1実施例に付加して、ゼオライト処理の休止期間中に、ゼオライト処理槽10内に循環ポンプ17を用いて、循環水を通水し、ゼオライトに付着した硝化菌の代謝作用を用いて、ゼオライトの生物再生を行なうものである。
【0033】
本実施例は、定常処理からゼオライト処理へ切替わる動作及び判断規準は、第1実施例と同様なので省略する。しかし、切替制御装置11にてゼオライト処理が不要と判断された場合、定常処理への切替えのため、開閉バルブ15が開かれた後、開閉バルブ13及び開閉バルブ14が順次閉じられる。またこの時、切替制御装置11ではゼオライト処理休止直前のNH4 −N計測手段20の計測値F3により、ゼオライト処理槽10の循環水による生物再生か、排水(水抜き)かを判断する。つまりF3≧0.03mg/lの場合、ゼオライトの飽和吸着であると判断し、開閉バルブ18,19が順次開き、循環ポンプ17が起動されて循環水がゼオライト処理槽10に通水され、ゼオライトの生物再生が実施される。この循環水によるゼオライトの生物再生は、NH4 −N計測手段の計測値F3がF3<0.01mg/lとなるか、再度BAC処理水のゼオライト処理が必要と判断されるまで継続される。
【0034】
一方、F3≦0.03の場合は、ゼオライトにNH4 −Nの吸着能力が残っていると判断し、循環水によるゼオライトの生物再生は行なわれず、排水バルブ16が開かれて、ゼオライト処理の排水(水抜き)が実施される。
【0035】
以上の動作が完了後、再びBAC処理水のゼオライト処理のため、ゼオライト処理槽10が待機状態に移行する。
なお、開閉バルブ18〜19はゼオライト処理中は閉じられているが、それ以外は通常開かれている。
【0036】
以上説明したように、ゼオライト処理を行ない定常処理中にゼオライト処理槽10に循環水を通水することにより、系外(ゼオライト処理槽10の外)に取り出さずにゼオライトの生物再生が実施でき、常にゼオライトのNH4 −Nの吸着性能が維持できる。これにより従来、ゼオライトの再生処理に必要としていた大変な労力と時間と再生設備が大幅に削減できた。
【0037】
また、本実施例は図1の第1実施例と同様に、後処理プロセス12における塩素注入率が低減されるため、トリハロメタン等の有機塩素化合物の生成が大幅に抑制でき、塩素臭等の異臭味の発生がなくなった。
【0038】
図3は本発明の第3実施例(請求項3対応)である浄水処理システムの構成図である。
同図に示すように、本実施例の浄水処理システムは、前処理プロセス6と、オゾン反応槽7と、BAC処理槽8と、BAC処理槽8の直前に設置されたNH4 −N計測手段9aと、BAC処理槽8の直後に設置されたNH4 −N計測手段9bと、ゼオライト処理槽10と、切替制御装置11と、後処理プロセス12と、開閉バルブ13〜15と、排水バルブ16と、ゼオライト処理槽の出口から入口の間に循環水を通水させるための循環ポンプ17と、開閉バルブ18〜19と、ゼオライト処理槽10の後段に設置されたNH4 −N計測手段20と、循環水に硝化菌を含んだ液を注入する植菌装置21とから構成されている。
以上のように、本実施例は図2の第2実施例に植菌装置21が付加された構成となっている。
【0039】
次に、本実施例の作用について説明する。
本実施例は、図2の第2実施例で示した循環水によるゼオライトの生物再生中に、植菌装置21より硝化菌を含んだ液を循環水に注入し、ゼオライトの生物再生を積極的に行なうものである。従って、定常処理からゼオライト処理への切替えやゼオライトの生物再生が実施される判断基準は第2実施例と同様なので省略する。しかしながら、切替制御装置11では、ゼオライト処理槽10内のゼオライトの生物再生が必要と判断した場合、循環ポンプ17が起動された後、植菌装置21より循環水に硝化菌を含んだ液を注入するように制御する。硝化菌を含んだ液を循環水に注入することにより、循環水中の硝化菌の菌体濃度が高まる。これにより単位硝化菌数当りのNH4 −N負荷が低減されるため、ゼオライトの生物再生速度が第2実施例に比較して2〜3倍程度早まる。
【0040】
ゼオライトの生物再生が完了すると、植菌装置21から硝化菌を含んだ液の注入は終了し、循環ポンプ17は停止され、これ以降、第2実施例と同様の動作で、ゼオライト処理槽10は待機状態に移行する。
【0041】
以上説明したように、本実施例によると、循環水による生物再生中に植菌装置21より硝化菌を含んだ液を注入することにより、循環水中の菌体濃度を常にゼオライトの生物再生に必要な濃度以上に保持できる。これにより、単位硝化菌数当りの除去NH4 −N量が低減され、循環水によるゼオライトの生物再生速度が第2実施例に比較して、2〜3倍程度早めることができた。このため、ゼオライト処理槽10をすばやくゼオライト処理のための待機状態に移行できることに付加して、第2実施例と同様の効果が得られた。
【0042】
図4は本発明の第4実施例(請求項4対応)である浄水処理システムの構成図である。
同図に示すように、本実施例の浄水処理システムは、前処理プロセス6と、オゾン反応槽7と、BAC処理槽8と、BAC処理槽8の直前に設置されたNH4 −N計測手段9aと、BAC処理槽8の直後に設置されたNH4 −N計測手段9bと、ゼオライト処理槽10と、切替制御装置11と、後処理プロセス12と、開閉バルブ13〜15と、排水バルブ16と、ゼオライト処理槽10の出口から入口の間に循環水を通水させるための循環ポンプ17と、開閉バルブ18〜19と、ゼオライト処理槽10の後段に設置されたNH4 −N計測手段20と、加温装置22と、水温計測手段23とから構成されている。
以上のように、本実施例は図2の第2実施例に、加温装置22と、水温計測手段23とが付加された構成となっている。
【0043】
次に、本実施例の作用について説明する。
本実施例は、第2実施例で示した循環水によるゼオライトの生物再生中に、加温装置22にて循環水を加温し、ゼオライトに付着した硝化菌を活性化させてゼオライトの生物再生を早めるものである。従って、定常処理からゼオライト処理への切替えやゼオライトの生物再生が実施される判断基準は第2実施例と同様なので省略する。
【0044】
しかしながら、切替制御装置11では、ゼオライト処理槽10内のゼオライトの循環水による生物再生が必要と判断した場合、循環ポンプ17の起動とともに、水温計測手段23を用いて循環水の水温を計測する。切替制御装置11では、水温計測手段23の計測値F4を読み込んで、F4<20℃のときは加温装置22に加温指令を出し循環水を加温するよう制御する。加温装置22による循環水の加温は、F4≧21℃になるまで継続され、F4≧21℃になったら、加温装置22による循環水の加温は停止される。このような動作は、循環水による生物再生が行なわれている間は継続される。なお、本実施例では、循環水の加温に電熱ヒータを用いた。
【0045】
ゼオライトの生物再生が完了すると、加温装置22による循環水の加温制御は終了し、循環ポンプ17は停止される。これ以降は図2の第2実施例と同様の動作であり、ゼオライト処理槽10は待機状態に移行する。
【0046】
以上説明したように、循環水を加温装置22にて加温することにより循環水の温度を常に20℃以上に保持できる。これにより、硝化菌の活性を常に高い状態に維持できる。このため、冬期等の水温低下に関係なく、循環水によるゼオライトの生物再生が、常に安定して実施できた。従って、ゼオライト処理槽10を常に安定してBAC処理水のゼオライト処理のための待機状態に移行できることに付加して、図2の第2実施例と同様の効果が得られた。
【0047】
図5は本発明の第5実施例(請求項5対応)である浄水処理システムの構成図である。
同図に示すように、本実施例の浄水処理システムは、前処理プロセス6と、オゾン反応槽7と、BAC処理槽8と、BAC処理槽8の直前に設置されたNH4 −N計測手段9aと、BAC処理槽8の直後に設置されたNH4 −N計測手段9bと、ゼオライト処理槽10と、切替制御装置11と、後処理プロセス12と、開閉バルブ13〜15と、排水バルブ16と、ゼオライト処理槽の出口から入口の間に循環水を通水させるための循環ポンプ17と、開閉バルブ18〜19と、ゼオライト処理槽10の後段に設置されたNH4 −N計測手段20と、溶存酸素供給装置24と、溶存酸素検出手段25とから構成されている。
以上のように、本実施例は、図2の第2実施例に溶存酸素供給装置24と、溶存酸素検出手段25が付加された構成となっている。
【0048】
次に、本実施例の作用について説明する。
本実施例は、図2の第2実施例で示した循環水によるゼオライトの生物再生中に、溶存酸素供給装置24より溶存酸素を供給し、溶存酸素不足による硝化菌の活性低下を防止するものである。従って、定常処理からゼオライト処理への切替えやゼオライトの生物再生が実施される判断規準は、第2実施例と同様なので省略する。
【0049】
しかしながら、切替制御装置11では、ゼオライト処理槽10内のゼオライトの循環水による生物再生が必要と判断した場合、循環ポンプ17の起動とともに、溶存酸素検出手段25を用いて循環水の溶存酸素濃度を計測する。切替制御装置11では、溶存酸素検出手段25の計測値F5を読み込んで、F5<5mg/lのときは溶存酸素供給装置24に溶存酸素の供給指令を出し循環水の溶存酸素を供給する。溶存酸素供給装置24による溶存酸素は、F5≧6mg/lになるまで継続され、F5≧6mg/lになったら、溶存酸素装置24による溶存酸素の供給は停止される。このような動作は、循環水による生物再生が行なわれている間は継続される。
【0050】
なお、溶存酸素の供給源としては、酸素ガス又は空気を用い、溶存酸素装置24の供給方法としては、通常、セラミックス製散気管を用いた気液接触方式が用いられるが、中空糸膜やセラミックス膜を用いたバブルレスの溶存酸素の供給方法も使用可能である。
【0051】
ゼオライトの生物再生が完了すると、溶存酸素装置24による循環水の溶存酸素の供給制御は終了し、循環ポンプ17は停止され、これ以降は図2の第2実施例と同様の動作で、ゼオライト処理槽10は待機状態に移行する。
【0052】
以上説明したように、循環水に溶存酸素供給装置24を用いて溶存酸素を供給することにより、循環水の溶存酸素濃度を常に5mg/l以上に維持できる。これにより、溶存酸素不足による硝化菌の活性低下を防げ、常に硝化菌の活性を良好に維持でき、循環水によるゼオライトの生物再生が常に安定して実施できた。従って、ゼオライト処理槽10を常に安定してBAC処理水のゼオライト処理のための待機状態にできることに付加して、図2の第2実施例と同様の効果が得られた。
【0053】
図6は、本発明の第6実施例(請求項6対応)である浄水処理システムを示す構成図である。
同図に示すように、本実施例の浄水処理システムは、前処理プロセス6と、オゾン反応槽7と、BAC処理槽8と、BAC処理槽8の直前に設置されたNH4 −N計測手段9aと、BAC処理槽8の直後に設置されたNH4 −N計測手段9bと、ゼオライト処理槽10と、切替制御装置11と、後処理プロセス12と、開閉バルブ13〜15と、排水バルブ16と水温計測手段26とから構成されている。
以上のように、本実施例は図1の第1実施例に水温計測手段26が付加されてた構成となっている。
【0054】
水温計測手段26は、BAC処理槽8の前後に設置することにより、冬期など水温低下によりBAC処理槽8におけるNH4 −Nの除去性能の低下が予想される場合は、NH4 −Nの流出の有無にかかわらずBAC処理水のゼオライト処理を行なうように切替制御装置11を用いて制御を行なうものである。
【0055】
次に、本実施例の作用について説明する。
本実施例は、図1の第1実施例に、さらに水温による制御を付加したものであり、BAC処理槽8において、BAC層の硝化菌が水温10〜15℃以下になると急速に活性が低下し、BAC処理槽8におけるNH4 −Nの除去性能が低下することに基づいている。
【0056】
本実施例では、水温計測手段26にて計測される計測値F6が、F6>10℃の場合、図1の第1実施例と同様に切替制御装置11を用いて制御されている。しかし、F6≦10℃となった場合は、NH4 −N計測手段9aやNH4 −N計測手段9bの計測値にかかわらず、強制的にゼオライト処理槽10におけるゼオライト処理が実行されるように切替制御装置11を用いて制御される。この強制的なゼオライト処理は、F6≦10℃の間は継続され、F6>10℃となった場合に解除されるように切替制御装置11を用いて制御されている。
【0057】
以上説明したように、本実施例によれば、ゼオライト処理の有無を判断する切替制御装置11の入力情報に、水温計測手段26の計測値F6を入力することにより、水温の低下に伴なうBAC処理におけるNH4 −Nの除去性能の低下を予想する。この予想に基づき、水温低下期間中はゼオライト処理を強制的に実行することにより、BAC処理水を直接後処理プロセスに導入する定常処理とゼオライト処理との切替頻度が大幅に減少する。
【0058】
つまり、定常処理とゼオライト処理の切替えに伴ない発生する一時的な処理水量の変動や損失が大幅に減少する。これにより、後処理プロセス12へ導入されるNH4 −N濃度を0.05mg/l未満にできるとともに、処理水量の脈動がなくなる。従って、後処理プロセス12における後塩素注入制御の負荷が大幅に減少する。このため、後処理プロセス12における塩素注入率の低減と平滑化が同時に達成することができ、図1の第1実施例と同様の効果が得られた。
【0059】
【発明の効果】
以上説明したように、本発明の請求項1乃至請求項6によれば、BAC処理から流出するNH4 −Nを温度やNH4 −Nの負荷変動に関係なく、常に安定した除去を行なうことができる。このため、高度浄水処理システムの最終処理を行なう後処理プロセスでの塩素注入率の低減と平滑化が同時に達成でき、かつ塩素注入制御の精度が向上するため、安定かつ良質でおいしい浄水を供給できる。
【図面の簡単な説明】
【図1】本発明の第1実施例の構成図。
【図2】本発明の第2実施例の構成図。
【図3】本発明の第3実施例の構成図。
【図4】本発明の第4実施例の構成図。
【図5】本発明の第5実施例の構成図。
【図6】本発明の第6実施例の構成図。
【図7】従来の高度浄水処理システムの構成図。
【符号の説明】
1…凝集沈澱処理工程、2…急速濾過処理工程、3…オゾン処理工程、4…BAC処理工程、5…後処理工程、6…前処理プロセス、7…オゾン反応槽、8…BAC処理槽、9a,9b,20…NH4 −N計測手段、10…ゼオライト処理槽、11…切替制御装置、12…後処理プロセス、13〜15,18,19…開閉バルブ、16…排水バルブ、17…循環ポンプ、21…植菌装置、22…加温装置、23…水温計測手段、24…溶存酸素供給装置、25…溶存酸素検出手段。
[0001]
[Technical field to which the invention belongs]
In the present invention, NH is always stable in advanced water purification treatment including ozone treatment, biological activated carbon treatment (hereinafter referred to as BAC treatment) and zeolite treatment. Four -It is related with the water purification system which can maintain N removal performance.
[0002]
[Prior art]
In recent years, advanced water purification treatment using ozone and BAC treatment has attracted attention in order to obtain higher quality and delicious water. Ozone treatment uses the powerful bactericidal and oxidizing power of ozone, and BAC treatment grows microorganisms on granular activated carbon. It is used to remove contaminating organic substances and off-flavors in raw water.
[0003]
FIG. 7 is a flowchart showing a typical treatment process in an advanced water purification treatment plant. In this flowchart, there is no pre-chlorination process, so no harmful substances such as trihalomethane are generated.
[0004]
As shown in the treatment process of the figure, after first performing the coagulation precipitation treatment step 1 on the raw water, each step in the order of the rapid filtration treatment step 2, the ozone treatment step 3, the BAC treatment step 4 and the post-treatment step 5 Is configured to get purified water.
[0005]
First, sand filtration is a typical example of the rapid filtration process 2. This sand filtration treatment removes suspended matter suspended in water, and may be performed after the ozone treatment step 3 or after the BAC treatment step 4 depending on the characteristics of the raw water.
[0006]
The ozone treatment step 3 is to remove the off-flavor of raw water, oxidize organic substances effective for microbial metabolism of BAC, oxidize iron / manganese, remove chromaticity, and the like. The ozone treatment process 3 may be performed before the rapid filtration process 2 described above, and may be performed before the rapid filtration process 2 and before the BAC treatment process 4, respectively.
[0007]
The post-treatment process 5 is similar to the current post-chlorination process, in addition to disinfection, NH that flows out of the BAC at a low temperature or the like. Four -N removal and the like.
Thus, even if the arrangement of the respective treatment process units before and after the BAC treatment step 4 varies depending on the characteristics of the raw water, the basic treatment characteristic of the BAC treatment step 4 does not change at all.
[0008]
[Problems to be solved by the invention]
By the way, NH from the BAC processing step 4 described above. Four -N efflux may occur in addition to low temperatures. For example, NH in treated water Four -N suddenly changes from low concentration to NH Four -N loading increases, normally expected NH Four NH higher than -N concentration Four When inflow of water to be treated containing —N, NH 4 from BAC treatment step 4 is performed in the same manner as at low temperatures. Four -N may flow out, which is a major cause of the increase in the chlorine injection rate in the post-treatment step 5.
[0009]
By the way, NH which flowed out from BAC processing step 4 Four -N is removed correspondingly with the increase in the chlorine injection rate in the post-treatment step 5, and thus is not mixed into the purified water, but the increase in the chlorine injection rate is caused by a bad odor such as chlorine odor It was a cause of taste and one of the causes of damaging tap water.
[0010]
The present invention has been made in view of the above situation, and its purpose is to flow out NH from BAC processing. Four -N is the temperature or NH Four It is to provide a water purification system that can always be removed stably regardless of the load fluctuation of -N.
[0011]
[Means for Solving the Problems]
First, the basic concept of the present invention will be described.
The basic idea of the present invention is that NH in BAC processing Four The phenomenon that -N removal temporarily decreases is the NH in the treated water flowing in Four -N concentration does not occur when it is continuously maintained at 0.05-0.5 mg / l, and after a low concentration of 0.05 mg / l or less continues for a long time, NH Four This is based on the knowledge that many cases occur when the -N concentration rapidly increases.
[0012]
That is, NH, which is a metabolic substrate of nitrifying bacteria Four If the -N deficiency continues for a long time, the biological activity is weakened, and the subsequent NH Four Even if there is an increase in -N, it cannot be dealt with immediately, and it is considered that the removal performance temporarily decreases drastically.
[0013]
The present invention also provides NH in the influent water. Four When the water temperature of the influent falls to 10-15 ° C. or lower despite the −N concentration being continuously maintained at 0.05 to 0.5 mg / l, NH Four It is also based on the phenomenon that the removal characteristic of -N deteriorates. This is because when the water temperature, which is one of the factors governing the biological activity of nitrifying bacteria, decreases, Four This is because the metabolic capacity of -N decreases.
[0014]
Based on the above findings, in order to achieve the object of the present invention, claim 1 of the present invention provides: original A pretreatment process for pretreating water, an ozone reaction tank for ozone-treating the treated water treated in the pretreatment process, and a biological activated carbon for biological treatment by introducing ozone-treated water treated in the ozone reaction tank In the water purification system provided with a treatment tank, ammonia nitrogen measuring means installed before and after the biological activated carbon treatment tank, a zeolite treatment tank installed at the subsequent stage of the biological activated carbon treatment tank, and the biological activated carbon treatment tank A first line for directly introducing treated water into the post-treatment process, a second line for introducing treated water from the biological activated carbon treatment tank into the zeolite treatment tank, and a switching control device for switching the two lines. And It is characterized by having.
[0015]
Claim 2 of the present invention is the water purification system according to claim 1, wherein the zeolite treatment tank is used. Circulating water from the outlet to the inlet Circulation pump and NH installed in the latter stage of the zeolite treatment tank Four -N measuring means.
[0016]
Claim 3 of the present invention is the water purification system according to claim 1, wherein the zeolite treatment tank is used. Circulating water from the outlet to the inlet Circulation pump and said circulation water The inoculation device connected to the line and NH installed after the zeolite treatment tank Four -N measuring means.
[0017]
A fourth aspect of the present invention is the water purification system according to the first aspect, wherein the zeolite treatment tank is used. Circulating water from the outlet to the inlet Circulation pump and said circulation water The heating device and water temperature measuring means provided in the line of, and NH installed in the latter stage of the zeolite treatment tank Four -N measuring means.
[0018]
A fifth aspect of the present invention is the water purification system according to the first aspect, wherein the zeolite treatment tank is used. Circulating water from the outlet to the inlet Circulation pump and said circulation water Dissolved oxygen supply device and dissolved oxygen detection means provided in the line, NH installed in the latter stage of the zeolite treatment tank Four -N measuring means.
According to a sixth aspect of the present invention, in the water purification system according to the first aspect, a water temperature measuring means is provided in the previous stage of the biological activated carbon treatment tank.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of a water purification system that is a first embodiment (corresponding to claim 1) of the present invention.
[0020]
As shown in the figure, the water purification system of this example is a pretreatment process 6, an ozone reaction tank 7, a BAC treatment tank 8, and an NH installed immediately before the BAC treatment tank 8. Four -N measuring means 9a and NH installed immediately after the BAC treatment tank 8 Four -N measuring means 9b, a zeolite treatment tank 10, a switching control device 11, a post-treatment process 12, open / close valves 13 to 15, and a drain valve 16 are included.
[0021]
By the way, the pretreatment process 6 is constituted by the treatment processes of the aggregation precipitation treatment 1 and the rapid filtration treatment 2 described in FIG. 7 as a conventional example.
Further, the switching control device 11 has NH Four -Measured value F1 and NH by -N measuring means 9a Four -The measurement value F2 obtained by the N measuring means 9b is read to determine whether or not the BAC treated water is subjected to zeolite treatment. The switching control device 11 appropriately controls the open / close valves 13 to 15 so as to be interlocked with the presence or absence of the zeolite treatment.
The post-treatment process 12 receives BAC treated water or zeolite treated water, and receives NH by chlorine injection. Four -N post-treatment and disinfection, etc., and distribute as purified water.
[0022]
Next, the operation of this embodiment will be described.
NH contained in raw water Four Since -N cannot be removed by the pretreatment process 6 or the ozone reaction tank 7, it is usually removed by the metabolic action of nitrifying bacteria grown on the BAC in the BAC treatment tank 8. In the BAC treatment tank 8, NH Four While -N is removed, the zeolite connecting the BAC processing tank 8 to the zeolite processing tank 10 is closed by the opening / closing valve 13 because the zeolite processing of the BAC processing water is unnecessary. Further, the line connecting the zeolite treatment tank 10 to the post-treatment process 12 is also closed by the opening / closing valve 14 and the opening / closing valve 15 is opened, and the switching control device 11 is set so that the BAC treated water is directly introduced into the post-treatment process 12. In use, each open / close valve 13-15 is controlled. Moreover, the drain valve 16 is normally opened at the time of a pause for draining the zeolite treatment tank 10.
[0023]
However, at low temperatures such as in winter and sudden NH Four When the -N load increases, the BAC treatment tank 8 is NH. Four -N may not be completely removed and may remain in the BAC-treated water. NH installed before and after the BAC treatment tank 8 Four -N measuring means 9a and NH Four NH before and after BAC treatment using -N measuring means 9b Four -N concentration is constantly measured.
[0024]
In this example, NH Four -The measured value F1 of the N measuring means 9a is NH Four -N concentration F1 ≧ 1 mg / l, or NH Four -The measured value F2 of the N measuring means 9b is NH Four The switching control device 11 controls the BAC treated water so that the zeolite treatment is performed only when F2 ≧ 0.05 mg / l as the −N concentration. In other words, NH Four When the N concentration satisfies the condition of F1 ≧ 1 mg / l or F2 ≧ 0.05 mg / l, the switching control device 11 controls to close the drain valve 16 and to open the on-off valve 14 and on-off valve 13 in order. Do. Further, after these series of operations are completed, the bypass line connecting the BAC treatment tank 8 and the post-treatment process 12 is also controlled to be closed by the opening / closing valve 15. When this series of operations is completed, the zeolite treatment of BAC treated water is started and NH Four Zeolite treatment is continued while F1 ≧ 1 mg / l or F2 ≧ 0.05 mg / l as -N concentration.
[0025]
On the other hand, NH Four -N concentration when satisfying both F1 ≧ 1 mg / l and F2 ≧ 0.05 mg / l, NH from the BAC treatment tank 8 Four It is determined that the -N outflow has ceased, and switching from the zeolite treatment to the steady treatment (introducing the BAC treated water directly into the post-treatment process 12) is the reverse of the operation at the start of the zeolite treatment.
[0026]
In the present embodiment, an example in which the zeolite treatment tank 10 is one series has been shown, but it is also possible to perform processing by switching a plurality of series of zeolite treatment tanks. Four The zeolite that has reached -N adsorption saturation is taken out of the system and subjected to alkali regeneration with an alkaline solution.
[0027]
As described above, according to the present embodiment, after the BAC treatment, the switching-type zeolite treatment is added, so that the post-treatment is performed except for the time when the zeolite treatment is temporarily suspended due to the exchange or regeneration of the zeolite. NH introduced into process 12 Four -N concentration can be less than 0.05 mg / l. Therefore, in the post-processing process 12, NH Four The amount of chlorine consumed by -N is greatly reduced. As a result, the amount of chlorine actually injected is the minimum amount necessary for disinfecting and maintaining residual chlorine. For this reason, reduction and smoothing of the chlorine injection rate in the post-treatment process 12 can be achieved at the same time.
[0028]
Therefore, the production of organochlorine compounds such as trihalomethane, which has been a problem in conventional chlorination, can be greatly suppressed. Moreover, since excessive chlorine injection can be suppressed, generation of off-flavors such as chlorine odor almost disappeared.
[0029]
FIG. 2 is a block diagram of a water purification system that is a second embodiment of the present invention (corresponding to claim 2).
As shown in the figure, the water purification system of this example is a pretreatment process 6, an ozone reaction tank 7, a BAC treatment tank 8, and an NH installed immediately before the BAC treatment tank 8. Four -N measuring means 9a and NH installed immediately after the BAC treatment tank 8 Four -N measuring means 9b, zeolite treatment tank 10, switching control device 11, post-treatment process 12, on-off valves 13 to 15, drainage valve 16, and circulating water between the outlet and the inlet of the zeolite treatment tank 8 Circulation pump 17 for passing water, open / close valves 18 to 19, and NH installed in the subsequent stage of the zeolite treatment tank 10 Four -N measuring means 20.
[0030]
As described above, this embodiment is different from the first embodiment of FIG. 1 in that the circulation pump 17, the on-off valve 18, the on-off valve 19, and the NH Four -N measuring means 20 is added.
[0031]
In addition, the switching control device 11 is connected to each NH Four -N measuring means 9a and NH Four -The measured values F1 and F2 of the N measuring means 9b and NH Four The measurement value F3 of the -N measuring means 20 is read, the determination of the presence or absence of the zeolite treatment, the open / close control of the open / close valves 13-15, the open / close control of the drain valve 16, and the circulation pump 17 for regenerating the zeolite by circulating water Open / close control of the open / close valves 18 to 19 linked to the start / stop of the circulation pump 17 and the start / stop of the circulation pump 17 is performed.
[0032]
Next, the operation of this embodiment will be described.
In this embodiment, in addition to the first embodiment of FIG. 1, during the cessation period of the zeolite treatment, circulating water is passed through the zeolite treatment tank 10 using the circulation pump 17, and the nitrification adhered to the zeolite. Bioregeneration of zeolite is performed using the metabolic action of bacteria.
[0033]
In the present embodiment, the operation and judgment criteria for switching from the steady process to the zeolite process are the same as those in the first embodiment, and the description thereof will be omitted. However, when the switching control device 11 determines that the zeolite treatment is unnecessary, the opening / closing valve 15 and the opening / closing valve 14 are sequentially closed after the opening / closing valve 15 is opened for switching to the steady processing. At this time, the switching control device 11 is NH just before the zeolite treatment is suspended. Four Based on the measured value F3 of the N measuring means 20, it is determined whether the organism is regenerated by circulating water in the zeolite treatment tank 10 or drained (drained). That is, when F3 ≧ 0.03 mg / l, it is determined that the zeolite is saturated adsorption, the open / close valves 18 and 19 are sequentially opened, the circulation pump 17 is started, and the circulating water is passed through the zeolite treatment tank 10, and the zeolite Biological regeneration is carried out. This biological regeneration of zeolite with circulating water is NH Four The measurement is continued until the measured value F3 of the -N measuring means becomes F3 <0.01 mg / l or until it is determined that the zeolite treatment of the BAC treated water is necessary again.
[0034]
On the other hand, when F3 ≦ 0.03, NH is added to the zeolite. Four Since it is judged that the adsorption capacity of -N remains, the biological regeneration of the zeolite by circulating water is not performed, the drain valve 16 is opened, and the drainage (water draining) of the zeolite treatment is performed.
[0035]
After the above operation is completed, the zeolite treatment tank 10 shifts to the standby state for the zeolite treatment of the BAC treated water again.
The open / close valves 18 to 19 are closed during the zeolite treatment, but the other valves are normally opened.
[0036]
As described above, zeolite treatment can be performed without taking it out of the system (outside of the zeolite treatment tank 10) by passing circulating water through the zeolite treatment tank 10 during steady treatment and performing the zeolite treatment, Always NH of zeolite Four -N adsorption performance can be maintained. As a result, the labor, time and regeneration equipment required for the regeneration treatment of zeolite can be greatly reduced.
[0037]
Moreover, since the chlorine injection rate in the post-processing process 12 is reduced in the present embodiment, as in the first embodiment of FIG. 1, the generation of organic chlorine compounds such as trihalomethane can be significantly suppressed, and a bad odor such as chlorine odor can be achieved. The taste is no longer generated.
[0038]
FIG. 3 is a block diagram of a water purification system that is a third embodiment of the present invention (corresponding to claim 3).
As shown in the figure, the water purification system of this example is a pretreatment process 6, an ozone reaction tank 7, a BAC treatment tank 8, and an NH installed immediately before the BAC treatment tank 8. Four -N measuring means 9a and NH installed immediately after the BAC treatment tank 8 Four -N measuring means 9b, zeolite treatment tank 10, switching control device 11, post-treatment process 12, on-off valves 13 to 15, drainage valve 16, and circulating water between the outlet and the inlet of the zeolite treatment tank A circulation pump 17 for passing water, open / close valves 18 to 19, and NH installed in the subsequent stage of the zeolite treatment tank 10 Four -N measurement means 20 and an inoculation device 21 for injecting a solution containing nitrifying bacteria into the circulating water.
As described above, this embodiment has a configuration in which the inoculation device 21 is added to the second embodiment of FIG.
[0039]
Next, the operation of this embodiment will be described.
In this embodiment, during the biological regeneration of zeolite by circulating water shown in the second embodiment of FIG. 2, a liquid containing nitrifying bacteria is injected into the circulating water from the inoculation apparatus 21 to actively promote biological regeneration of zeolite. To do. Therefore, the criteria for switching from the steady process to the zeolite process and the biological regeneration of the zeolite are the same as in the second embodiment, and will not be described. However, in the switching control device 11, when it is determined that the biological regeneration of the zeolite in the zeolite treatment tank 10 is necessary, after the circulation pump 17 is started, a liquid containing nitrifying bacteria is injected into the circulating water from the inoculation device 21. Control to do. By injecting the liquid containing nitrifying bacteria into the circulating water, the concentration of nitrifying bacteria in the circulating water is increased. As a result, NH per unit nitrifying bacteria Four Since the -N load is reduced, the biological regeneration rate of zeolite is increased by about 2 to 3 times compared to the second embodiment.
[0040]
When the biological regeneration of the zeolite is completed, the injection of the liquid containing nitrifying bacteria from the inoculation device 21 is finished, the circulation pump 17 is stopped, and thereafter, the zeolite treatment tank 10 is operated in the same manner as in the second embodiment. Enter standby mode.
[0041]
As described above, according to the present embodiment, by injecting a liquid containing nitrifying bacteria from the inoculation device 21 during the biological regeneration by circulating water, the bacterial cell concentration in the circulating water is always necessary for the biological regeneration of zeolite. It can be kept above the correct concentration. This removes NH per unit nitrifying bacteria. Four The amount of -N was reduced, and the bioregeneration rate of zeolite by circulating water was increased by about 2 to 3 times compared to the second example. For this reason, the effect similar to 2nd Example was acquired in addition to being able to transfer the zeolite processing tank 10 to the standby state for zeolite processing quickly.
[0042]
FIG. 4 is a block diagram of a water purification system that is a fourth embodiment (corresponding to claim 4) of the present invention.
As shown in the figure, the water purification system of this example is a pretreatment process 6, an ozone reaction tank 7, a BAC treatment tank 8, and an NH installed immediately before the BAC treatment tank 8. Four -N measuring means 9a and NH installed immediately after the BAC treatment tank 8 Four -N measuring means 9b, zeolite treatment tank 10, switching control device 11, post-treatment process 12, open / close valves 13 to 15, drainage valve 16, and circulating water between the outlet and the inlet of the zeolite treatment tank 10 Circulation pump 17 for passing water, open / close valves 18 to 19, and NH installed in the subsequent stage of the zeolite treatment tank 10 Four -N measuring means 20, heating device 22, and water temperature measuring means 23.
As described above, the present embodiment has a configuration in which the heating device 22 and the water temperature measuring means 23 are added to the second embodiment of FIG.
[0043]
Next, the operation of this embodiment will be described.
In this example, during the biological regeneration of zeolite with the circulating water shown in the second example, the circulating water is heated by the heating device 22 to activate the nitrifying bacteria attached to the zeolite, thereby regenerating the biological organism of the zeolite. To speed up. Therefore, the criteria for switching from the steady process to the zeolite process and the biological regeneration of the zeolite are the same as in the second embodiment, and will not be described.
[0044]
However, in the switching control device 11, when it is determined that biological regeneration with the circulating water of the zeolite in the zeolite treatment tank 10 is necessary, the water temperature measuring means 23 is used to measure the water temperature of the circulating water when the circulation pump 17 is activated. In the switching control device 11, the measured value F4 of the water temperature measuring means 23 is read, and when F4 <20 ° C., a heating command is sent to the heating device 22 to control the circulating water to be heated. Heating of the circulating water by the heating device 22 is continued until F4 ≧ 21 ° C., and when F4 ≧ 21 ° C., the heating of the circulating water by the heating device 22 is stopped. Such an operation is continued while biological regeneration by circulating water is performed. In this embodiment, an electric heater is used for heating the circulating water.
[0045]
When the biological regeneration of zeolite is completed, the heating control of the circulating water by the heating device 22 is finished, and the circulation pump 17 is stopped. Thereafter, the operation is the same as that of the second embodiment of FIG. 2, and the zeolite treatment tank 10 shifts to a standby state.
[0046]
As described above, the temperature of the circulating water can always be maintained at 20 ° C. or higher by heating the circulating water with the heating device 22. Thereby, the activity of nitrifying bacteria can always be kept high. For this reason, zeolite bioregeneration with circulating water could always be carried out stably regardless of the water temperature drop in winter and the like. Therefore, in addition to the fact that the zeolite treatment tank 10 can always be stably transferred to the standby state for the zeolite treatment of the BAC treated water, the same effect as in the second embodiment of FIG. 2 was obtained.
[0047]
FIG. 5 is a block diagram of a water purification system according to a fifth embodiment (corresponding to claim 5) of the present invention.
As shown in the figure, the water purification system of this example is a pretreatment process 6, an ozone reaction tank 7, a BAC treatment tank 8, and an NH installed immediately before the BAC treatment tank 8. Four -N measuring means 9a and NH installed immediately after the BAC treatment tank 8 Four -N measuring means 9b, zeolite treatment tank 10, switching control device 11, post-treatment process 12, on-off valves 13 to 15, drainage valve 16, and circulating water between the outlet and the inlet of the zeolite treatment tank A circulation pump 17 for passing water, open / close valves 18 to 19, and NH installed in the subsequent stage of the zeolite treatment tank 10 Four -N measuring means 20, dissolved oxygen supply device 24, and dissolved oxygen detecting means 25.
As described above, the present embodiment has a configuration in which the dissolved oxygen supply device 24 and the dissolved oxygen detection means 25 are added to the second embodiment of FIG.
[0048]
Next, the operation of this embodiment will be described.
In this embodiment, the dissolved oxygen is supplied from the dissolved oxygen supply device 24 during the biological regeneration of the zeolite by the circulating water shown in the second embodiment of FIG. 2, and the decrease in the activity of nitrifying bacteria due to the lack of dissolved oxygen is prevented. It is. Therefore, the criteria for switching from the steady treatment to the zeolite treatment and the biological regeneration of the zeolite are the same as in the second embodiment, and will not be described.
[0049]
However, in the switching control device 11, when it is determined that biological regeneration with the circulating water of the zeolite in the zeolite treatment tank 10 is necessary, the dissolved oxygen concentration of the circulating water is determined using the dissolved oxygen detecting means 25 when the circulation pump 17 is started. measure. In the switching control device 11, the measured value F5 of the dissolved oxygen detecting means 25 is read, and when F5 <5 mg / l, a dissolved oxygen supply command is issued to the dissolved oxygen supply device 24 to supply the dissolved oxygen of the circulating water. Dissolved oxygen by the dissolved oxygen supply device 24 is continued until F5 ≧ 6 mg / l. When F5 ≧ 6 mg / l, supply of dissolved oxygen by the dissolved oxygen device 24 is stopped. Such an operation is continued while biological regeneration by circulating water is performed.
[0050]
As a supply source of dissolved oxygen, oxygen gas or air is used, and as a supply method of the dissolved oxygen device 24, a gas-liquid contact method using a ceramic air diffusion tube is usually used. A bubbleless dissolved oxygen supply method using a membrane can also be used.
[0051]
When the biological regeneration of the zeolite is completed, the supply control of the dissolved oxygen in the circulating water by the dissolved oxygen device 24 is finished, the circulation pump 17 is stopped, and thereafter, the operation of the zeolite is performed in the same manner as in the second embodiment of FIG. The tank 10 shifts to a standby state.
[0052]
As described above, by supplying dissolved oxygen to the circulating water using the dissolved oxygen supply device 24, the dissolved oxygen concentration of the circulating water can always be maintained at 5 mg / l or more. As a result, the activity of the nitrifying bacteria was prevented from being lowered due to the lack of dissolved oxygen, the activity of the nitrifying bacteria could always be kept good, and the biological regeneration of the zeolite by circulating water could always be carried out stably. Therefore, in addition to the fact that the zeolite treatment tank 10 can always be stably put into a standby state for the zeolite treatment of the BAC treated water, the same effect as in the second embodiment of FIG. 2 was obtained.
[0053]
FIG. 6: is a block diagram which shows the water purification system which is 6th Example (corresponding to Claim 6) of this invention.
As shown in the figure, the water purification system of this example is a pretreatment process 6, an ozone reaction tank 7, a BAC treatment tank 8, and an NH installed immediately before the BAC treatment tank 8. Four -N measuring means 9a and NH installed immediately after the BAC treatment tank 8 Four -N measuring means 9b, zeolite processing tank 10, switching control device 11, post-processing process 12, open / close valves 13 to 15, drain valve 16 and water temperature measuring means 26.
As described above, this embodiment has a configuration in which the water temperature measuring means 26 is added to the first embodiment of FIG.
[0054]
The water temperature measuring means 26 is installed before and after the BAC treatment tank 8 so that the NH in the BAC treatment tank 8 is reduced due to a drop in the water temperature such as in winter. Four If a decrease in -N removal performance is expected, NH Four Control is performed using the switching control device 11 so as to perform zeolite treatment of BAC treated water regardless of whether or not -N flows out.
[0055]
Next, the operation of this embodiment will be described.
In this embodiment, control by the water temperature is further added to the first embodiment in FIG. 1, and in the BAC treatment tank 8, the activity rapidly decreases when the nitrifying bacteria in the BAC layer fall below 10 to 15 ° C. NH in the BAC treatment tank 8 Four This is based on the decrease in the removal performance of -N.
[0056]
In the present embodiment, when the measured value F6 measured by the water temperature measuring means 26 is F6> 10 ° C., it is controlled using the switching control device 11 as in the first embodiment of FIG. However, when F6 ≦ 10 ° C, NH Four -N measuring means 9a and NH Four Regardless of the measured value of the -N measuring means 9b, the switching control device 11 is used to control the zeolite processing in the zeolite processing tank 10 to be forcibly executed. This forced zeolite treatment is controlled using the switching control device 11 so as to continue during F6 ≦ 10 ° C. and be released when F6> 10 ° C.
[0057]
As described above, according to the present embodiment, the measurement value F6 of the water temperature measuring means 26 is input to the input information of the switching control device 11 that determines the presence or absence of the zeolite treatment, thereby accompanying a decrease in the water temperature. NH in BAC treatment Four Expect a decrease in -N removal performance. Based on this expectation, by forcibly executing the zeolite treatment during the water temperature decrease period, the frequency of switching between the steady treatment in which the BAC treated water is directly introduced into the post-treatment process and the zeolite treatment is greatly reduced.
[0058]
That is, the fluctuation and loss of the amount of temporary treated water generated by switching between the steady treatment and the zeolite treatment are greatly reduced. Thereby, the NH introduced into the post-processing process 12 Four -N concentration can be reduced to less than 0.05 mg / l, and pulsation of treated water is eliminated. Therefore, the load of post-chlorine injection control in the post-processing process 12 is greatly reduced. For this reason, the reduction and smoothing of the chlorine injection rate in the post-treatment process 12 can be achieved at the same time, and the same effect as in the first embodiment of FIG. 1 was obtained.
[0059]
【The invention's effect】
As described above, according to the first to sixth aspects of the present invention, the NH flowing out of the BAC process Four -N is the temperature or NH Four Regardless of the -N load fluctuation, stable removal can always be performed. For this reason, reduction and smoothing of the chlorine injection rate in the post-treatment process that performs the final treatment of the advanced water purification treatment system can be achieved at the same time, and the accuracy of chlorine injection control is improved, so that stable, high-quality and delicious water can be supplied. .
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a first embodiment of the present invention.
FIG. 2 is a configuration diagram of a second embodiment of the present invention.
FIG. 3 is a configuration diagram of a third embodiment of the present invention.
FIG. 4 is a configuration diagram of a fourth embodiment of the present invention.
FIG. 5 is a configuration diagram of a fifth embodiment of the present invention.
FIG. 6 is a configuration diagram of a sixth embodiment of the present invention.
FIG. 7 is a configuration diagram of a conventional advanced water purification system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Coagulation sedimentation treatment process, 2 ... Rapid filtration treatment process, 3 ... Ozone treatment process, 4 ... BAC treatment process, 5 ... Post-treatment process, 6 ... Pretreatment process, 7 ... Ozone reaction tank, 8 ... BAC treatment tank, 9a, 9b, 20 ... NH Four -N measuring means, 10 ... zeolite treatment tank, 11 ... switching control device, 12 ... post-treatment process, 13-15 , 18, 19 ... open / close valve, 16 ... drain valve, 17 DESCRIPTION OF SYMBOLS ... Circulation pump, 21 ... Inoculation device, 22 ... Heating device, 23 ... Water temperature measurement means, 24 ... Dissolved oxygen supply device, 25 ... Dissolved oxygen detection means.

Claims (6)

水を前処理する前処理プロセスと、前記前処理プロセスで処理された処理水をオゾン酸化処理するオゾン反応槽と、前記オゾン反応槽で処理されたオゾン処理水を導入して生物処理する生物活性炭処理槽を備えた浄水処理システムにおいて、前記生物活性炭処理槽の前後に設置されたアンモニア性窒素計測手段と、前記生物活性炭処理槽の後段に設置されたゼオライト処理槽と、前記生物活性炭処理槽の処理水を直接後処理プロセスへ導入する第1ラインと、前記生物活性炭処理槽の処理水を前記ゼオライト処理槽へ導入する第2ラインと、前記両ラインを切替える切替制御装置とを備えたことを特徴とする浄水処理システム。A pretreatment process for pretreating the raw water, the front and the ozone reaction vessel treatment process in treated treated water the ozone oxidation treatment, organisms biological treatment by introducing the ozonated water treated by the ozone reaction vessel In the water purification system comprising an activated carbon treatment tank, ammonia nitrogen measuring means installed before and after the biological activated carbon treatment tank, a zeolite treatment tank installed at a subsequent stage of the biological activated carbon treatment tank, and the biological activated carbon treatment tank a first line for introducing the treated water directly to the post-treatment process, a second line for introducing the treated water of the biological activated carbon treatment tank to the zeolite treatment vessel, said and a switching control unit for switching both lines A water purification system characterized by 請求項1記載の浄水処理システムにおいて、前記ゼオライト処理槽の出口から入口の間に循環水を通水させる循環ポンプと、前記ゼオライト処理槽の後段に設置されたNH4 −N計測手段とを備えたことを特徴とする浄水処理システム。2. The water purification system according to claim 1, further comprising: a circulation pump that allows circulating water to flow between an outlet and an inlet of the zeolite treatment tank; and NH 4 —N measurement means installed at a subsequent stage of the zeolite treatment tank. A water purification system characterized by that. 請求項1記載の浄水処理システムにおいて、前記ゼオライト処理槽の出口から入口の間に循環水を通水させる循環ポンプと、前記循環のラインに接続された植菌装置と、前記ゼオライト処理槽の後段に設置されたNH4 −N計測手段とを備えたことを特徴とする浄水処理システム。2. The water purification system according to claim 1, wherein a circulating pump for passing circulating water between an outlet and an inlet of the zeolite processing tank, an inoculation apparatus connected to the line of the circulating water , and the zeolite processing tank A water purification system characterized by comprising NH 4 -N measuring means installed at a subsequent stage. 請求項1記載の浄水処理システムにおいて、前記ゼオライト処理槽の出口から入口の間に循環水を通水させる循環ポンプと、前記循環のラインに設けた加温装置及び水温計測手段と、ゼオライト処理槽の後段に設置されたNH4 −N計測手段とを備えたことを特徴とする浄水処理システム。2. The water purification system according to claim 1, wherein a circulating pump for passing circulating water between an outlet and an inlet of the zeolite processing tank , a heating device and a water temperature measuring means provided in the circulating water line, and a zeolite processing A water purification system characterized by comprising NH 4 -N measuring means installed at the rear stage of the tank. 請求項1記載の浄水処理システムにおいて、前記ゼオライト処理槽の出口から入口の間に循環水を通水させる循環ポンプと、前記循環のラインに設けた溶存酸素供給装置及び溶存酸素検出手段と、前記ゼオライト処理槽の後段に設置されたNH4 −N計測手段とを備えたことを特徴とする浄水処理システム。In the water purification system according to claim 1, a circulating pump for passing circulating water between an outlet and an inlet of the zeolite processing tank , a dissolved oxygen supply device and a dissolved oxygen detecting means provided in the circulating water line, A water purification system comprising NH 4 -N measuring means installed at a subsequent stage of the zeolite treatment tank. 請求項1記載の浄水処理システムにおいて、前記生物活性炭処理槽の前段に水温計測手段を備えたことを特徴とする浄水処理システム。  The water purification system according to claim 1, further comprising a water temperature measuring means in a front stage of the biological activated carbon treatment tank.
JP27857795A 1995-10-26 1995-10-26 Water purification system Expired - Fee Related JP3850469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27857795A JP3850469B2 (en) 1995-10-26 1995-10-26 Water purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27857795A JP3850469B2 (en) 1995-10-26 1995-10-26 Water purification system

Publications (2)

Publication Number Publication Date
JPH09117793A JPH09117793A (en) 1997-05-06
JP3850469B2 true JP3850469B2 (en) 2006-11-29

Family

ID=17599209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27857795A Expired - Fee Related JP3850469B2 (en) 1995-10-26 1995-10-26 Water purification system

Country Status (1)

Country Link
JP (1) JP3850469B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102515155B1 (en) * 2021-05-28 2023-03-29 한국과학기술원 Apparatus And Method for Removing Radionuclide

Also Published As

Publication number Publication date
JPH09117793A (en) 1997-05-06

Similar Documents

Publication Publication Date Title
JP2001079367A (en) Membrane separation method and device thereof
JP3850469B2 (en) Water purification system
JP4215381B2 (en) Water treatment method and apparatus
JPH09314156A (en) Ozone treatment apparatus in which biological filter device is incorporated
JP2003326258A (en) Water treatment method
JPS62221493A (en) Method for treating membrane bioreactor
JPH11347550A (en) Membrane separation method and apparatus
JPH07148496A (en) Method for controlling operation of modified process for circulation of activated sludge
JP3707293B2 (en) Wastewater treatment equipment
JP4017807B2 (en) Ozone gas supply control method
JP3042118B2 (en) Activated carbon supply device in advanced water purification treatment
JPH11128976A (en) Control of intermittent aeration type activated sludge method
JP3658543B2 (en) Advanced water treatment method and treatment system
KR101367711B1 (en) Operating method of submerged membrane bioreactor
JP3677811B2 (en) Biological denitrification method
JP2744381B2 (en) Water treatment control device
JPS628239B2 (en)
JPH07256284A (en) Method and apparatus for backwashing biological contact filter material in waste water treatment apparatus
JPH05192672A (en) Method for operating water treating equipment and the same
JPS61209097A (en) Apparatus for treatment of sewage
JP4605877B2 (en) Flock particle size control method and water treatment method
KR100534572B1 (en) Method and apparatus for softening light water of boiler
CN117069343A (en) Water purifying device and water making control method thereof
JPH0518698U (en) Anaerobic / aerobic activated sludge treatment equipment
JPH07214075A (en) Method for filtering manganese from soluble manganese containing-water and device therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees