JP3850381B2 - Current control device - Google Patents

Current control device Download PDF

Info

Publication number
JP3850381B2
JP3850381B2 JP2003081041A JP2003081041A JP3850381B2 JP 3850381 B2 JP3850381 B2 JP 3850381B2 JP 2003081041 A JP2003081041 A JP 2003081041A JP 2003081041 A JP2003081041 A JP 2003081041A JP 3850381 B2 JP3850381 B2 JP 3850381B2
Authority
JP
Japan
Prior art keywords
current
motor
control system
command
proportional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003081041A
Other languages
Japanese (ja)
Other versions
JP2004289969A (en
Inventor
勇治 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP2003081041A priority Critical patent/JP3850381B2/en
Priority to US10/549,727 priority patent/US7265511B2/en
Priority to PCT/JP2004/003566 priority patent/WO2004083978A1/en
Publication of JP2004289969A publication Critical patent/JP2004289969A/en
Priority to HK06111362.1A priority patent/HK1089517A1/en
Application granted granted Critical
Publication of JP3850381B2 publication Critical patent/JP3850381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、モータの1次電流を制御する電流制御装置に関するものである。
【0002】
【従来の技術】
従来のモータの電流制御装置としては、図5に示すような制御装置がある。この装置では、dq軸それぞれの電流指令と電流検出器Dで検出した電流フィードバックとの電流偏差を減算手段SBa,SBbで算出し、それぞれの電流偏差を電流制御器4a,4bに通してd軸電圧指令、q軸電圧指令を得る。そしてそれぞれの電圧指令を、座標変換器15aでdq変換した後に、2相3相変換し、変換された指令に基づいてPWMインバータ17によりモータMを駆動する。なお、電流フィードバックは、電流検出器Dで検出された3相電流を座標変換器15bにおいてdq変換される。座標変換器15bは、エンコーダEの回転位置に応じた信号を発生する信号発生手段18により、3相2相変換及びdq変換を実行する。
【0003】
通常、この装置における電流制御器4a,4bはPI制御器で構成されている。例えば電流制御器4aは、図6に示すように電流指令と電流フィードバックとの電流偏差を減算手段SBaで算出し、この電流偏差に乗算器191で積分ゲインを乗算し、この乗算された値を電流積分器193で積分演算する積分制御系(I系)と、減算手段SBaで算出した電流偏差を定数倍する比例制御系(P系)とから構成されている。電流制御器4aは更に積分制御系と比例制御系の出力とを加算手段ADaで加算し、加算値に乗算手段195で比例ゲインを乗算して電圧指令を出力する。このように、電流制御器をPI制御で構成することにより、電流の過渡偏差のみならず、定常偏差も抑制できる。
【0004】
【特許文献1】
特開平8−66075号公報[図2]
【0005】
【発明が解決しようとする課題】
一般的に、制御系の応答は有限であり、電流指令を出力してもモータ電流が応答するには時間がかかる。電流指令が出力されてモータには電流が流れ始めるが、電流制御器4aから電圧指令が出力されてからモータ電流が応答するまでの間、電流積分器193は積算を行ってしまう。このため、従来の電流制御装置では、電流積分器193の溜り量の分、電流の応答が遅くなり、オーバーシュートが発生したりしていた。
【0006】
一方、特開平8−66075号公報[特許文献1]に示される制御装置では、電流フィードバックの遅れを電流指令の変化量と、モータインダクタンスとモータ抵抗から算出し、この遅れを電流偏差部に加算することにより補償を行っている。しかし、電流指令の変化量などの微分成分は、指令応答を振動的にし易く、滑らかな制御の実現にはあまり好ましくない。また、モータインダクタンスやモータ抵抗などの定数が必要であり、さらにモータインダクタンスは、モータに流す電流の大きさにより値が変わり、モータ抵抗は温度により値が変化してしまう。従って、モータ電流の大きさや、モータ温度を考慮した補償が必要になってくる。
【0007】
本発明の目的は、モータパラメータを追加することなく電流制御系の電流応答を高速化することができ、オーバーシュートが少ない電流制御装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、制御対象であるモータを流れるモータ電流を検出する電流検出器と、電流検出器が検出したモータ電流に基づく電流フィードバックと電流指令との電流偏差に基づいて電圧指令を出力する電流制御器と、電圧指令に基づいてモータにモータ電流を供給する駆動手段とを備えたモータの電流制御装置を改良の対象とする。
【0009】
本発明においては、電流制御器を、電流制御系の遅れに相当する遅れまたは伝達関数を有する電流制御側遅れ補償ローパスフィルタと、電流指令を電流制御側遅れ補償ローパスフィルタに入力して得た遅延電流指令と電流フィードバックとの電流偏差を積分する電流積分器を含んで構成された積分制御系と、電流指令と電流フィードバックとの電流偏差に比例した指令を出力する比例制御系と、積分制御系の出力と比例制御系の出力とを加算する加算手段と、この加算手段の出力に電流比例ゲインを乗じて電圧指令を得る乗算手段とから構成する。
【0010】
なお比例制御系において電流比例ゲインを電流偏差に乗算し、積分制御系において制御中の演算値に電流比例ゲインを乗じるようにしてもよい。
【0011】
本発明のように電流制御側遅れ補償ローパスフィルタを用いれば、電流制御系の遅れに相当する遅れを持った電流指令と実際に遅れている電流フィードバックとの電流偏差はゼロに近いものとなる。そのため電流積分器の溜まり量をほぼゼロにできる。その結果オーバーシュートを低減することができる。
【0012】
【発明の実施の形態】
図1は、図5に示した従来の装置の電流制御器4aまたは電流制御器4bに代えて使用される電流制御器13の具体的な構成の一例を示すブロック図である。
【0013】
図1に示すように、本実施の形態の電流制御器13は、電流制御系の遅れに相当する伝達関数(1/(1+STc))を有する電流制御側遅れ補償ローパスフィルタ133を備えている。また電流制御器13は、電流指令を電流制御側遅れ補償ローパスフィルタ133に入力して得た遅延電流指令とモータ電流(電流フィードバック)との電流偏差を減算手段SB2で求め、この電流偏差に積分ゲイン(1/Tvi)を乗算する乗算手段131と、乗算手段131の出力を積分する電流積分器132を含んで構成された積分制御系と、電流指令と電流フィードバックとの電流偏差に比例した指令を出力する比例制御系とを含んでいる。そして電流制御器13は、積分制御系の出力と比例制御系の出力とを加算手段AD1で加算したものに電流比例ゲインKIPを乗じて電圧指令として出力する乗算手段134を更に備えている。この電流制御器13は、電流指令を電流制御側遅れ補償ローパスフィルタ133に入力して得た遅延電流指令と電流フィードバックとの電流偏差を減算手段SB2で求め、この電流偏差に電流積分ゲイン(1/Tvi)を乗算する乗算手段131と、乗算手段131の出力を積分する電流積分器132を含んで構成された積分制御系と、電流指令に比例した指令を出力する比例制御系とを含んでいる。そして電流制御器13は、積分制御系の出力と比例制御系の出力とを加算手段AD1で加算したものに電流比例ゲインKIPを乗じて電圧指令として出力する乗算手段134を更に備えている。この例では、遅延電流指令と電流フィードバックとの電流偏差を減算手段SB2でとり、電流積分器132の出力と比例制御系の出力とを加算手段AD1で加算する。そして加算手段AD1の出力に、乗算手段134で電流比例ゲインKIPを乗算して電圧指令を得る。
【0014】
電流制御側遅れ補償ローパスフィルタ133には、電流制御系の遅れに相当する伝達関数を設定し、遅延電流指令と電流フィードバックとがほぼ同時に立ち上がるようにし、電流指令変化時の電流積分器132の溜り量を低減する。このように電流制御器13を構成することにより、電流フィードバックに含まれるリップルの抑制と、電流指令変化時の電流積分器132内の溜り量の低減とを同時に達成することができる。
【0015】
なお、電流制御側遅れ補償ローパスフィルタ133は、電流制御系の遅れを模擬する伝達関数であれば、どのようなものでもよく、本実施の形態の伝達関数に限定されるものではない。また、制御系の遅れが大きい場合は、1サンプルもしくは、数サンプル遅れとローパスフィルタとを組み合わせてもよい。
【0016】
図2は、電流制御器の変形例を示すブロック図である。電流制御器13´と図1の電流制御器13を対比すると、図2の電流制御器13´では電流比例ゲインKIPの乗算手段134´が比例制御系の内部にある点(加算手段AD1の前に挿入されている点)と、積分制御系において電流比例ゲインKIPを演算値に乗算するために、乗算手段131´の伝達関数を変更している点で前者の電流制御器13とは構成が相違する。このようにしても図1の電流制御器13と同様の作用効果を得ることができる。
【0017】
図3(A)乃至(C)及び図4(A)乃至(C)は、この制御系における電流応答をシミュレーションした結果であり、それぞれ電流指令、電流フィードバック及び積分器出力である。全て同じ電流のスケールであり、同一電流値を基準として1に規格化した値を示している。各図の横軸は全て時間で0.001m秒単位になっている。図3は、電流制御側遅れ補償ローパスフィルタ133を入れた場合であり、図4は電流制御側遅れ補償ローパスフィルタ133を挿入しない場合のシミュレーションの結果である。図3と図4のいずれにおいても、電流指令の立ち上がりに対して、電流フィードバックの立ち上がりは、0.001m秒の1/5程度遅れている。図3に示すように、電流制御側遅れ補償ローパスフィルタ133を挿入した場合には、電流積分器132の出力電流の立ち上がりが、電流フィードバックの立ち上がりと同じ程度に遅れることにより、これらの差が加算手段AD1で消去されて積分器出力は電流フィードバックの立ち上がりの時間に小さなピークを示し、それ以外ではほぼ0に近い一定値を保っている。この場合、積分器出力の小さなピ−クの高さは大変小さなもので、ほとんど無視できる程度にとどまっている。しかしながら電流制御側遅れ補償ローパスフィルタ133を入れない場合は、図4に示すように電流フィードバックの立ち上がりの時間における加算手段AD1での電流フィードバックと電流積分器132の出力との打ち消しあいが十分ではなく、電流フィードバックの立ち上がり点で電流積分器出力が示すピークは電流制御側遅れ補償ローパスフィルタ133を入れた場合に比べて高いものになっている。
【0018】
この結果、電流制御側遅れ補償ローパスフィルタ133を入れない場合には、電流のオーバーシュートが大きくなるが、電流制御側遅れ補償ローパスフィルタ133を挿入した場合には、モータ回転中の電流積分器132の溜り量を0に近い値にすることでオーバーシュートを小さくできることが分かる。
【0019】
なお、本発明は、直流モータの制御にも当然にして適用可能である。その場合は、図5の従来例に示したようなdq軸電流制御系と、座標変換器が不要になる。
【0020】
【発明の効果】
本発明によれば、電流制御側遅れ補償ローパスフィルタを用いているので、電流制御系の遅れに相当する遅れを持った遅延電流指令と実際に遅れている電流フィードバックとの電流偏差をゼロに近いものとすることができ、電流積分器の溜まり量をほぼゼロにして、電流応答を高速化できる。そのため本発明の電流制御装置の適用により、簡単な構成で、電流応答を高速化できて、オーバーシュートを低減できる。
【図面の簡単な説明】
【図1】本発明の実施の形態で用いる電流制御器の具体的な構成の一例を示すブロック図である。
【図2】本発明で用いる他の電流制御器の具体的な構成の一例を示すブロック図である。
【図3】(A)乃至(C)は、電流制御側遅れ補償ローパスフィルタを入れた場合のモータの動作波形のシミュレーションを示す図である。
【図4】(A)乃至(C)は、電流制御側遅れ補償ローパスフィルタを入れない場合のモータの動作波形のシミュレーションを示す図である。
【図5】従来のモータの電流制御装置の構成を示す図である。
【図6】従来の電流制御器の構成を示す図である。
【符号の説明】
E エンコーダ
M モータ
D 電流検出器
4a,4b,13,13´ 電流制御器
AD1 加算手段
SB1 減算手段
131,134,131´,134´ 乗算手段
132 電流積分器
KIP 電流比例ゲイン
133 電流制御側遅れ補償ローパスフィルタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a current control device that controls a primary current of a motor.
[0002]
[Prior art]
As a conventional motor current control device, there is a control device as shown in FIG. In this device, the current deviation between the current command for each of the dq axes and the current feedback detected by the current detector D is calculated by the subtracting means SBa and SBb, and the respective current deviations are passed through the current controllers 4a and 4b to obtain the d axis. Obtain voltage command and q-axis voltage command. Each voltage command is dq converted by the coordinate converter 15a, then two-phase / three-phase conversion is performed, and the motor M is driven by the PWM inverter 17 based on the converted command. In the current feedback, the three-phase current detected by the current detector D is dq converted by the coordinate converter 15b. The coordinate converter 15b performs three-phase to two-phase conversion and dq conversion by the signal generation means 18 that generates a signal corresponding to the rotational position of the encoder E.
[0003]
Normally, the current controllers 4a and 4b in this apparatus are constituted by PI controllers. For example, as shown in FIG. 6, the current controller 4a calculates the current deviation between the current command and the current feedback by the subtracting means SBa, and multiplies the current deviation by the integral gain by the multiplier 191. An integral control system (I system) that performs integral calculation with the current integrator 193 and a proportional control system (P system) that multiplies the current deviation calculated by the subtracting means SBa by a constant. The current controller 4a further adds the outputs of the integral control system and the proportional control system by the adding means ADa, multiplies the added value by the proportional gain by the multiplying means 195, and outputs a voltage command. In this way, by configuring the current controller with PI control, not only the transient deviation of the current but also the steady deviation can be suppressed.
[0004]
[Patent Document 1]
JP-A-8-66075 [FIG. 2]
[0005]
[Problems to be solved by the invention]
Generally, the response of the control system is finite, and it takes time for the motor current to respond even if a current command is output. Although the current command is output and current begins to flow to the motor, the current integrator 193 performs integration until the motor current responds after the voltage command is output from the current controller 4a. For this reason, in the conventional current control device, the current response is delayed by the amount of accumulation of the current integrator 193, and overshoot occurs.
[0006]
On the other hand, in the control device disclosed in Japanese Patent Laid-Open No. 8-66075 [Patent Document 1], the delay of the current feedback is calculated from the change amount of the current command, the motor inductance and the motor resistance, and this delay is added to the current deviation unit. To compensate. However, differential components such as the amount of change in the current command tend to make the command response vibrate, which is not preferable for realizing smooth control. In addition, constants such as motor inductance and motor resistance are required. Furthermore, the value of motor inductance changes depending on the magnitude of current flowing through the motor, and the value of motor resistance changes with temperature. Therefore, it is necessary to compensate for the magnitude of the motor current and the motor temperature.
[0007]
An object of the present invention is to provide a current control device that can speed up the current response of a current control system without adding a motor parameter and has less overshoot.
[0008]
[Means for Solving the Problems]
The present invention relates to a current detector that detects a motor current flowing through a motor to be controlled, and a current control that outputs a voltage command based on a current deviation between a current feedback based on the motor current detected by the current detector and a current command. And a motor current control device including a motor and driving means for supplying a motor current to the motor based on a voltage command.
[0009]
In the present invention, the current controller is obtained by inputting a current control side delay compensation low-pass filter having a delay corresponding to a delay of the current control system or a transfer function, and a current command to the current control side delay compensation low-pass filter. An integral control system including a current integrator that integrates a current deviation between the current command and the current feedback, a proportional control system that outputs a command proportional to the current deviation between the current command and the current feedback, and an integral control system. And an output of the proportional control system, and a multiplying means for multiplying the output of the adding means by a current proportional gain to obtain a voltage command.
[0010]
In the proportional control system, the current deviation gain may be multiplied by the current deviation, and the calculated value being controlled in the integral control system may be multiplied by the current proportional gain.
[0011]
When the current control side delay compensation low pass filter is used as in the present invention, the current deviation between the current command having a delay corresponding to the delay of the current control system and the actually delayed current feedback is close to zero. Therefore, the accumulation amount of the current integrator can be made almost zero. As a result, overshoot can be reduced.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing an example of a specific configuration of a current controller 13 used in place of the current controller 4a or the current controller 4b of the conventional apparatus shown in FIG.
[0013]
As shown in FIG. 1, the current controller 13 of the present embodiment includes a current control-side delay compensation low-pass filter 133 having a transfer function (1 / (1 + STc)) corresponding to the delay of the current control system. Further, the current controller 13 obtains a current deviation between the delay current command obtained by inputting the current command to the current control side delay compensation low-pass filter 133 and the motor current (current feedback) by the subtracting means SB2, and integrates this current deviation. A multiplication means 131 for multiplying the gain (1 / Tvi); an integration control system including a current integrator 132 for integrating the output of the multiplication means 131; and a command proportional to the current deviation between the current command and the current feedback. And a proportional control system that outputs. The current controller 13 further includes a multiplying unit 134 that multiplies the output of the integral control system and the output of the proportional control system by the adding unit AD1 and multiplies the current proportional gain KIP and outputs it as a voltage command. The current controller 13 obtains the current deviation between the delayed current command obtained by inputting the current command to the current control side delay compensation low-pass filter 133 and the current feedback by the subtracting means SB2, and the current integral gain (1 / Tvi), a multiplication means 131 for multiplying, a current integrator 132 for integrating the output of the multiplication means 131, and a proportional control system for outputting a command proportional to the current command. Yes. The current controller 13 further includes a multiplying unit 134 that multiplies the output of the integral control system and the output of the proportional control system by the adding unit AD1 and multiplies the current proportional gain KIP and outputs it as a voltage command. In this example, the current deviation between the delay current command and the current feedback is taken by the subtracting means SB2, and the output of the current integrator 132 and the output of the proportional control system are added by the adding means AD1. The output of the adder AD1 is multiplied by the current proportional gain KIP by the multiplier 134 to obtain a voltage command.
[0014]
In the current control side delay compensation low-pass filter 133, a transfer function corresponding to the delay of the current control system is set so that the delay current command and the current feedback rise almost simultaneously, and the current integrator 132 accumulates when the current command changes. Reduce the amount. By configuring the current controller 13 in this way, it is possible to simultaneously suppress the ripple included in the current feedback and reduce the amount of accumulation in the current integrator 132 when the current command changes.
[0015]
The current control-side delay compensation low-pass filter 133 may be any transfer function that simulates the delay of the current control system, and is not limited to the transfer function of the present embodiment. Further, when the delay of the control system is large, a delay of one sample or several samples and a low-pass filter may be combined.
[0016]
FIG. 2 is a block diagram showing a modification of the current controller. When the current controller 13 'is compared with the current controller 13 of FIG. 1, the current controller 13' of FIG. 2 has a point that the multiplication means 134 'of the current proportional gain KIP is inside the proportional control system (before the addition means AD1). And the former current controller 13 is different in that the transfer function of the multiplier 131 ′ is changed in order to multiply the calculated value by the current proportional gain KIP in the integral control system. Is different. Even if it does in this way, the effect similar to the current controller 13 of FIG. 1 can be acquired.
[0017]
FIGS. 3A to 3C and FIGS. 4A to 4C are the results of simulating the current response in this control system, and are the current command, current feedback, and integrator output, respectively. All have the same current scale, and values normalized to 1 with the same current value as a reference are shown. The horizontal axis in each figure is in units of 0.001 milliseconds in time. FIG. 3 shows a case where the current control side lag compensation low-pass filter 133 is inserted, and FIG. 4 shows a simulation result when the current control side lag compensation low pass filter 133 is not inserted. In both FIG. 3 and FIG. 4, the rise of the current feedback is delayed by about 1/5 of 0.001 msec with respect to the rise of the current command. As shown in FIG. 3, when the current control side delay compensation low-pass filter 133 is inserted, the rise of the output current of the current integrator 132 is delayed to the same extent as the rise of the current feedback. The integrator output is erased by the means AD1, and the integrator output shows a small peak at the rise time of the current feedback, and is kept at a constant value close to almost zero otherwise. In this case, the height of the small peak of the integrator output is very small and is almost negligible. However, if the current control side delay compensation low-pass filter 133 is not inserted, the cancellation of the current feedback in the adding means AD1 and the output of the current integrator 132 during the rise time of the current feedback is not sufficient as shown in FIG. The peak indicated by the current integrator output at the rising point of the current feedback is higher than when the current control side delay compensation low-pass filter 133 is inserted.
[0018]
As a result, when the current control side delay compensation low-pass filter 133 is not inserted, the current overshoot becomes large. However, when the current control side delay compensation low-pass filter 133 is inserted, the current integrator 132 during motor rotation is inserted. It can be seen that the overshoot can be reduced by setting the amount of accumulation to a value close to zero.
[0019]
In addition, this invention is naturally applicable also to control of a DC motor. In that case, the dq-axis current control system and the coordinate converter as shown in the conventional example of FIG.
[0020]
【The invention's effect】
According to the present invention, since the current control side delay compensation low-pass filter is used, the current deviation between the delay current command having a delay corresponding to the delay of the current control system and the actually feedback current feedback is close to zero. The amount of accumulated current integrator can be made almost zero, and the current response can be speeded up. Therefore, by applying the current control device of the present invention, the current response can be speeded up and the overshoot can be reduced with a simple configuration.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an example of a specific configuration of a current controller used in an embodiment of the present invention.
FIG. 2 is a block diagram showing an example of a specific configuration of another current controller used in the present invention.
FIGS. 3A to 3C are diagrams illustrating simulations of motor operation waveforms when a current control side delay compensation low-pass filter is inserted. FIGS.
FIGS. 4A to 4C are diagrams showing simulations of motor operation waveforms when a current control side delay compensation low-pass filter is not inserted; FIGS.
FIG. 5 is a diagram showing a configuration of a conventional motor current control device;
FIG. 6 is a diagram showing a configuration of a conventional current controller.
[Explanation of symbols]
E Encoder M Motor D Current detector 4a, 4b, 13, 13 'Current controller AD1 Adder SB1 Subtractor 131, 134, 131', 134 'Multiplier 132 Current integrator KIP Current proportional gain 133 Current control side delay compensation Low pass filter

Claims (2)

制御対象であるモータのモータ電流を検出する電流検出器と、
前記電流検出器が検出した前記モータ電流に基づく電流フィードバックと電流指令との電流偏差に基づいて電圧指令を出力する電流制御器と、
前記電圧指令に基づいて前記モータに前記モータ電流を供給する駆動手段とを備えたモータの電流制御装置において、
前記電流制御器が、
電流制御系の遅れに相当する伝達関数を有する電流制御側遅れ補償ローパスフィルタと、
前記電流指令を前記電流制御側遅れ補償ローパスフィルタに入力して得た遅延電流指令と前記電流フィードバックとの電流偏差を積分する電流積分器を含んで構成された積分制御系と、
前記電流指令と前記電流フィードバックとの電流偏差に比例した指令を出力する比例制御系と、
前記積分制御系の出力と前記比例制御系の出力とを加算する加算手段と、
前記加算手段の出力に電流比例ゲインを乗じて前記電圧指令を得る乗算手段とから構成されていることを特徴とするモータの電流制御装置。
A current detector for detecting the motor current of the motor to be controlled;
A current controller that outputs a voltage command based on a current deviation between a current feedback and a current command based on the motor current detected by the current detector;
In a motor current control device comprising driving means for supplying the motor current to the motor based on the voltage command,
The current controller is
A current control side delay compensation low pass filter having a transfer function corresponding to the delay of the current control system;
An integration control system configured to include a current integrator that integrates a current deviation between a delay current command obtained by inputting the current command to the current control side delay compensation low-pass filter and the current feedback;
A proportional control system that outputs a command proportional to a current deviation between the current command and the current feedback;
Adding means for adding the output of the integral control system and the output of the proportional control system;
A motor current control apparatus comprising: multiplication means for multiplying the output of the addition means by a current proportional gain to obtain the voltage command.
制御対象であるモータのモータ電流を検出する電流検出器と、
前記電流検出器が検出した前記モータ電流に基づく電流フィードバックと電流指令との電流偏差に基づいて電圧指令を出力する電流制御器と、
前記電圧指令に基づいて前記モータに前記モータ電流を供給する駆動手段とを備えたモータの電流制御装置において、
前記電流制御器が、
電流制御系の遅れに相当する伝達関数を有する電流制御側遅れ補償ローパスフィルタと、
前記電流指令を前記電流制御側遅れ補償ローパスフィルタに入力して得た遅延電流指令と前記電流との電流偏差を積分する電流積分器を含み制御系中の演算値に電流比例ゲインを乗じて出力する積分制御系と、
前記電流指令と前記電流フィードバックとの電流偏差に電流比例ゲインを乗じた指令を出力する比例制御系と、
前記積分制御系の出力と前記比例制御系の出力とを加算する加算手段とから構成されていることを特徴とするモータの電流制御装置。
A current detector for detecting the motor current of the motor to be controlled;
A current controller that outputs a voltage command based on a current deviation between a current feedback and a current command based on the motor current detected by the current detector;
In a motor current control device comprising driving means for supplying the motor current to the motor based on the voltage command,
The current controller is
A current control side delay compensation low pass filter having a transfer function corresponding to the delay of the current control system;
Includes a current integrator that integrates the current deviation between the delayed current command obtained by inputting the current command to the current control side delay compensation low-pass filter and the current, and outputs the result obtained by multiplying the calculated value in the control system by a current proportional gain An integral control system to
A proportional control system that outputs a command obtained by multiplying a current deviation between the current command and the current feedback by a current proportional gain;
A motor current control device comprising an adding means for adding the output of the integral control system and the output of the proportional control system.
JP2003081041A 2003-03-17 2003-03-24 Current control device Expired - Fee Related JP3850381B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003081041A JP3850381B2 (en) 2003-03-24 2003-03-24 Current control device
US10/549,727 US7265511B2 (en) 2003-03-17 2004-03-17 Motor control device
PCT/JP2004/003566 WO2004083978A1 (en) 2003-03-17 2004-03-17 Motor control device
HK06111362.1A HK1089517A1 (en) 2003-03-17 2006-10-17 Motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003081041A JP3850381B2 (en) 2003-03-24 2003-03-24 Current control device

Publications (2)

Publication Number Publication Date
JP2004289969A JP2004289969A (en) 2004-10-14
JP3850381B2 true JP3850381B2 (en) 2006-11-29

Family

ID=33294724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003081041A Expired - Fee Related JP3850381B2 (en) 2003-03-17 2003-03-24 Current control device

Country Status (1)

Country Link
JP (1) JP3850381B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5476795B2 (en) * 2009-05-25 2014-04-23 日産自動車株式会社 Control device for electric vehicle
JP6816045B2 (en) * 2018-01-26 2021-01-20 東芝三菱電機産業システム株式会社 Power converter controller

Also Published As

Publication number Publication date
JP2004289969A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
JP4685509B2 (en) AC motor drive control device and drive control method
JP3892823B2 (en) Motor speed control device
US7843162B2 (en) Current regulator and current control method and system for AC motors
JP5982901B2 (en) Electric motor control device and electric motor control method
JP4231544B1 (en) Motor control device
JP2001145398A (en) Inverter control method and inverter control apparatus
EP3437184B1 (en) System and method for consistent speed regulation in a variable frequency drive
US7224141B2 (en) Position controller of motor
US9318989B2 (en) Three-phase AC induction motor control device and three-phase AC induction motor control method
JP4380437B2 (en) Control device and module for permanent magnet synchronous motor
US7265511B2 (en) Motor control device
JP4223517B2 (en) Winding field synchronous machine controller
JP2010041867A (en) Control device for multiphase rotary electric machine
JP3850381B2 (en) Current control device
JP3230571B2 (en) Motor speed control device
CN113056868B (en) Control method and control device for electric vehicle
WO2020194637A1 (en) Control method and control device for electric vehicle
CA3028337C (en) Motor control device and control method
JP3099681B2 (en) Variable speed control device for AC motor
JP7035818B2 (en) Winding field type synchronous motor control method and control device
KR102269182B1 (en) Real-time torque ripple reduction apparatus for motor
JP2005182427A (en) Control computing device
JPH10210781A (en) Motor controller
JPH0530789A (en) Current controlling circuit of synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041109

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060712

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060829

R150 Certificate of patent or registration of utility model

Ref document number: 3850381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees