JP3849171B2 - Manufacturing method of hot-rolled steel sheet with excellent workability after cold rolling - Google Patents

Manufacturing method of hot-rolled steel sheet with excellent workability after cold rolling Download PDF

Info

Publication number
JP3849171B2
JP3849171B2 JP12010296A JP12010296A JP3849171B2 JP 3849171 B2 JP3849171 B2 JP 3849171B2 JP 12010296 A JP12010296 A JP 12010296A JP 12010296 A JP12010296 A JP 12010296A JP 3849171 B2 JP3849171 B2 JP 3849171B2
Authority
JP
Japan
Prior art keywords
temperature
hot
ferrite
cold rolling
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12010296A
Other languages
Japanese (ja)
Other versions
JPH09302421A (en
Inventor
太郎 木津
俊明 占部
雅紀 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP12010296A priority Critical patent/JP3849171B2/en
Publication of JPH09302421A publication Critical patent/JPH09302421A/en
Application granted granted Critical
Publication of JP3849171B2 publication Critical patent/JP3849171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、熱延ままで軟質で且つ低い降伏比を有し、そして、冷間圧延を施した後も、降伏強度の上昇が小さい、加工性に優れた熱延鋼板の製造方法に関する。
【0002】
【従来の技術】
一般に、溶接等を行う場合、特に薄物材を溶接する場合には、溶接する2枚の板厚が極力等しいことが望ましい。このため板厚精度の低い熱延鋼板を使用する場合には、冷間圧延を施して板厚精度を向上することが必要である。特に、電気機器部品用の薄物材は、上述した板厚精度の向上が要求される。
軟質で且つ低い降伏比を有する熱延鋼板を製造する方法として、フェライト組織の粗粒化により、粒界面積を小さくすることが従来行われている。そのメカニズムは次の通りである。一般に純鉄や軟鉄の強度を支配する最も重要な因子は結晶粒径の大小である。各結晶粒のすべり面は、粒界を境界として、不連続であるので、転位の運動が粒界で止められる。一定の応力下で結晶粒界に止められて堆積する転位の数は、粒径に比例して粒径が大きくなるほど多くなる。このため粗大粒になるほど、隣接結晶粒にかかる応力集中が大きくなり、そして、塑性変形が伝播し易くなって、降伏し易くなる。
【0003】
上述したフェライト組織を粗粒化するための方法として、熱間圧延過程での仕上げ圧延をAr3 変態点以上のオーステナイト高温域で行って、オーステナイト結晶粒を粗大化することによって、それに引き続く冷却過程において生じるフェライト変態時の核発生サイトとなり得るオーステナイト粒界面積を小さくして、フェライト核発生頻度を低くし、その結果、フェライト粒径を大きくすることが知られている(以下「先行技術1」という)。
【0004】
更に、特公昭61−41969号公報には、上述したフェライト組織を粗粒化する方法として、熱間圧延過程における最終仕上げ圧延を、Ar3 変態点以下のフェライト域またはフェライト+オーステナイト2相域で行って、加工フェライトを回復、再結晶させ、もって、フェライトの粒径を大きくすることが開示されている(以下「先行技術2」という)。
【0005】
【発明が解決しようとする課題】
先行技術1および2には次の問題点がある。即ち、先行技術1の方法によると、仕上げ圧延を高温で行うために、スラブの加熱温度を高くしなければならず、従って、熱源コストが高くなるという問題点がある。更に、板厚が小さい場合には、仕上げ圧延時の温度降下が大きくなり、たとえスラブを高温に加熱した場合でも、所定の仕上げ温度を確保することができないという問題点がある。
【0006】
先行技術2の方法によると、加工フェライトを再結晶させるためには、高温巻取りが必須になる。しかしながら、フェライト高温域では、Cの固溶限が大きいので、セメンタイト析出の駆動力が小さく、その結果、セメンタイト析出の核数が少なくなる。更に、巻取り後の冷却過程において、温度が低下するに伴って、Cの固溶限が小さくなる。しかしながら、セメンタイトの核数が少ない場合には、Cの拡散速度は低温であるほど小さくなるので、固溶Cがセメンタイトとして析出するための移動距離が大きくなって、析出しにくくなる。その結果、固溶Cが多量に存在することになる。冷間圧延によって転位が大量に導入された場合には、固溶Cが転位に固着して、転位の移動を妨げ、降伏強度が上昇するという問題点がある。
【0007】
従って、この発明の目的は、熱延ままで軟質で且つ低い降伏比を有し、そして、冷間圧延を施した後も、降伏強度の上昇が小さい、加工性に優れた熱延鋼板の製造方法を提供するにある。
【0008】
【課題を解決するための手段】
本発明者等は、上述した問題を解決すべく鋭意研究を重ねた。その結果、熱間圧延過程における最終仕上げ圧延を、Ar3 変態点以下のフェライト域またはフェライト+オーステナイト2相域で行い、高温巻取りによって加工フェライトを回復、再結晶させて、フェライト粒径を大きくする熱延鋼板の製造方法において、鋼中に所定量のクロム(Cr)を添加することによって、高温巻取り時のセメンタイトを微細に分散させて、巻取り後の冷却過程で固溶Cがセメンタイトとして析出するための移動距離を小さくすることができ、その結果、固溶Cがセメンタイトとして析出し易くなり、固溶C量が減り、冷間圧延により転位が大量に導入された場合に、降伏強度の上昇量を小さくすることができることを知見した。
【0009】
本発明の、冷間圧延後の加工性に優れた熱延鋼板の製造方法は、上記知見に基づいてなされたものであって、
炭素(C) :0.01〜0.05 wt.% 、
珪素(Si) :0.03 wt.% 以下、
マンガン(Mn) :0.1〜0.3 wt.%、
燐(P) :0.03 wt.% 以下、
硫黄(S) :0.025 wt.% 以下、
アルミニウム (Al):0.010〜0.10 wt.% 、
窒素(N) :0.0030 wt.% 以下、
クロム(Cr) :0.010〜0.070 wt.%を含有し、そして、
残部:鉄および不可避的不純物
からなる成分組成を有する鋼を、(Ar3−20℃)〜750℃の範囲内の温度で最終仕上げ圧延し、次いで、550 〜 750℃の範囲内の温度で巻取ることに特徴を有するものである。
【0010】
【発明の実施の形態】
次に、この発明の鋼の成分組成を上述したように限定する理由を説明する。
(1)炭素(C)
C含有量が0.05 wt.% を超えると、セメンタイト量および固溶C量が多くなって、強度が上昇する。固溶C量が多くなると、冷間圧延後の降伏強度の上昇量が大きくなる。一方、C含有量が0.01 wt.% 未満では、巻取り時に、Cの全量が固溶Cとして存在して、セメンタイトが析出せず、その後の冷却過程においても、Cは固溶Cの状態のまま残って、冷間圧延後の降伏強度の上昇量を大きくする。従って、炭素(C)の含有量は、0.01〜0.05 wt.% の範囲内に限定すべきである。
【0011】
(2)珪素(Si)
Si含有量が0.03 wt.% を超えると、固溶Si量が多くなって、強度が上昇すると共に、有害なSi-Mn 系介在物が生成する。従って、珪素(Si)の含有量は、0.03 wt.% 以下に限定すべきである。
【0012】
(3)マンガン(Mn)
Mnは、固溶Mnとして、鋼中の有害な固溶SをMnS として固定化して、無害化する作用がある。Mn含有量が0.1 wt.%未満では、上述した所望の効果が得られない。一方、Mn含有量が0.3 wt.%を超えると、固溶Mn量が多くなって、強度が上昇する。従って、マンガン(Mn)の含有量は、0.1 〜0.3 wt.%の範囲内に限定すべきである。
【0013】
(4)燐(P)
P含有量が0.03 wt.% を超えると、強度が上昇する。従って、燐(P)の含有量は、0.03 wt.% 以下に限定すべきである。
(5)硫黄(S)
S含有量が0.025 wt.%を超えると、熱間脆性を引き起こして、表面疵が発生する恐れがある。従って、硫黄(S)の含有量は、0.025 wt.% 以下に限定すべきである。
【0014】
(6)アルミニウム(Al)
Alは脱酸元素として、鋼中の介在物を減少させる作用を有している。Al含有量が0.010 wt.%未満では、上述した所望の効果が得られない。一方、Al含有量が0.10 wt.% を超えると、強度が上昇すると共に、製造コストが高くなる。従って、アルミニウム(Al)の含有量は、0.010 〜0.10 wt.% の範囲内に限定すべきである。
(7)窒素(N)
N含有量が0.0030 wt.% を超えると、窒化物が増加して、強度が上昇する。従って、窒素(N)の含有量は、0.0030 wt.% 以下に限定すべきである。
【0015】
(8)クロム(Cr)
Crは高温巻取り時のセメンタイトを微細に分散させて、巻取り後の冷却過程において固溶Cがセメンタイトとして析出するための移動距離を小さくし、もって、固溶Cがセメンタイトとして析出し易くさせて、固溶C量を減少させる作用を有している。Cr含有量が0.010 wt.%未満では、上述した所望の効果が得られない。一方、Cr含有量が0.070 wt.% を超えると、セメンタイトを微細に分散させる作用が飽和すると共に、製造コストが上昇する。従って、クロム(Cr)の含有量は、0.010 〜0.070 wt.% の範囲内に限定すべきである。
【0016】
次に、この発明の熱間圧延条件を上述したように限定する理由を説明する。
(1)仕上げ圧延の終了温度
(Ar3 −20℃)〜750℃の範囲内の温度で仕上げ圧延を終了すると、フェライト域またはオーステナイト+フェライト2相域で仕上げ圧延を終了し、加工フェライトの回復、再結晶による粗粒化により軟質且つ低い降伏比を有する熱延鋼板が得られる。Ar3 変態点以上のオーステナイト域で仕上げ圧延を終了すると、その後の冷却過程においてオーステナイトからフェライトへの変態が起こり、フェライト粒が細粒化して、強度および降伏比が上昇する。更に、Ar3 〜(Ar3 −20℃)のオーステナイト+フェライト2相域で仕上げ圧延を終了すると、2相高温域ではオーステナイトの分率が大きいので、オーステナイトからフェライトへの変態によるフェライト粒の細粒化によって強度が上昇する。一方、750℃未満の温度で仕上げ圧延を終了すると、巻取り温度が低くなって、加工フェライトを再結晶させることができず、未再結晶フェライトとなり、降伏強度が上昇し、延性が著しく低下する。従って、仕上げ圧延の終了温度は、(Ar3 −20℃)〜750℃の範囲内に限定すべきである。
(2)なお、仕上げ圧延時の圧下率は特に限定しないが、加工フェライトを再結晶させるための十分な歪を蓄積させるため、最終圧下率を20%以上にすることが望ましい。
【0017】
(3)巻取り温度
巻取り温度が550〜750℃の範囲内のとき、加工フェライトを回復、再結晶させることができる。巻取り温度が550℃未満のとき、巻取り後の自己焼鈍によって、加工フェライトが再結晶せず、未再結晶フェライトとなり、降伏強度が上昇し、延性が著しく低下する。一方、上述した仕上げ圧延の終了温度の上限が750℃と低いので、仕上げスタンドから巻取り機までの移動間、自然冷却によっても巻取り温度を750℃を超えて高くすることが困難である。従って、巻取り温度は550〜750℃の範囲内に限定する。
【0018】
(4)熱間圧延前のスラブは、特に限定されないが、連続鋳造後、直接熱間圧延し、または、一旦スラブを冷却後、再加熱してもよい。なお、上述したスラブを再加熱するときは、熱間圧延を正常に行うために、1150℃以上の温度で再加熱すればよい。しかしながら、低温加熱では仕上げ圧延時にコイルの長手方向の温度分布が不均一になり、特にコイルエンド部での温度低下が大きくなるので、1200〜1220℃の範囲内の温度に再加熱することが望ましい。
【0019】
このようにして得られた熱延鋼板に、冷間圧延を施すことによって、薄物化が可能になり、そして、板厚精度の向上を図ることができるので、溶接時におけるセットアップ等が容易になる。この発明の鋼に冷間圧延を施す場合には、Crの添加によって、固溶Cが低減されるので、冷間圧延の最適な圧下率は10〜30%の範囲内である。
【0020】
上述したように、本発明によると、所定量のCrを含有する鋼を、Ar3 変態点以下のフェライト域またはフェライト+オーステナイト2相域で圧延し、次いで、高温巻取りにより加工フェライトを再結晶させて、粗大なフェライト粒とし、更に、Crの作用によって、セメンタイトを微細に分散させて、固溶C量を低減させ、もって、熱延ままで軟質で且つ低い降伏比を有し、そして、冷間圧延を施した後も、降伏強度の上昇が小さい、加工性に優れた熱延鋼板を製造することができる。
【0021】
【実施例】
本発明の方法を実施例によって、比較例と対比しながら詳細に説明する。
表1に示す成分組成を有する各鋼を連続鋳造してスラブを調製し、次いで、FT(℃)欄に示す仕上げ温度で、仕上げ圧延し、次いで、CT(℃)欄に示す巻き取り温度で巻き取りを行って、1.5mmの板厚を有する本発明供試体No.1〜5および比較用供試体No.6〜10を調製した。このように調製した本発明供試体No.1〜5および比較用供試体No.6〜10の熱延ままの降伏強度(YS)、引張り強度(TS)、延性(El)および降伏比(YR)を調べた。次いで、本発明供試体No.1〜5および比較用供試体No.6〜10に、20%の圧下率で、冷間圧延を施した後、降伏強度(YS)、引張り強度(TS)、延性(El)および冷間圧延後の降伏強度(YS)と熱延ままの降伏強度(YS)との差(ΔYS)を調べた。それ等の結果を表2に示す。
【0022】
【表1】

Figure 0003849171
【0023】
【表2】
Figure 0003849171
【0024】
表1から明らかなように、比較用供試体No.6は、鋼の成分組成は本発明の範囲内であるが、仕上げ温度(FT)が730℃と本発明の範囲を外れて低く、且つ、巻取り温度(CT)が540℃と本発明の範囲を外れて低い。比較用供試体No.7は、鋼の成分組成は本発明の範囲内であるが、仕上げ温度(FT)が850℃と本発明の範囲を外れて高い。比較用供試体No.8〜10は、仕上げ温度(FT)および巻取り温度(CT)が共に本発明の範囲内であるが、鋼の成分組成のCr含有量において本発明の範囲外である。
【0025】
表1および表2から明らかなように、同一鋼種Aを使用して、本発明の範囲内の仕上げ温度(FT)および巻取り温度(CT)で仕上げ圧延および巻取りを行った本発明供試体No.1〜3において、熱延ままの降伏強度(YS)は18.2〜20.1 kgf/mm2、引張り強度(TS)は27.4〜28.7 kgf/mm2であるのに対して、仕上げ温度(FT)および巻取り温度(CT)のうちの少なくとも1つが本発明の範囲外である比較用供試体No.6および7においては、熱延ままの降伏強度(YS)は22.8〜24.6 kgf/mm2、引張り強度(TS)は30.9〜31.8 kgf/mm2とそれぞれ高くなっている。更に、本発明供試体No.1〜3において、降伏比(YR)は0.66〜0.70であるのに対して、比較用供試体No.6および7においては、降伏比(YR)は0.74〜0.77と高い。このことは、本発明によると、熱延ままで軟質且つ低い降伏比を有する熱延鋼板が得られることを意味している。
【0026】
更に、表2から明らかなように、上述した比較用供試体No.6〜10における成分組成(Cr含有量)、仕上げ温度(FT)および巻取り温度(CT)のうちの少なくとも1つが本発明の範囲外であることに起因して、比較用供試体No.6〜10は、20%の圧下率で、冷間圧延を施した後の降伏強度(YS)、引張り強度(TS)が高くなり、そして、延性(El)が低くなっている。
【0027】
即ち、降伏強度(YS)に関して、本発明供試体No.1〜5においては、31.7 kgf/mm2以下であるのに対して、比較用供試体No.6〜10においては、33.6〜37.2 kgf/mm2と高くなっている。引張り強度(TS)に関して、本発明供試体No.1〜5においては、32.1 kgf/mm2以下であるのに対して、比較用供試体No.6〜10においては、33.6〜37.2 kgf/mm2と高くなっている。更に、延性(El)に関して、本発明供試体No.1〜5においては、26.5 %以上と高くなっているのに対して、比較用供試体No.6〜10においては、20.3〜24.9 %と低くなっている。更に、冷間圧延後の降伏強度(YS)と熱延ままの降伏強度(YS)との差(ΔYS)に関して、本発明供試体No.1〜5においては、12.3 kgf/mm2以下であるのに対して、比較用供試体No.6〜10においては、12.6〜15.3 kgf/mm2と大きくなっている。このことから、本発明供試体No.1〜5においては冷間圧延後の降伏強度(YS)と熱延ままの降伏強度(YS)との差(ΔYS)が少ないことが明らかである。
【0028】
更に、表1に示す鋼種A(成分組成は表1の通りであり、Crの含有量は0.020 wt.%である)を使用して、降伏強度(YS)および引張り強度(TS)に及ぼす仕上げ温度(FT)の影響を調べた。その結果を図1に示す。図1から明らかなように、仕上げ温度(FT)が750℃未満、および、Ar3 −20℃を超えると、引張り強度(TS)および降伏強度(YS)が何れも高くなっている。
【0029】
更に、本発明の範囲内である(Ar3 −20℃)〜750℃の範囲内の温度で仕上げ圧延を終了し、次いで、本発明の範囲内である550〜750℃の範囲内の温度で巻取った熱延鋼板に、20%の圧下率で、冷間圧延を施したときの、降伏強度(YS)に及ぼすCr含有量の影響を調べた。その結果を図2に示す。図2から明らかなように、Cr含有量が0.010 〜0.070 wt.% の範囲内では、降伏強度(YS)は低いけれども、Cr含有量が0.010 wt.%未満では、降伏強度(YS)は高くなっている。
【0030】
【発明の効果】
本発明によると、熱延ままで軟質で且つ低い降伏比を有し、そして、冷間圧延を施した後も、降伏強度の上昇が小さい、加工性に優れた熱延鋼板の製造方法が提供され、工業上有用な効果がもたらされる。
【図面の簡単な説明】
【図1】図1は、降伏強度(YS)および引張り強度(TS)に及ぼす仕上げ温度(FT)の影響を示す説明図である。
【図2】図2は、熱延鋼板に、20%の圧下率で、冷間圧延を施したときの、降伏強度(YS)に及ぼすCr含有量の影響を示す説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a hot-rolled steel sheet excellent in workability that is soft and has a low yield ratio as it is hot-rolled and has a small increase in yield strength even after cold rolling.
[0002]
[Prior art]
In general, when performing welding or the like, particularly when thin materials are to be welded, it is desirable that the thicknesses of the two sheets to be welded be as equal as possible. For this reason, when using a hot-rolled steel sheet with low plate thickness accuracy, it is necessary to perform cold rolling to improve the plate thickness accuracy. In particular, thin materials for electrical equipment parts are required to improve the plate thickness accuracy described above.
As a method for producing a hot-rolled steel sheet that is soft and has a low yield ratio, it has been conventionally performed to reduce the grain boundary area by coarsening the ferrite structure. The mechanism is as follows. In general, the most important factor governing the strength of pure iron and soft iron is the size of the crystal grain size. Since the slip surface of each crystal grain is discontinuous with the grain boundary as a boundary, dislocation movement is stopped at the grain boundary. The number of dislocations that are stopped at a grain boundary under a certain stress and deposited increases as the grain size increases in proportion to the grain size. For this reason, the coarser the grain, the greater the concentration of stress applied to the adjacent crystal grains, and the easier the plastic deformation propagates to yield.
[0003]
As a method for coarsening the ferrite structure described above, the subsequent rolling process in the hot rolling process is performed in the austenite high temperature region above the Ar 3 transformation point, and the austenite crystal grains are coarsened, followed by a cooling process. It is known that the interfacial area of austenite grains, which can be nucleation sites during ferrite transformation, is reduced, the frequency of ferrite nucleation is reduced, and as a result, the ferrite grain size is increased (hereinafter, “Prior Art 1”). Called).
[0004]
Further, in Japanese Patent Publication No. 61-41969, as a method of coarsening the ferrite structure described above, the final finish rolling in the hot rolling process is performed in a ferrite region below the Ar 3 transformation point or a ferrite + austenite two-phase region. It is disclosed that the processed ferrite is recovered and recrystallized to increase the grain size of the ferrite (hereinafter referred to as “prior art 2”).
[0005]
[Problems to be solved by the invention]
Prior arts 1 and 2 have the following problems. That is, according to the method of the prior art 1, in order to perform finish rolling at a high temperature, the heating temperature of the slab must be increased, and thus the heat source cost is increased. Furthermore, when the plate thickness is small, the temperature drop during finish rolling becomes large, and there is a problem that a predetermined finishing temperature cannot be ensured even when the slab is heated to a high temperature.
[0006]
According to the method of Prior Art 2, high temperature winding is essential for recrystallizing the processed ferrite. However, since the solid solubility limit of C is large in the ferrite high temperature region, the driving force for cementite precipitation is small, and as a result, the number of nuclei for cementite precipitation decreases. Furthermore, in the cooling process after winding, as the temperature decreases, the solid solubility limit of C decreases. However, when the number of nuclei of cementite is small, the diffusion rate of C becomes smaller as the temperature becomes lower, so that the moving distance for precipitation of solute C as cementite increases and it becomes difficult to precipitate. As a result, a large amount of solute C is present. When a large amount of dislocations is introduced by cold rolling, there is a problem that the solid solution C is fixed to the dislocations, preventing the movement of the dislocations and increasing the yield strength.
[0007]
Accordingly, an object of the present invention is to produce a hot-rolled steel sheet that is hot-rolled, soft, has a low yield ratio, and has a small increase in yield strength even after cold rolling and has excellent workability. Is in providing a way.
[0008]
[Means for Solving the Problems]
The inventors of the present invention have made extensive studies to solve the above-described problems. As a result, the final finish rolling in the hot rolling process is performed in the ferrite region below the Ar 3 transformation point or in the ferrite + austenite two-phase region, and the processed ferrite is recovered and recrystallized by high-temperature winding to increase the ferrite grain size. In the method of manufacturing a hot rolled steel sheet, a predetermined amount of chromium (Cr) is added to the steel to finely disperse cementite at the time of high temperature winding, and solid solution C is cementite during the cooling process after winding. As a result, it is possible to reduce the moving distance for precipitation, and as a result, it becomes easier for solid solution C to precipitate as cementite, the amount of solid solution C decreases, and when a large amount of dislocations are introduced by cold rolling, yielding It has been found that the amount of increase in strength can be reduced.
[0009]
The method for producing a hot-rolled steel sheet excellent in workability after cold rolling according to the present invention is based on the above knowledge,
Carbon (C): 0.01-0.05 wt.%,
Silicon (Si): 0.03 wt.% Or less,
Manganese (Mn): 0.1-0.3 wt.%,
Phosphorus (P): 0.03 wt.% Or less,
Sulfur (S): 0.025 wt.% Or less,
Aluminum (Al): 0.010-0.10 wt.%,
Nitrogen (N): 0.0030 wt.% Or less,
Chromium (Cr): 0.010 to 0.070 wt.%, And
The balance: a steel having a composition composed of iron and inevitable impurities is finally finish-rolled at a temperature in the range of (Ar 3 −20 ° C.) to 750 ° C. and then wound at a temperature in the range of 550 to 750 ° C. It has characteristics in taking.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, the reason for limiting the component composition of the steel of the present invention as described above will be described.
(1) Carbon (C)
When the C content exceeds 0.05 wt.%, The cementite amount and the solute C amount increase, and the strength increases. When the amount of solute C increases, the amount of increase in yield strength after cold rolling increases. On the other hand, if the C content is less than 0.01 wt.%, The entire amount of C exists as solute C at the time of winding, and cementite does not precipitate, and in the subsequent cooling process, C is in the state of solute C. The amount of increase in yield strength after cold rolling is increased. Therefore, the carbon (C) content should be limited to the range of 0.01 to 0.05 wt.%.
[0011]
(2) Silicon (Si)
If the Si content exceeds 0.03 wt.%, The amount of dissolved Si increases, the strength increases, and harmful Si-Mn inclusions are generated. Therefore, the content of silicon (Si) should be limited to 0.03 wt.% Or less.
[0012]
(3) Manganese (Mn)
Mn, as solute Mn, has the effect of detoxifying by fixing harmful solute S in steel as MnS. If the Mn content is less than 0.1 wt.%, The desired effect described above cannot be obtained. On the other hand, when the Mn content exceeds 0.3 wt.%, The solid solution Mn amount increases and the strength increases. Therefore, the manganese (Mn) content should be limited to the range of 0.1 to 0.3 wt.%.
[0013]
(4) Phosphorus (P)
If the P content exceeds 0.03 wt.%, The strength increases. Therefore, the phosphorus (P) content should be limited to 0.03 wt.% Or less.
(5) Sulfur (S)
If the S content exceeds 0.025 wt.%, Hot brittleness may occur and surface defects may occur. Therefore, the sulfur (S) content should be limited to 0.025 wt.% Or less.
[0014]
(6) Aluminum (Al)
Al is a deoxidizing element and has the effect of reducing inclusions in the steel. If the Al content is less than 0.010 wt.%, The desired effect described above cannot be obtained. On the other hand, when the Al content exceeds 0.10 wt.%, The strength increases and the production cost increases. Therefore, the aluminum (Al) content should be limited to the range of 0.010 to 0.10 wt.%.
(7) Nitrogen (N)
If the N content exceeds 0.0030 wt.%, Nitride increases and the strength increases. Accordingly, the nitrogen (N) content should be limited to 0.0030 wt.% Or less.
[0015]
(8) Chromium (Cr)
Cr finely disperses cementite at the time of high-temperature winding, reducing the moving distance for solid solution C to precipitate as cementite in the cooling process after winding, thereby making it easy for solid solution C to precipitate as cementite. Thus, it has the effect of reducing the amount of solid solution C. If the Cr content is less than 0.010 wt.% , The desired effect described above cannot be obtained. On the other hand, if the Cr content exceeds 0.070 wt.%, The action of finely dispersing cementite is saturated and the manufacturing cost increases. Therefore, the chromium (Cr) content should be limited to the range of 0.010 to 0.070 wt.%.
[0016]
Next, the reason for limiting the hot rolling conditions of the present invention as described above will be described.
(1) When finish rolling is finished at a temperature within the range of finish rolling finish temperature (Ar 3 -20 ° C) to 750 ° C, finish rolling is finished in the ferrite region or austenite + ferrite two-phase region, and the processed ferrite is recovered. A hot rolled steel sheet having a soft and low yield ratio is obtained by coarsening by recrystallization. When finish rolling is completed in the austenite region above the Ar 3 transformation point, transformation from austenite to ferrite occurs in the subsequent cooling process, and the ferrite grains become finer, increasing the strength and yield ratio. Further, upon completion of the finish rolling at Ar 3 ~ austenite + ferrite two-phase region of (Ar 3 -20 ℃), the two-phase high temperature region because the fraction of austenite is large, the ferrite grains by transformation from austenite to ferrite fine Strength is increased by granulation. On the other hand, when finish rolling is finished at a temperature lower than 750 ° C., the coiling temperature is lowered, the processed ferrite cannot be recrystallized, and becomes non-recrystallized ferrite, yield strength is increased, and ductility is significantly reduced. . Therefore, the finish temperature of finish rolling should be limited to the range of (Ar 3 -20 ° C) to 750 ° C.
(2) Although the rolling reduction during finish rolling is not particularly limited, the final rolling reduction is preferably 20% or more in order to accumulate sufficient strain for recrystallizing the processed ferrite.
[0017]
(3) Winding temperature When the winding temperature is in the range of 550 to 750 ° C., the processed ferrite can be recovered and recrystallized. When the winding temperature is less than 550 ° C., the processed ferrite does not recrystallize due to self-annealing after winding, and becomes non-recrystallized ferrite, yield strength increases, and ductility decreases significantly. On the other hand, since the upper limit of the finish rolling finish temperature is as low as 750 ° C., it is difficult to raise the winding temperature to over 750 ° C. even by natural cooling during the movement from the finishing stand to the winder. Therefore, the coiling temperature is limited to the range of 550 to 750 ° C.
[0018]
(4) The slab before hot rolling is not particularly limited, but may be directly hot rolled after continuous casting, or may be reheated after cooling the slab once. In addition, what is necessary is just to reheat at the temperature of 1150 degreeC or more, in order to perform hot rolling normally, when reheating the slab mentioned above. However, in the low temperature heating, the temperature distribution in the longitudinal direction of the coil becomes non-uniform during finish rolling, and particularly the temperature drop at the coil end portion becomes large. Therefore, it is desirable to reheat to a temperature within the range of 1200 to 1220 ° C. .
[0019]
By applying cold rolling to the hot-rolled steel sheet obtained in this way, it becomes possible to reduce the thickness and improve the thickness accuracy, so that setup during welding is facilitated. . When the steel of the present invention is cold-rolled, the solid solution C is reduced by the addition of Cr, so the optimum rolling reduction for cold rolling is in the range of 10 to 30%.
[0020]
As described above, according to the present invention, a steel containing a predetermined amount of Cr is rolled in the ferrite region below the Ar 3 transformation point or in the ferrite + austenite two-phase region, and then the processed ferrite is recrystallized by high-temperature winding. And coarse ferrite grains, and further by the action of Cr, cementite is finely dispersed to reduce the amount of dissolved C, so that it is hot and soft and has a low yield ratio, and Even after cold rolling, a hot-rolled steel sheet having a small increase in yield strength and excellent workability can be produced.
[0021]
【Example】
The method of the present invention will be described in detail by way of examples while comparing with comparative examples.
Each steel having the composition shown in Table 1 is continuously cast to prepare a slab, then finish-rolled at the finishing temperature shown in the FT (° C) column, and then at the winding temperature shown in the CT (° C) column. The specimen No. 1 of the present invention having a thickness of 1.5 mm was wound. 1 to 5 and comparative specimen No. 6-10 were prepared. Specimen No. 1 of the present invention prepared in this way. 1 to 5 and comparative specimen No. The yield strength (YS), the tensile strength (TS), the ductility (El), and the yield ratio (YR) of 6 to 10 as hot-rolled were examined. Subsequently, this invention test body No. 1 to 5 and comparative specimen No. 6-10, after cold rolling at a rolling reduction of 20%, yield strength (YS), tensile strength (TS), ductility (El), yield strength after cold rolling (YS) and hot rolling The difference (ΔYS) from the yield strength (YS) as it was was examined. The results are shown in Table 2.
[0022]
[Table 1]
Figure 0003849171
[0023]
[Table 2]
Figure 0003849171
[0024]
As is clear from Table 1, the comparative specimen No. No. 6, the component composition of steel is within the range of the present invention, but the finishing temperature (FT) is 730 ° C., which is low outside the range of the present invention, and the coiling temperature (CT) is 540 ° C. Low out of range. Specimen No. for comparison No. 7, the component composition of steel is within the range of the present invention, but the finishing temperature (FT) is 850 ° C., which is outside the range of the present invention. Specimen No. for comparison In the case of 8 to 10, the finishing temperature (FT) and the winding temperature (CT) are both within the scope of the present invention, but the Cr content of the steel component composition is outside the scope of the present invention.
[0025]
As is apparent from Tables 1 and 2, the specimen of the present invention was subjected to finish rolling and winding using the same steel type A at a finishing temperature (FT) and a winding temperature (CT) within the scope of the present invention. No. 1-3, the as-rolled yield strength (YS) is 18.2 to 20.1 kgf / mm 2 and the tensile strength (TS) is 27.4 to 28.7 kgf / mm 2 , whereas the finishing temperature (FT) and winding Comparative specimen No. 1 in which at least one of the taking temperature (CT) is outside the scope of the present invention. In 6 and 7, the yield strength (YS) as hot rolled is 22.8 to 24.6 kgf / mm 2 and the tensile strength (TS) is 30.9 to 31.8 kgf / mm 2 , respectively. Furthermore, this invention specimen No. 1-3, the yield ratio (YR) is 0.66 to 0.70, while the comparative specimen No. In 6 and 7, the yield ratio (YR) is as high as 0.74 to 0.77. This means that according to the present invention, a hot-rolled steel sheet that is soft and has a low yield ratio can be obtained.
[0026]
Further, as apparent from Table 2, the above-mentioned comparative specimen No. Since at least one of the component composition (Cr content), finishing temperature (FT) and coiling temperature (CT) in 6 to 10 is outside the scope of the present invention, the comparative specimen No. 6 to 10 have a rolling reduction of 20%, yield strength (YS) and tensile strength (TS) after cold rolling are increased, and ductility (El) is decreased.
[0027]
That is, with respect to the yield strength (YS), the specimen No. of the present invention. In Nos. 1 to 5, it is 31.7 kgf / mm 2 or less, while the comparative specimen No. In 6-10, it is as high as 33.6-37.2 kgf / mm < 2 >. Regarding the tensile strength (TS), the specimen No. In Nos. 1 to 5, it is 32.1 kgf / mm 2 or less, whereas the comparative specimen No. In 6-10, it is as high as 33.6-37.2 kgf / mm < 2 >. Furthermore, regarding the ductility (El), the specimen No. In 1 to 5, it is as high as 26.5% or more, whereas the comparative specimen No. In 6-10, it is as low as 20.3-24.9%. Furthermore, regarding the difference (ΔYS) between the yield strength (YS) after cold rolling and the yield strength (YS) as it is hot-rolled, the specimen No. 1 of the present invention was used. In Nos. 1 to 5, it is 12.3 kgf / mm 2 or less, while the comparative specimen No. In 6-10, it is as large as 12.6-15.3 kgf / mm < 2 >. From this fact, the specimen No. 1 of the present invention was used. In 1 to 5, it is clear that the difference (ΔYS) between the yield strength after cold rolling (YS) and the yield strength (YS) as hot rolled is small.
[0028]
Furthermore, using steel type A shown in Table 1 (component composition is as shown in Table 1 and Cr content is 0.020 wt.%), The finishing effect on yield strength (YS) and tensile strength (TS). The effect of temperature (FT) was investigated. The result is shown in FIG. As apparent from FIG. 1, when the finishing temperature (FT) is less than 750 ° C. and Ar 3 −20 ° C., both the tensile strength (TS) and the yield strength (YS) are high.
[0029]
Further, finish rolling is finished at a temperature within the range of (Ar 3 -20 ° C.) to 750 ° C. within the range of the present invention, and then at a temperature within a range of 550 to 750 ° C. within the range of the present invention. The effect of Cr content on the yield strength (YS) when cold rolling was applied to the rolled hot-rolled steel sheet at a rolling reduction of 20% was examined. The result is shown in FIG. As is apparent from FIG. 2, the yield strength (YS) is low when the Cr content is in the range of 0.010 to 0.070 wt.%, But the yield strength (YS) is high when the Cr content is less than 0.010 wt.%. It has become.
[0030]
【The invention's effect】
According to the present invention, there is provided a method for producing a hot-rolled steel sheet that is hot and soft, has a low yield ratio, and has a small increase in yield strength even after cold rolling and has excellent workability. And industrially useful effects are brought about.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the influence of finishing temperature (FT) on yield strength (YS) and tensile strength (TS).
FIG. 2 is an explanatory diagram showing the influence of Cr content on yield strength (YS) when a hot-rolled steel sheet is cold-rolled at a rolling reduction of 20%.

Claims (1)

炭素(C) :0.01〜0.05 wt.% 、
珪素(Si) :0.03 wt.% 以下、
マンガン(Mn) :0.1〜0.3 wt.%、
燐(P) :0.03 wt.% 以下、
硫黄(S) :0.025 wt.% 以下、
アルミニウム (Al):0.010〜0.10 wt.% 、
窒素(N) :0.0030 wt.% 以下、
クロム(Cr) :0.010〜0.070 wt.%を含有し、そして、
残部:鉄および不可避的不純物
からなる成分組成を有する鋼を、(Ar3−20℃)〜750℃の範囲内の温度で最終仕上げ圧延し、次いで、550 〜 750℃の範囲内の温度で巻取ることを特徴とする、冷間圧延後の加工性に優れた熱延鋼板の製造方法。
Carbon (C): 0.01-0.05 wt.%,
Silicon (Si): 0.03 wt.% Or less,
Manganese (Mn): 0.1-0.3 wt.%,
Phosphorus (P): 0.03 wt.% Or less,
Sulfur (S): 0.025 wt.% Or less,
Aluminum (Al): 0.010-0.10 wt.%,
Nitrogen (N): 0.0030 wt.% Or less,
Chromium (Cr): 0.010 to 0.070 wt.%, And
The balance: a steel having a composition composed of iron and inevitable impurities is finally finish-rolled at a temperature in the range of (Ar 3 −20 ° C.) to 750 ° C. and then wound at a temperature in the range of 550 to 750 ° C. A method for producing a hot-rolled steel sheet, which is excellent in workability after cold rolling.
JP12010296A 1996-05-15 1996-05-15 Manufacturing method of hot-rolled steel sheet with excellent workability after cold rolling Expired - Fee Related JP3849171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12010296A JP3849171B2 (en) 1996-05-15 1996-05-15 Manufacturing method of hot-rolled steel sheet with excellent workability after cold rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12010296A JP3849171B2 (en) 1996-05-15 1996-05-15 Manufacturing method of hot-rolled steel sheet with excellent workability after cold rolling

Publications (2)

Publication Number Publication Date
JPH09302421A JPH09302421A (en) 1997-11-25
JP3849171B2 true JP3849171B2 (en) 2006-11-22

Family

ID=14777978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12010296A Expired - Fee Related JP3849171B2 (en) 1996-05-15 1996-05-15 Manufacturing method of hot-rolled steel sheet with excellent workability after cold rolling

Country Status (1)

Country Link
JP (1) JP3849171B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100489022B1 (en) * 2000-11-28 2005-05-11 주식회사 포스코 Mini-mill Hot-rolled steel sheet with low yield strength before and after pipe forming and manufacturing method of it

Also Published As

Publication number Publication date
JPH09302421A (en) 1997-11-25

Similar Documents

Publication Publication Date Title
JPH10298645A (en) Manufacture of hot rolled high tensile strength steel plate
US4790889A (en) Hot-rolled strip having a dual-phase structure
JP3716629B2 (en) Manufacturing method of thin two-phase structure hot rolled steel strip
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JPH06240356A (en) Production of high strength hot rolled steel plate excellent in workability
JPH09279233A (en) Production of high tension steel excellent in toughness
JPH0432512A (en) Production of hot rolled high strength dual-phase steel plate for working
JP3849171B2 (en) Manufacturing method of hot-rolled steel sheet with excellent workability after cold rolling
JP4543471B2 (en) Manufacturing method of high-strength hot-rolled steel sheet with excellent plate shape and workability
JP3716639B2 (en) Manufacturing method of bainite-based high-tensile hot-rolled steel strip
JP2555436B2 (en) Hot-rolled steel sheet with excellent workability and its manufacturing method
JPH03170618A (en) Highly efficient production of cold-rolled steel sheet extremely excellent in workability
JPH0987743A (en) Production of low yield ratio high toughness electric resistance-welded rectangular steel pipe
KR100370473B1 (en) A Method for Manufacturing a High Strength Structural Steel Having Fine Ferrites
JP2776203B2 (en) Manufacturing method of cold rolled steel sheet excellent in non-aging at normal temperature
JP3596509B2 (en) Manufacturing method of high strength hot rolled steel sheet
KR970007203B1 (en) Method for making hot rolled steel sheet having excellent treatment
JPS6141969B2 (en)
JPH10280050A (en) Production of high strength hot rolled steel sheet excellent in press formability
JPS6367524B2 (en)
JPH04289126A (en) Production of hot rolled steel plate having high workability and high tensile strength and excellent in uniformity of quality
JPH0452229A (en) Highly efficient production of cold rolled steel sheet extremely excellent in workability
JP4328037B2 (en) Method for producing high workability hot-rolled steel sheet without folding back and folds
JP2633743B2 (en) Manufacturing method of thick steel plate with fine grain size
JP3831095B2 (en) Manufacturing method of hot-rolled steel sheet with excellent workability and excellent surface properties

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees