JP3847208B2 - Dissolved oxygen removing device and heat medium water circulation facility using the same - Google Patents

Dissolved oxygen removing device and heat medium water circulation facility using the same Download PDF

Info

Publication number
JP3847208B2
JP3847208B2 JP2002138765A JP2002138765A JP3847208B2 JP 3847208 B2 JP3847208 B2 JP 3847208B2 JP 2002138765 A JP2002138765 A JP 2002138765A JP 2002138765 A JP2002138765 A JP 2002138765A JP 3847208 B2 JP3847208 B2 JP 3847208B2
Authority
JP
Japan
Prior art keywords
gas
tank
dissolved oxygen
path
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002138765A
Other languages
Japanese (ja)
Other versions
JP2003326249A (en
Inventor
正信 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to JP2002138765A priority Critical patent/JP3847208B2/en
Publication of JP2003326249A publication Critical patent/JP2003326249A/en
Application granted granted Critical
Publication of JP3847208B2 publication Critical patent/JP3847208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液中から溶存酸素を除去する溶存酸素除去装置、及び、それを用いた熱媒水循環設備に関し、
詳しくは、処理対象液の流入路及び処理済み液の流出路を接続した処理槽に、処理対象液中の溶存酸素と置換させる置換用ガスを槽内に供給するガス供給路と、槽内の気体域を大気開放状態にする通気路とを接続した溶存酸素除去装置、及び、それを用いた熱媒水循環設備に関する。
【0002】
【従来の技術】
上記形式の溶存酸素除去装置は(図5参照)、処理槽6内において処理対象液W中の溶存酸素を置換用ガスGと置換させてガス化することで液中から除去するが、従来、この形式の装置では、同図5に示す如く、処理槽6内の気体域6aを大気開放状態にする通気路5を、その処理槽側の端部から大気側の端部に至る全長にわたりほぼ同口径の小径管14により形成していた。
【0003】
図5において、1aは処理対象液Wを処理槽6に流入させる流入路、11は流入路1aからの流入液Wを処理槽6内で散布する散液ノズル、1bは流入路1aからの液流入に伴い処理槽6から処理済み液W′(すなわち、溶存酸素を除去した液)を流出させる流出路、10は処理槽6に置換用ガスGを供給するガス供給路である。
【0004】
【発明が解決しようとする課題】
しかし、上記した従来装置では、通気路からのガス排出を伴う状態でガス供給路から処理槽内に所要流量の置換用ガスを供給して、処理槽内の気体域における置換用ガスの濃度を一定値以上に保つようにするものの、処理槽内の液位が大きく変動することがある使用形態の場合、槽内液位の低下時に、その液位低下に伴い通気路を通じて処理槽内に大気空気が吸入され、この空気吸入により処理槽内の気体域における酸素ガス濃度が上昇して置換用ガスの濃度が低下することで溶存酸素の除去性能が低下する問題があった。
【0005】
また、このような空気流入を極力防止するには置換用ガスの供給流量を大きく設定することが必要になり、そのことで装置の運転コストが嵩む問題もあった。
【0006】
この実情に鑑み、本発明の主たる課題は、合理的な通気構成の採用により上記問題を効果的に解消する点にある。
【0007】
【課題を解決するための手段】
〔1〕請求項1に係る発明は溶存酸素除去装置に係り、その特徴は、
処理対象液の流入路及び処理済み液の流出路を接続した処理槽に、処理対象液中の溶存酸素と置換させる置換用ガスを槽内に供給するガス供給路と、槽内の気体域を大気開放状態にする通気路とを接続した溶存酸素除去装置であって、
前記通気路に、その通気路の流通気体を流出入させる気体域側及び大気側夫々の室入出口よりも大きな断面積で、且つ、前記流入路、流出路及びガス供給路とは独立した室内空間を有して、その室内空間に流通気体を滞留させる容積拡大室を設けてある点にある。
【0008】
つまり、この構成によれば、通常時におけるガス供給路からの置換用ガスの供給に伴って、あるいはまた、処理槽内の液位上昇に伴って、処理槽内の気体域から通気路へ排出される未だ置換用ガス濃度の高いガスが容積拡大室に滞留状態で大量に保存されるから、処理槽内の液位が低下して、その液位低下により通気路から処理槽内への吸入が生じたとしても、容積拡大室における置換用ガス濃度の高い滞留ガスが処理槽内の気体域に吸入され、これにより、槽内液位の低下時における処理槽内への大気空気の吸入が効果的に防止される。
【0009】
このことから、上記構成によれば、先述した従来装置に比べ、処理槽内の液位が変動することがある使用形態の場合でも、置換用ガスの供給流量を大きく設定するといったことを不要にして装置の運転コストを安価なものにしながら、処理槽内の気体域における置換用ガスの濃度をより安定的に高く保つことができ、これにより、高い溶存酸素除去性能を一層安定的に発揮させることができる。
【0010】
ちなみに、槽内液位の低下時における処理槽内への大気空気の吸入を防止するのに、別法としては、図6に示す如く、通気路5を形成する小径管14を螺旋状やジグザグ状にして長尺にすることでその管内容積を大きくし、これにより、処理槽6内の気体域6aから通気路5へ排出される未だ置換用ガス濃度の高いガスG′を管内に大量に滞留させることも考えられるが、この場合、前記した容積拡大室の室容積と同等の管内容積を確保するには、かなりの長尺管を螺旋状やジグザグ状に成形しなければならず、そのため装置構造が複雑になって製作が難しくなるとともに装置コストが高く付く。
【0011】
これに対し、請求項1に係る発明の上記構成によれば、十分量のガスを滞留させる容積を室空間(すなわち、室入出口よりも大きな断面積の室内空間)により確保するから、上記別法の如く長尺管を螺旋状やジグザグ状に成形して同等の容積を確保するに比べ、装置構造を簡略にすることができて製作を容易にするとともに、装置コストも安価にすることができる。
【0012】
〔2〕請求項2に係る発明は、請求項1に係る発明の実施に好適な実施形態を特定するものであり、その特徴は、
前記容積拡大室を、小径連通路により直列に連通させた複数の小室に区画してある点にある。
【0013】
つまり、この構成によれば、処理槽内の気体域から通気路へ排出されて容積拡大室に滞留する置換用ガス濃度の高いガスの全体が通気路の大気側の端部から路内に侵入する大気空気によって一様に希釈されてしまうのを効果的に防止することができて、処理槽内の液位の低下時には、直列接続した複数の小室のうち通気経路上で処理槽により近い小室の滞留ガス(すなわち、希釈度が低くて置換用ガス濃度のより高い滞留ガス)から優先的に処理槽内に吸入させることができ、これにより、処理槽内の液位変動にかかわらず処理槽内の気体域における置換用ガスの濃度を安定的に高く保つ機能をさらに高めることができる。
【0014】
なお、請求項1又は2に係る発明の上記構成によれば、何らかの原因で処理槽に対する置換用ガスの供給が停止したとき、そのガス供給の停止のために通気路からの空気侵入が生じ、そのことで処理槽内の気体域において置換用ガスの濃度低下を招くといったことも効果的に防止することができ、この点、請求項1又は2に係る発明は、処理槽内の気体域における置換用ガスの濃度を安定的に高く保って溶存酸素除去性能を高く維持する上で、処理槽内での液位変動が無い使用形態の場合にも極めて有効である。
【0015】
〔3〕請求項3に係る発明は、請求項1又は2に係る溶存酸素除去装置を用いた熱媒水循環設備に係り、その特徴は、
熱源機器と負荷機器との間で熱媒水を循環させる循環路に対して前記処理槽を、その循環路の最高所に配置した状態で、かつ、循環熱媒水を前記流入路及び前記流出路を通じて槽内通過させる状態で接続してある点にある。
【0016】
つまり、この構成によれば、循環路の循環熱媒水を処理対象液とする形態での前述の如き処理槽での溶存酸素除去により、熱媒水の温度変化による処理槽内での水位変動にかかわらず高い除去性能を安定的に保った状態で循環熱媒水から溶存酸素を効率良く除去することができて、循環路における熱媒水中の溶存酸素濃度を安定的に低く保つことができ、これにより、循環路を形成する配管や循環路における熱源機器、負荷機器、ポンプなどの機器類の溶存酸素による腐食劣化を効果的に防止することができる。
【0017】
また、処理槽は大気開放型であることから、循環路に接続する処理槽をその循環路の膨張タンクとして兼用することができて、その兼用化により設備コストを安価にすることができ、しかも、このように処理槽を膨張タンクに兼用すれば、熱媒水が処理槽とは別の大気開放型膨張タンクで大気空気と接触することによる熱媒水中への酸素溶解も防止することができて、循環路における熱媒水中の溶存酸素濃度を一層低く保つことができ、そのことで配管や機器類の溶存酸素による腐食劣化を一層効果的に防止することができる。
【0018】
【発明の実施の形態】
図1は循環路1を通じて熱媒水Wを循環させる熱媒水循環設備を示し、循環路1には、循環熱媒水Wを冷却又は加熱する冷凍機やボイラ等の熱源機器2、その熱源機器2から供給される循環熱媒水Wを用いて冷房や暖房を行なうエアハンドリングユニットやファンコイルユニット等の負荷機器3、及び、循環ポンプ4を介装してある。
【0019】
循環路1には通気路5を通じてタンク内の気体域6aを大気開放させた大気開放型の膨張タンク6を最高所に配置して接続してあり、熱媒水Wの温度変化による膨張・収縮で循環路1における保有熱媒水Wの総体積が変化することに対し、この体積変化を膨張タンク6内での水位変化をもって吸収する。
【0020】
膨張タンク6は補給水タンクに兼用してあり、その補給構成としては、膨張タンク6に補給水W″の供給路7を接続するとともに、タンク内水位の検出に基づく補給水供給路7の開閉によりタンク内水位の一定以上の低下に対しタンク内水位を自動的に回復する自動補給弁装置8を設けてある。
【0021】
また、膨張タンク6は循環熱媒水Wに対し溶存酸素除去処理を施す処理槽にも兼用してあり、この溶存酸素除去のための構成として、膨張タンク6には、循環熱媒水W中の溶存酸素と置換させる置換用ガスG(本実施形態では窒素ガスN2 )をガス供給装置9からタンク内に供給するガス供給路10を接続するとともに、タンク内に流入させる循環熱媒水Wを循環ポンプ4のポンプ圧によりタンク内の気体域6aに散布する形態でタンク内に流入させる散水ノズル11を内装してある。
【0022】
つまり、循環熱媒水Wを流入路1aとしての上流側の接続循環路1から膨張タンク6内へ連続的に流入させ、かつ、それに伴い膨張タンク6内の熱媒水Wを流出路1bとしての下流側の接続循環路1へ連続的に流出させるのに対し、ガス供給路10から置換用ガスGをタンク内に供給することで、その置換用ガスGを分圧差による気体成分の平衡化現象としてタンク内で循環熱媒水W中の溶存酸素と置換させて、その置換により循環熱媒水W中の溶存酸素をガス化して循環熱媒水Wから分離除去し、これにより、循環路1における保有熱媒水Wの溶存酸素濃度を低く保って、溶存酸素に原因する配管や機器類の腐食劣化を防止する。
【0023】
また、この溶存酸素除去にあたり、タンク内に流入させる循環熱媒水Wを置換用ガスGが充満するタンク内気体域6aへ散水ノズル11により散布することで、循環熱媒水Wと置換用ガスGとの接触面積を大きく確保し、これにより、置換用ガスGを熱媒水W中の溶存酸素と効率良く置換させる。
【0024】
タンク内気体域6aにおける置換用ガスGの濃度を高く保つように、膨張タンク6への置換用ガスGの供給は、そのガス供給に伴い、分離酸素ガスO2 を含むものの未だ置換用ガス濃度の高いガスG′がタンク内気体域6aから通気路5へ追い出し形態で排出されるように実施するが、この置換用ガスGの供給については、置換用ガスGを一定流量で継続して膨張タンク6に供給する形態、あるいは、置換用ガスGを間欠的に膨張タンク6に供給する形態、あるいはまた、タンク内気体域6aにおける置換用ガスGや酸素ガスの濃度検出に基づく供給量制御を行ないながら置換用ガスGを膨張タンク6に供給する形態など、種々の供給形態を採用できる。
【0025】
膨張タンク6の通気路5は、隔壁12により膨張タンク6内の上部に仕切り形成した容積拡大室13と、その容積拡大室13を大気開放させる小口径の開放管14とで形成してあり、容積拡大室13は、通気路5の流通気体を流出入させるタンク6側(すなわち処理槽側、詳しくは、気体域6a側)の室入出口5a、及び、開放管14側(すなわち、大気側)の室入出口5bよりも大きな断面積で、且つ、流入路1a、流出路1b及びガス供給路10とは独立した室内空間を有するものにしてある。
【0026】
また、容積拡大室13は、室内壁15により上下2つの小室13a、13bに区画して、これら2つの小室13a,13bを室内壁15に形成の小径連通路15aにより通気経路上で直列に連通させた構造にしてあり、さらに、これら小室13a,13bに対する素通り的な気体通過を抑止するように、小径連通路15aはタンク6側及び開放管14側の室入出口5a,5bと非対向の位置に形成(換言すれば、通気路5をジグザグ経路にする位置に形成)してある。
【0027】
つまり、この容積拡大室13を通気路5に設けることにより、通常時におけるガス供給路10からの置換用ガスGの供給に伴って、あるいはまた、膨張タンク6内の水位上昇に伴って、タンク内の気体域6aから通気路5へ排出される未だ置換用ガス濃度の高いガスG′を容積拡大室13に滞留状態で保存するようにし、これにより、タンク内水位の低下時に通気路5から膨張タンク6への気体吸入が生じたとしても、容積拡大室13における置換用ガス濃度の高い滞留ガスG′がタンク内気体域6aに吸入されるようにして、タンク内気体域6aにおける置換用ガスGの濃度が安定的に高く保たれるようにしてある。
【0028】
また、上記の如く、容積拡大室13を小径連通路15aにより直列に連通させた2つの小室13a,13bに区画するとともに、タンク6側の室入出口5aと小径連通路15aと開放管14側の室入出口5bとの相対配置で通気路5をジグザグ経路にすることにより、タンク内気体域6aから通気路5へ排出されて容積拡大室13に滞留する置換用ガス濃度の高いガスG′の全体が通気路5の大気側の端部から路内に侵入する大気空気によって一様に希釈されるのを防止し、これにより、タンク内水位の低下時には、直列接続した2つの小室13a,13bのうち通気経路上で膨張タンク6のタンク内気体域6aに近い方の小室13aの滞留ガスG′(すなわち、希釈度が低くて置換用ガス濃度のより高い滞留ガス)から優先的にタンク内気体域6aに吸入されるようにして、タンク内気体域6aにおける置換用ガスGの濃度を一層安定的に高く保ち得るようにしてある。
【0029】
なお、循環路1における保有熱媒水Wの膨張・収縮でタンク内水位が変動することに対して、タンク内気体域6aにおける置換用ガスGの濃度を十分に高く保つのに、容積拡大室13は循環路1における保有熱媒水Wの膨張・収縮による体積変化量の1.5倍〜2倍程度の室容積を備えるものであればよい。
【0030】
〔別実施形態〕
次に別実施形態を列記する。
【0031】
前述の実施形態では、溶存酸素除去処理用の処理槽を兼ねる膨張タンク6に対しガス供給路10を通じて置換用ガスGをガス供給装置9から直接的に供給する構成を示したが、これに代え、図2に示す如く、ガス供給装置9から供給される置換用ガスGGを循環熱媒水Wに対して混合する混合手段16と、この混合手段16により置換用ガスGを混合した循環熱媒水Wから気泡を分離除去する気泡分離手段17との直列組みを膨張タンク6とは別位置で循環路1に装備し、そして、処理槽を兼ねる大気開放型の膨張タンク6に対し気泡分離手段17での分離ガスGをガス供給路10を通じて供給する設備構成にしてもよい。
【0032】
すなわち、この図2に示す構成では、混合手段16により置換用ガスGGを循環熱媒水Wに混合してその置換用ガスGGを循環熱媒水W中の溶存酸素と置換させることで循環熱媒水W中の溶存酸素をガス化することと、気泡分離手段17により循環熱媒水W中の気泡(すなわち、ガス化した酸素を含む置換用ガスGGの気泡)を循環熱媒水Wから分離することとをもって、循環熱媒水W中の溶存酸素を分離除去し、また、これに並行して、気泡分離手段17での分離ガスG(すなわち、分離酸素ガスを含むものの未だ置換用ガス濃度の高いガス)を膨張タンク6に供給することで、その分離ガスGを置換用ガスとして前述の実施形態と同様の形態で膨張タンク6においても循環熱媒水Wから溶存酸素を分離除去し、これら2箇所での溶存酸素除去により循環路1における熱媒水Wの溶存酸素濃度を効果的に低減する。
【0033】
なお、この構成を実施する場合、気泡分離手段17には、同図2に示す如く流入熱媒水Wを縦軸芯周りで旋回させることにより熱媒水Wからの気泡分離を促進する形式のものを採用するのが望ましい。
【0034】
前述の実施形態では、循環熱媒水Wの全流量を処理槽としての膨張タンク6に通過させる例を示したが、請求項3に係る発明を実施するのに、図3に示す如く、膨張タンク6に対するバイパス路1cを循環路1に設けて、循環路1における循環熱媒水Wの一部流量のみを処理槽としての膨張タンク6に通過させるようにしてもよい。
【0035】
請求項1又は2に係る発明の溶存酸素除去装置は、循環熱媒水Wからの溶存酸素除去に限らず、種々の液体からの溶存酸素除去に適用でき、種々の機器等に対して一過的に供給する液体からの溶存酸素除去に適用してもよい。
【0036】
処理槽6の通気路5に設ける容積拡大室13の具体的な室構造は、前述の実施形態で示した構造に限らず、種々の変更が可能であり、例えば、図4に示す如く、処理槽を兼ねる膨張タンク6の上部に容積拡大室13を形成することにおいて、その容積拡大室13を、上下交互配置の小径連通路15aにより通気経路上で直列に連通させ、かつ、水平方向に並べて配置した3室以上の小室13a〜13nに区画した構造にしてもよい。
【0037】
処理対象液W中の溶存酸素と置換させる置換用ガスGには、窒素ガスなどの不活性ガスを初め、種々の気体を使用でき、また、処理槽6に置換用ガスGを供給するのに、その供給形態としては、ガス供給路10から処理槽6内の気体域6aに対して置換用ガスGを供給する形態、あるいは、ガス供給路10から処理槽6内の処理対象液W中に置換用ガスGを供給して置換用ガスGのバブリングを行なう形態のいずれを採用してもよい。
【図面の簡単な説明】
【図1】熱媒水循環設備の設備構成図
【図2】別実施形態を示す熱媒水循環設備の設備構成図
【図3】別実施形態を示す熱媒水循環設備の設備構成図
【図4】別実施形態を示す装置構成図
【図5】従来例を示す装置構成図
【図6】比較例を示す装置構成図
【符号の説明】
1 循環路
1a 流入路
1b 流出路
2 熱源機器
3 負荷機器
5 通気路
5a,5b 室入出口
6 処理槽
6a 気体域
10 ガス供給路
13 容積拡大室
13a,13b 小室
15a 小径連通路
G 置換用ガス
W 処理対象液,熱媒水
W′ 処理済み液,熱媒水
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dissolved oxygen removing device that removes dissolved oxygen from a liquid, and a heat medium water circulation facility using the same,
Specifically, a gas supply path for supplying a replacement gas to be replaced with dissolved oxygen in the processing target liquid into the processing tank connected to the inflow path of the processing target liquid and the outflow path of the processed liquid, The present invention relates to a dissolved oxygen removal apparatus connected to a ventilation passage that opens a gas region to the atmosphere, and a heat transfer water circulation facility using the device.
[0002]
[Prior art]
The dissolved oxygen removing apparatus of the above type (see FIG. 5) removes the dissolved oxygen in the processing target liquid W from the liquid by substituting it with the replacement gas G in the processing tank 6, and conventionally removes it from the liquid. In the apparatus of this type, as shown in FIG. 5, the air passage 5 that opens the gas region 6a in the treatment tank 6 to the atmosphere is almost completely extended from the end on the treatment tank side to the end on the atmosphere side. It was formed by a small diameter tube 14 having the same diameter.
[0003]
In FIG. 5, 1a is an inflow path for allowing the processing target liquid W to flow into the processing tank 6, 11 is a spray nozzle for spraying the inflowing liquid W from the inflow path 1a in the processing tank 6, and 1b is a liquid from the inflow path 1a. An outflow passage 10 for flowing out the treated liquid W ′ (that is, a liquid from which dissolved oxygen has been removed) from the treatment tank 6 as it flows in, is a gas supply path for supplying the replacement gas G to the treatment tank 6.
[0004]
[Problems to be solved by the invention]
However, in the above-described conventional apparatus, the replacement gas at a required flow rate is supplied from the gas supply path into the processing tank in a state accompanied by the gas discharge from the ventilation path, and the concentration of the replacement gas in the gas region in the processing tank is set. Although the liquid level in the treatment tank may fluctuate greatly, the liquid level in the treatment tank may fluctuate greatly. There is a problem that the performance of removing dissolved oxygen is lowered because air is inhaled and the oxygen gas concentration in the gas region in the treatment tank is increased by this air suction and the concentration of the replacement gas is decreased.
[0005]
Further, in order to prevent such air inflow as much as possible, it is necessary to set the supply flow rate of the replacement gas to a large value, which causes a problem that the operating cost of the apparatus increases.
[0006]
In view of this situation, the main problem of the present invention is to effectively solve the above problem by adopting a rational ventilation structure.
[0007]
[Means for Solving the Problems]
[1] The invention according to claim 1 relates to a dissolved oxygen removing apparatus, the feature of which is
A gas supply path for supplying a replacement gas to be substituted for dissolved oxygen in the processing target liquid into the processing tank connected to the inflow path of the processing target liquid and the outflow path of the processed liquid, and a gas region in the tank A dissolved oxygen removing device connected to an air passage that opens to the atmosphere,
A room having a larger cross-sectional area than the inlet / outlet of each of the gas region side and the atmosphere side through which the circulating gas flows in and out of the air passage, and independent of the inflow passage, the outflow passage and the gas supply passage. There exists a space and the volume expansion chamber which retains circulation gas in the indoor space is provided.
[0008]
In other words, according to this configuration, the gas is discharged from the gas region in the processing tank to the ventilation path as the replacement gas is supplied from the gas supply path in the normal state or as the liquid level in the processing tank rises. Since a large amount of gas with a high replacement gas concentration is still stored in the volume expansion chamber, the liquid level in the treatment tank is lowered, and the liquid level is lowered, so that the suction from the air passage into the treatment tank Even if this occurs, the stagnant gas with a high concentration of the replacement gas in the volume expansion chamber is sucked into the gas region in the processing tank, and as a result, atmospheric air is sucked into the processing tank when the liquid level in the tank is lowered. Effectively prevented.
[0009]
Therefore, according to the above configuration, it is not necessary to set a large supply flow rate of the replacement gas even in the case of the usage mode in which the liquid level in the processing tank may fluctuate as compared with the above-described conventional apparatus. Therefore, it is possible to keep the concentration of the replacement gas in the gas region in the treatment tank high in a stable manner while lowering the operating cost of the apparatus, thereby making the high dissolved oxygen removal performance more stable. be able to.
[0010]
Incidentally, in order to prevent the intake of atmospheric air into the treatment tank when the liquid level in the tank is lowered, as another method, as shown in FIG. 6, the small-diameter pipe 14 forming the air passage 5 is spirally or zigzag-shaped. The inner volume of the tube is increased by making it into a long shape, and as a result, a large amount of gas G ′ having a high replacement gas concentration discharged from the gas region 6a in the treatment tank 6 to the vent passage 5 is still in the tube. In this case, in order to secure a volume in the tube equivalent to the chamber volume of the above-described volume expansion chamber, it is necessary to form a considerably long tube into a spiral shape or a zigzag shape. The device structure becomes complicated, making it difficult to manufacture and increasing the cost of the device.
[0011]
On the other hand, according to the above-described configuration of the invention according to claim 1, a volume for retaining a sufficient amount of gas is secured by the chamber space (that is, the indoor space having a larger cross-sectional area than the chamber inlet / outlet). Compared to molding a long tube into a spiral or zigzag shape as in the law to ensure the same volume, the structure of the device can be simplified, making it easier to manufacture and reducing the cost of the device. it can.
[0012]
[2] The invention according to claim 2 specifies a preferred embodiment for carrying out the invention according to claim 1, and its features are as follows:
The volume expansion chamber is divided into a plurality of small chambers connected in series by a small-diameter communication path.
[0013]
In other words, according to this configuration, the entire gas having a high concentration of the replacement gas that is discharged from the gas region in the processing tank to the vent passage and stays in the volume expansion chamber enters the passage from the atmospheric end of the vent passage. Can be effectively prevented from being uniformly diluted by atmospheric air, and when the liquid level in the processing tank is lowered, a small chamber closer to the processing tank on the ventilation path among the plurality of small rooms connected in series Of gas (ie, gas with low dilution and higher replacement gas concentration) can be preferentially sucked into the treatment tank, so that the treatment tank regardless of the liquid level fluctuation in the treatment tank. The function of keeping the concentration of the replacement gas in the gas region stably high can be further enhanced.
[0014]
In addition, according to the said structure of the invention which concerns on Claim 1 or 2, when supply of the gas for replacement with respect to a processing tank stops for some reason, the air intrusion from a ventilation path arises for the stop of the gas supply, As a result, it is possible to effectively prevent a reduction in the concentration of the replacement gas in the gas region in the treatment tank. In this respect, the invention according to claim 1 or 2 is provided in the gas region in the treatment tank. In order to maintain a high concentration of the replacement gas and maintain a high dissolved oxygen removal performance, it is extremely effective in the case of a usage mode in which there is no liquid level fluctuation in the treatment tank.
[0015]
[3] The invention according to claim 3 relates to a heat-medium water circulation facility using the dissolved oxygen removing apparatus according to claim 1 or 2,
The treatment tank is disposed at the highest position of the circulation path for circulating the heat medium water between the heat source device and the load device, and the circulation heat medium water is supplied to the inflow path and the outflow path. It is in a point where it is connected in a state of passing through the tank.
[0016]
In other words, according to this configuration, the water level fluctuation in the treatment tank due to the temperature change of the heat transfer medium water by removing the dissolved oxygen in the treatment tank as described above in the form where the circulation heat transfer medium water in the circulation path is the treatment target liquid. Regardless of the condition, it is possible to efficiently remove dissolved oxygen from the circulating heat transfer water while maintaining high removal performance stably, and the dissolved oxygen concentration in the heat transfer medium water in the circulation path can be stably kept low. As a result, it is possible to effectively prevent corrosion degradation due to dissolved oxygen in the piping forming the circulation path and the heat source equipment, load equipment, pumps, and other equipment in the circulation path.
[0017]
In addition, since the treatment tank is open to the atmosphere, the treatment tank connected to the circulation path can be used as an expansion tank for the circulation path, and the equipment cost can be reduced due to the dual use. In this way, if the treatment tank is also used as an expansion tank, it is possible to prevent dissolution of oxygen in the heat transfer medium water due to contact of the heat transfer water with the atmospheric air in an open air expansion tank different from the treatment tank. Thus, the dissolved oxygen concentration in the heat transfer medium in the circulation path can be kept lower, which can more effectively prevent corrosion degradation due to dissolved oxygen in pipes and devices.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a heat medium water circulation facility for circulating the heat medium water W through the circulation path 1. The circulation path 1 includes a heat source device 2 such as a refrigerator or a boiler for cooling or heating the circulation heat medium water W, and its heat source device. 2, a load device 3 such as an air handling unit or a fan coil unit that performs cooling or heating using the circulating heat transfer water W supplied from 2, and a circulation pump 4 are interposed.
[0019]
An air-opening expansion tank 6 in which the gas region 6 a in the tank is opened to the atmosphere through the ventilation path 5 is connected to the circulation path 1 at the highest position, and is expanded and contracted by the temperature change of the heat transfer water W. Thus, in contrast to the change in the total volume of the retained heat transfer water W in the circulation path 1, this volume change is absorbed by the change in the water level in the expansion tank 6.
[0020]
The expansion tank 6 is also used as a make-up water tank. As a replenishment configuration, the supply path 7 for the make-up water W ″ is connected to the expansion tank 6, and the open / close of the make-up water supply path 7 based on the detection of the water level in the tank. Thus, an automatic replenishment valve device 8 is provided for automatically recovering the tank water level when the tank water level drops below a certain level.
[0021]
The expansion tank 6 is also used as a treatment tank for performing a dissolved oxygen removal process on the circulating heat transfer water W. As a configuration for removing the dissolved oxygen, the expansion tank 6 includes Is connected to a gas supply path 10 for supplying a replacement gas G (nitrogen gas N 2 in this embodiment) to be replaced with dissolved oxygen in the tank from the gas supply device 9, and the circulating heat transfer water W is introduced into the tank. Is sprayed into the gas region 6 a in the tank by the pump pressure of the circulation pump 4.
[0022]
That is, the circulating heat transfer water W is continuously flowed into the expansion tank 6 from the upstream connection circulation path 1 as the inflow path 1a, and the heat transfer water W in the expansion tank 6 is accordingly used as the outflow path 1b. In contrast, the replacement gas G is supplied from the gas supply path 10 into the tank, so that the replacement gas G is balanced by the partial pressure difference. As a phenomenon, dissolved oxygen in the circulating heat transfer water W is replaced in the tank, and by this replacement, dissolved oxygen in the circulating heating medium water W is gasified and separated and removed from the circulating heating medium water W. The dissolved oxygen concentration of the retained heat transfer water W in 1 is kept low, and corrosion deterioration of piping and equipment caused by dissolved oxygen is prevented.
[0023]
Further, in removing the dissolved oxygen, the circulating heat transfer water W and the replacement gas are dispersed by spraying the circulating heat transfer water W flowing into the tank to the gas area 6a in the tank filled with the replacement gas G by the water spray nozzle 11. A large contact area with G is ensured, whereby the replacement gas G is efficiently replaced with dissolved oxygen in the heat transfer water W.
[0024]
So as to maintain high concentration of replacement gas G in the tank gas zone 6a, the supply of the replacement gas G into the expansion tank 6, with its gas supply, yet replacement gas concentration but containing the separated oxygen gas O 2 The high gas G ′ is discharged from the tank gas region 6a to the ventilation passage 5 in a discharge manner, but the replacement gas G is continuously expanded at a constant flow rate. The supply amount control based on the form of supplying to the tank 6 or the form of intermittently supplying the replacement gas G to the expansion tank 6 or the concentration detection of the replacement gas G or oxygen gas in the gas region 6a in the tank. Various supply forms such as a form in which the replacement gas G is supplied to the expansion tank 6 while performing can be employed.
[0025]
The ventilation path 5 of the expansion tank 6 is formed by a volume expansion chamber 13 formed by partitioning the upper portion of the expansion tank 6 by a partition wall 12 and a small-diameter open pipe 14 that opens the volume expansion chamber 13 to the atmosphere. The volume expansion chamber 13 includes a chamber inlet / outlet 5a on the tank 6 side (that is, the processing tank side, more specifically, the gas region 6a side ) and the open pipe 14 side ( that is, the atmosphere side ) through which the flowing gas flows in and out of the vent passage 5. ) Having a larger cross-sectional area than the chamber inlet / outlet 5b and having an indoor space independent of the inflow path 1a, the outflow path 1b, and the gas supply path 10 .
[0026]
The volume expansion chamber 13 is divided into two upper and lower small chambers 13 a and 13 b by an indoor wall 15, and these two small chambers 13 a and 13 b are communicated in series on the ventilation path by a small-diameter communication path 15 a formed in the indoor wall 15. Further, the small-diameter communication passage 15a is not opposed to the chamber inlets / outlets 5a and 5b on the tank 6 side and the open pipe 14 side so as to suppress the passage of gas through the small chambers 13a and 13b. It is formed at a position (in other words, it is formed at a position where the ventilation path 5 is used as a zigzag path).
[0027]
In other words, by providing the volume expansion chamber 13 in the ventilation passage 5, the tank is supplied along with the supply of the replacement gas G from the gas supply passage 10 in the normal state or as the water level in the expansion tank 6 rises. The gas G ′ having a high replacement gas concentration discharged from the gas region 6a in the inside to the ventilation path 5 is stored in the volume expansion chamber 13 in a stagnation state, so that when the water level in the tank is lowered, the gas G ′ is discharged from the ventilation path 5. Even if gas suction into the expansion tank 6 occurs, the replacement gas in the tank gas region 6a is set so that the staying gas G ′ having a high replacement gas concentration in the volume expansion chamber 13 is sucked into the tank gas region 6a. The concentration of the gas G is stably kept high.
[0028]
Further, as described above, the volume expansion chamber 13 is divided into two small chambers 13a and 13b communicated in series by the small-diameter communication passage 15a, and the chamber inlet / outlet 5a on the tank 6 side, the small-diameter communication passage 15a, and the open pipe 14 side. By making the air passage 5 into a zigzag passage relative to the chamber inlet / outlet 5b, the gas G ′ having a high replacement gas concentration discharged from the gas region 6a in the tank to the air passage 5 and staying in the volume expansion chamber 13 is obtained. Is uniformly diluted by atmospheric air entering the passage from the end of the air passage 5 on the atmosphere side, so that when the water level in the tank is lowered, the two small chambers 13a connected in series are prevented. The tank preferentially from the stagnant gas G ′ (that is, the stagnant gas having a low dilution and a higher replacement gas concentration) in the small chamber 13a closer to the in-tank gas region 6a of the expansion tank 6 on the ventilation path of 13b. Shyness So as to be sucked into the band 6a, it is as can maintain more stable high concentration of replacement gas G in the tank the gas zone 6a.
[0029]
It should be noted that the volume expansion chamber is used to keep the concentration of the replacement gas G in the tank gas region 6a sufficiently high against the fact that the water level in the tank fluctuates due to expansion / contraction of the retained heat transfer medium W in the circulation path 1. 13 should just have a chamber volume of about 1.5 to 2 times the volume change due to expansion / contraction of the retained heat transfer medium W in the circulation path 1.
[0030]
[Another embodiment]
Next, another embodiment will be listed.
[0031]
In the above-described embodiment, the configuration in which the replacement gas G is directly supplied from the gas supply device 9 through the gas supply path 10 to the expansion tank 6 that also serves as a processing tank for removing dissolved oxygen has been described. 2, a mixing means 16 for mixing the replacement gas GG supplied from the gas supply device 9 with the circulating heat medium water W, and a circulating heat medium in which the replacement gas G is mixed by the mixing means 16. A series assembly with a bubble separation means 17 for separating and removing bubbles from the water W is installed in the circulation path 1 at a position different from the expansion tank 6, and the bubble separation means is provided for the atmospheric open expansion tank 6 that also serves as a treatment tank. The separation gas G at 17 may be supplied through the gas supply path 10.
[0032]
That is, in the configuration shown in FIG. 2, the mixing means 16 mixes the replacement gas GG with the circulating heat transfer water W, and replaces the replacement gas GG with the dissolved oxygen in the circulating heat transfer medium water W, thereby circulating heat. The dissolved oxygen in the medium water W is gasified, and the bubbles in the circulating heat medium water W (that is, the bubbles of the replacement gas GG containing gasified oxygen) are extracted from the circulating heat medium water W by the bubble separation means 17. In parallel with this, the dissolved oxygen in the circulating heat transfer water W is separated and removed, and in parallel with this, the separation gas G in the bubble separation means 17 (that is, the gas containing the separated oxygen gas but still replacing gas) Gas) is supplied to the expansion tank 6 to separate and remove dissolved oxygen from the circulating heat transfer water W in the expansion tank 6 in the same manner as in the previous embodiment using the separation gas G as a replacement gas. , Dissolved oxygen at these two locations Removed by the reducing the dissolved oxygen concentration in the heat transfer water W in the circulation path 1 effectively.
[0033]
When this configuration is carried out, the bubble separation means 17 is of a type that promotes the separation of bubbles from the heat transfer water W by turning the inflow heat transfer water W around the vertical axis as shown in FIG. It is desirable to adopt one.
[0034]
In the above-described embodiment, the example in which the entire flow rate of the circulating heat transfer water W is passed through the expansion tank 6 as a treatment tank has been shown. However, as shown in FIG. A bypass path 1c for the tank 6 may be provided in the circulation path 1, and only a partial flow rate of the circulating heat transfer water W in the circulation path 1 may be passed through the expansion tank 6 as a treatment tank.
[0035]
The dissolved oxygen removal apparatus of the invention according to claim 1 or 2 is applicable not only to removal of dissolved oxygen from the circulating heat transfer water W but also to removal of dissolved oxygen from various liquids. The present invention may be applied to the removal of dissolved oxygen from the liquid supplied.
[0036]
The specific chamber structure of the volume expansion chamber 13 provided in the ventilation path 5 of the processing tank 6 is not limited to the structure shown in the above-described embodiment, and various modifications are possible. For example, as shown in FIG. In the formation of the volume expansion chamber 13 in the upper part of the expansion tank 6 that also serves as a tank, the volume expansion chamber 13 is communicated in series on the ventilation path by the small-diameter communication paths 15a arranged alternately above and below and arranged in the horizontal direction. You may make it the structure divided into the 3 or more small chambers 13a-13n arrange | positioned.
[0037]
Various gases including an inert gas such as nitrogen gas can be used as the replacement gas G to be replaced with the dissolved oxygen in the processing target liquid W, and the replacement gas G is supplied to the processing tank 6. As the supply form, the replacement gas G is supplied from the gas supply path 10 to the gas region 6a in the processing tank 6, or the processing target liquid W in the processing tank 6 is supplied from the gas supply path 10 to the processing target liquid W. Any of the modes in which the replacement gas G is supplied and the replacement gas G is bubbled may be employed.
[Brief description of the drawings]
[Fig. 1] Facility configuration diagram of heat transfer water circulation facility [Fig. 2] Facility configuration diagram of heat transfer water circulation facility showing another embodiment [Fig. 3] Facility configuration diagram of heat transfer water circulation facility showing another embodiment [Fig. 4] FIG. 5 is a block diagram showing a conventional example. FIG. 6 is a block diagram showing a comparative example.
DESCRIPTION OF SYMBOLS 1 Circulation path 1a Inflow path 1b Outflow path 2 Heat source apparatus 3 Load apparatus 5 Ventilation path 5a, 5b Chamber entrance / exit 6 Processing tank 6a Gas area 10 Gas supply path 13 Volume expansion chamber 13a, 13b Small chamber 15a Small diameter communication path G Replacement gas W Treatment target liquid, heat transfer water W 'Processed liquid, heat transfer water

Claims (3)

処理対象液の流入路及び処理済み液の流出路を接続した処理槽に、処理対象液中の溶存酸素と置換させる置換用ガスを槽内に供給するガス供給路と、槽内の気体域を大気開放状態にする通気路とを接続した溶存酸素除去装置であって、
前記通気路に、その通気路の流通気体を流出入させる気体域側及び大気側夫々の室入出口よりも大きな断面積で、且つ、前記流入路、流出路及びガス供給路とは独立した室内空間を有して、その室内空間に流通気体を滞留させる容積拡大室を設けてある溶存酸素除去装置。
A gas supply path for supplying a replacement gas to be replaced with dissolved oxygen in the processing target liquid into the processing tank connected to the processing target liquid inflow path and the processed liquid outflow path, and a gas region in the tank A device for removing dissolved oxygen, which is connected to an air passage that opens to the atmosphere,
A room having a larger cross-sectional area than the inlet and outlet of each of the gas region side and the atmosphere side through which the circulating gas in and out of the ventilation passage flows into and out of the ventilation passage , and independent of the inflow passage, the outflow passage, and the gas supply passage. A dissolved oxygen removing apparatus that has a space and is provided with a volume expansion chamber that retains a circulating gas in the indoor space.
前記容積拡大室を、小径連通路により直列に連通させた複数の小室に区画してある請求項1記載の溶存酸素除去装置。  The dissolved oxygen removing apparatus according to claim 1, wherein the volume expansion chamber is partitioned into a plurality of small chambers connected in series by a small-diameter communication path. 請求項1又は2記載の溶存酸素除去装置を用いた熱媒水循環設備であって、
熱源機器と負荷機器との間で熱媒水を循環させる循環路に対して前記処理槽を、その循環路の最高所に配置した状態で、かつ、循環熱媒水を前記流入路及び前記流出路を通じて槽内通過させる状態で接続してある熱媒水循環設備。
A heat medium water circulation facility using the dissolved oxygen removing device according to claim 1 or 2,
The treatment tank is disposed at the highest position of the circulation path for circulating the heat medium water between the heat source device and the load device, and the circulation heat medium water is supplied to the inflow path and the outflow path. Heat medium water circulation equipment connected in a state of passing through the tank.
JP2002138765A 2002-05-14 2002-05-14 Dissolved oxygen removing device and heat medium water circulation facility using the same Expired - Fee Related JP3847208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002138765A JP3847208B2 (en) 2002-05-14 2002-05-14 Dissolved oxygen removing device and heat medium water circulation facility using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002138765A JP3847208B2 (en) 2002-05-14 2002-05-14 Dissolved oxygen removing device and heat medium water circulation facility using the same

Publications (2)

Publication Number Publication Date
JP2003326249A JP2003326249A (en) 2003-11-18
JP3847208B2 true JP3847208B2 (en) 2006-11-22

Family

ID=29700115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002138765A Expired - Fee Related JP3847208B2 (en) 2002-05-14 2002-05-14 Dissolved oxygen removing device and heat medium water circulation facility using the same

Country Status (1)

Country Link
JP (1) JP3847208B2 (en)

Also Published As

Publication number Publication date
JP2003326249A (en) 2003-11-18

Similar Documents

Publication Publication Date Title
US10400569B2 (en) Gas separator
RU2716120C2 (en) Separator for fluid medium obtained from oil well and separation device containing it
US7815173B2 (en) Cooler
US4149860A (en) Gas liquid separator
JPH03111618A (en) Cooling system of internal combustion engine
RU2017118195A (en) DEVICE FOR PRODUCING AND PROCESSING GAS FLOW BY VOLUME OF LIQUID, INSTALLATION AND METHOD FOR CARRYING OUT THIS DEVICE
US8057665B2 (en) Cold water tank and water treatment apparatus having the same
JP3847208B2 (en) Dissolved oxygen removing device and heat medium water circulation facility using the same
JPS6140477A (en) Device for minimizing consumption of cooling liquid in liquid ring vacuum pump, etc.
CN110614015A (en) Gas-water separation system and method
US4722745A (en) Gas cleaning system for high top pressure blast furnaces
JP2007253089A (en) Porous membrane type air-cleaning appliance
JP2006136756A (en) Apparatus and method for removing dissolved oxygen in liquid
JP2006314864A (en) Trapping apparatus for exhaust gas
US2623014A (en) Water chlorinators and water chlorination systems
TW201215567A (en) Aeration apparatus and seawater flue gas desulphurization apparatus including the same and a method for removing and preventing precipitates in a slit of the aeration apparatus
KR101828950B1 (en) Removal device of plume for cooling tower
JP2007285201A (en) Degassing structure
JP2008309413A (en) Closed type cooling tower and draining method therefor
JP2007136349A (en) Porous membrane type air cleaner
KR20180072577A (en) Degassing apparatus
JP6796738B1 (en) Cooling tower system
JP2005279483A (en) Air cleaning apparatus
CN219324065U (en) Gas treatment device
KR200180497Y1 (en) Air separator of aircondition system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060822

R150 Certificate of patent or registration of utility model

Ref document number: 3847208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees