JP2007253089A - Porous membrane type air-cleaning appliance - Google Patents

Porous membrane type air-cleaning appliance Download PDF

Info

Publication number
JP2007253089A
JP2007253089A JP2006082320A JP2006082320A JP2007253089A JP 2007253089 A JP2007253089 A JP 2007253089A JP 2006082320 A JP2006082320 A JP 2006082320A JP 2006082320 A JP2006082320 A JP 2006082320A JP 2007253089 A JP2007253089 A JP 2007253089A
Authority
JP
Japan
Prior art keywords
porous membrane
water
water tank
elements
membrane element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006082320A
Other languages
Japanese (ja)
Inventor
Yoshio Sawara
良夫 佐原
Katsuhiro Tetsuya
克浩 鉄屋
Masao Ono
正雄 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2006082320A priority Critical patent/JP2007253089A/en
Publication of JP2007253089A publication Critical patent/JP2007253089A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a reduction in air purification ability of each porous membrane element caused by a head difference of purification water between an upper water tank and each porous membrane element in case of supplying water for air purification to many steps of porous membrane elements provided with an altitude difference from the common upper water tank. <P>SOLUTION: A porous membrane type air-cleaning appliance comprises many steps of porous membrane elements 1A-1D consisting of a flat cylindrical element arranged with the altitude difference in an up-and-down direction, the water tank 2 positioned at a position above each porous membrane element and pooling the water for air purification to each porous membrane element, a plurality of inlet pipes 4A-4D supplying the water for air purification in parallelly from the water tank to each porous membrane element, and a plurality of outlet pipes 5A-5D discharging the water from each porous membrane element. In the filter, a throttle means is provided on the outlet pipe side to the porous membrane element positioned upward among many steps of porous membrane elements, and a throttle means is provided on the inlet pipe side to the porous membrane element positioned downward. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本願発明は、多孔膜を使用した多孔膜式空気浄化装置に関するものであり、さらに詳しくは、本願出願人の先出願にかかる特願2005−334277号の発明の改良発明に関するものである。   The present invention relates to a porous membrane type air purification device using a porous membrane, and more particularly to an improved invention of the invention of Japanese Patent Application No. 2005-334277 relating to the prior application of the applicant of the present application.

気体の通過は許容するが液体の流通は許容しない多数の微小孔をもつ疎水性の多孔膜を使用し、該多孔膜を介して一面側に空気の流通路を形成するとともに、他の一面側に水の流通路を形成し、それらを上記多孔膜を介した気液接触状態で流通させることにより、多数の微小孔を通して空気中に含まれる所望のガス成分のみを水側に吸収させるようにした空気浄化装置がある(例えば下記特許文献1参照)。   Use a hydrophobic porous membrane with a large number of micropores that allow gas to pass but not allow liquid to flow, and form an air flow path on one side through the porous membrane and the other side By forming a water flow passage in the air and allowing them to flow in a gas-liquid contact state through the porous membrane, only the desired gas component contained in the air is absorbed by the water side through a large number of micropores. There is an air purification device (see, for example, Patent Document 1 below).

ところで、このような多孔膜を水循環ポンプを備えた水循環系路中に組み込み、水流通路側に連続的に水を循環させるようにした場合、上記多孔膜部分をチューブ構造の円筒状素子にした場合には問題ないが、例えば図10に示すように、断面コ字形の合成樹脂製の枠体40の内側に所定の間隔をおいて多数の微小孔41a,41a・・・を有する疎水性多孔膜41,41を張り、それらの間の水流通路に純水を流す平膜構造の扁平筒状素子1a,1a・・・とし、同平膜構造の扁平筒状素子1a,1a・・・の外周に汚染ガスを含む汚染空気を流すようにした場合、次のような問題が生じる。   By the way, when such a porous membrane is incorporated in a water circulation path equipped with a water circulation pump and water is continuously circulated to the water flow passage side, the porous membrane portion is a cylindrical element having a tube structure. 10, for example, as shown in FIG. 10, a hydrophobic porous membrane having a large number of micropores 41 a, 41 a... At a predetermined interval inside a frame 40 made of synthetic resin having a U-shaped cross section. The flat cylindrical elements 1a, 1a,... Of flat membrane structure in which pure water is passed through the water flow passage between them, and the outer periphery of the flat cylindrical elements 1a, 1a,. When contaminated air containing contaminated gas is allowed to flow through, the following problems occur.

例えば同扁平筒状素子1a,1a・・・よりなる多孔膜エレメント1の上流側上方に水タンクを設ける一方、同多孔膜エレメント1と水タンクとの間に水循環ポンプを設けて同多孔膜エレメント1の扁平筒状素子1a,1a・・・内に純水を循環させる構成とした場合(例えば下記特許文献2参照)、同多孔膜エレメント1の扁平筒状素子1a,1a・・・内に水循環ポンプの吸入圧(負圧)が作用し、例えば図11のように多孔膜41,41部分が内側にくぼむ凹変形を生じる。   For example, a water tank is provided on the upper upstream side of the porous membrane element 1 composed of the flat cylindrical elements 1a, 1a..., While a water circulation pump is provided between the porous membrane element 1 and the water tank. When the configuration is such that pure water is circulated in one flat cylindrical element 1a, 1a,... (See, for example, Patent Document 2 below), the flat cylindrical element 1 has the flat cylindrical elements 1a, 1a,. The suction pressure (negative pressure) of the water circulation pump acts, and for example, as shown in FIG.

一方、これとは逆に同多孔膜エレメント1の上流側上方に水循環ポンプを介して水タンクを設けて、同多孔膜エレメント1の扁平筒状素子1a,1a・・・内に純水を循環させる構成とした場合(例えば下記特許文献3参照)、同多孔膜エレメント1の扁平筒状素子1a,1a・・・内に水循環ポンプの吐出圧(高正圧)が作用し、例えば図12のように疎水性多孔膜41,41部分が外側に膨む凸変形を生じる。   On the other hand, on the other hand, a water tank is provided above the upstream side of the porous membrane element 1 via a water circulation pump, and pure water is circulated in the flat cylindrical elements 1a, 1a,. When the structure is made to be used (see, for example, Patent Document 3 below), the discharge pressure (high positive pressure) of the water circulation pump acts in the flat cylindrical elements 1a, 1a,. Thus, the convex deformation which the hydrophobic porous membrane 41 and 41 part swells outside is produced.

図10のように、平膜式の扁平筒状素子1a,1a・・・よりなる多孔膜エレメント1では、それぞれ図示しない上下のヘッダで連結された多数の扁平筒状素子1a,1a・・・中を純水が流れて汚染空気中の水溶性ガスが疎水性の多孔膜41,41を介して同純水の中に溶け込むメカニズムとなっている。   As shown in FIG. 10, in the porous membrane element 1 composed of flat membrane-type flat cylindrical elements 1a, 1a,..., A large number of flat cylindrical elements 1a, 1a,. This is a mechanism in which pure water flows through and the water-soluble gas in the contaminated air dissolves into the pure water through the hydrophobic porous membranes 41 and 41.

このような多孔膜エレメント1の性能向上は、扁平筒状素子1a,1a・・・部分の厚みaと配置間隔dを共に小さくして、可及的にユニット内の扁平筒状素子1a,1a・・・の数を増やし、気液接触面積を大きくすることで達成される。   Such improvement in the performance of the porous membrane element 1 is achieved by reducing the thickness a and the arrangement interval d of the flat cylindrical elements 1a, 1a..., And reducing the flat cylindrical elements 1a, 1a in the unit as much as possible. This is achieved by increasing the number of ... and increasing the gas-liquid contact area.

扁平筒状素子1a,1a・・・の多孔膜41,41、41,41・・・部分が凸に変形すると実質のd寸法が小さくなるため各素子1a,1a・・・間の流速が大きくなって、エレメント通過圧損が増え、除去率も低下する。他方、凹に変形すると水側通路が狭くなって死水域が増え、有効な気液接触面積が減って除去率が低下する。一方、エレメント通過圧損は変わらない。   When the porous membranes 41, 41, 41, 41... Of the flat cylindrical elements 1a, 1a... Are convexly deformed, the substantial d dimension decreases, so the flow velocity between the elements 1a, 1a. Thus, the element passage pressure loss increases and the removal rate also decreases. On the other hand, when it is deformed into a concave shape, the water-side passage becomes narrower, the dead water area increases, the effective gas-liquid contact area decreases, and the removal rate decreases. On the other hand, the element passage pressure loss does not change.

この現象は上記寸法a,dを小さくするにつれて大きくなり、除去率低下の結果として現れ、当初の浄化性能を阻害する問題がある。   This phenomenon becomes larger as the dimensions a and d are reduced, appearing as a result of a reduction in the removal rate, and there is a problem of hindering the initial purification performance.

本願発明者らは、このような問題を解決するために、扁平筒状素子よりなる多孔膜エレメントの上方側と下方側の両方に大気側に開放された水タンクを設け、これら各水タンクを介して水循環系を構成することにより、上記特許文献2又は3のように、多孔膜エレメントの扁平筒状素子内に水循環ポンプの吸入圧および吐出圧が直接作用して多孔膜部分の変形が生じることがないようにした多孔膜式の空気浄化装置を既に提案している(特願2005−334277号参照)。   In order to solve such a problem, the inventors of the present invention provide water tanks opened to the atmosphere side on both the upper side and the lower side of the porous membrane element made of a flat cylindrical element, and each of these water tanks is provided. By constructing the water circulation system through this, as in the above-mentioned Patent Document 2 or 3, the suction pressure and the discharge pressure of the water circulation pump directly act on the flat cylindrical element of the porous membrane element, and the porous membrane portion is deformed. There has already been proposed a porous membrane type air purification device that prevents this (see Japanese Patent Application No. 2005-334277).

本願発明は、上記特願2005−334277号の発明(先願発明)の改良発明であるため、先ず、同先願発明の内容を記述すると、同先願発明は、次のような構成を備えて構成されている。   The invention of the present application is an improvement of the invention of the above-mentioned Japanese Patent Application No. 2005-334277 (prior application invention). First, the contents of the invention of the prior application will be described. Configured.

すなわち、上記先願発明の構成は、図14に例示するように、扁平筒状素子1a,1a・・・よりなる多孔膜エレメント1の上方側と下方側の各々に大気側に開放された水タンク2,3を設け、これら各水タンク2,3を介して水循環ポンプ9を有する水循環系を構成することにより、上記多孔膜エレメント1の扁平筒状素子1a,1a・・・内に水循環ポンプ9の吸入圧および吐出圧が作用して多孔膜部分の変形が生じることがないようにしている。   That is, the structure of the above-mentioned invention of the prior application is, as illustrated in FIG. 14, water opened to the atmosphere side on each of the upper side and the lower side of the porous membrane element 1 composed of flat cylindrical elements 1a, 1a. A water circulation pump is provided in the flat cylindrical elements 1a, 1a,... Of the porous membrane element 1 by providing tanks 2 and 3 and constituting a water circulation system having a water circulation pump 9 through these water tanks 2 and 3. The porous membrane portion is not deformed by the action of the suction pressure 9 and the discharge pressure 9.

上記先願発明の構成では、このように、扁平筒状素子1a,1a・・・よりなる多孔膜エレメント1の上方側と下方側の両方に水タンク2,3を配置し、大気側に開放した上方側の水タンク2の液面を一定の水位に保って必要なヘッド高Hを確保し、多孔膜エレメント1の扁平筒状素子1a,1a・・・内と前後の配管系の流路抵抗(通路隙間/壁面強度)に応じた一定の流量で水を流すようにする。   In the configuration of the prior invention, the water tanks 2 and 3 are arranged on both the upper side and the lower side of the porous membrane element 1 composed of the flat cylindrical elements 1a, 1a. The liquid level of the upper water tank 2 is kept at a constant water level to ensure the necessary head height H, and the flow path of the piping system in the flat cylindrical elements 1a, 1a. Water is allowed to flow at a constant flow rate according to resistance (passage gap / wall strength).

そして、その後、多孔膜エレメント1の扁平筒状素子1a,1a・・・から流れ出た水を同じく大気に開放した下方側の水タンク3で受け留め、これを水循環ポンプ9で上部側水タンク2に戻して連続的に循環させる。   Then, the water flowing out from the flat cylindrical elements 1a, 1a... Of the porous membrane element 1 is received by the lower water tank 3 which is also open to the atmosphere, and this is received by the water circulation pump 9 and the upper side water tank 2. Return to continually circulate.

このようにすると、水循環ポンプ9の吸入圧は第2の水タンク(下部水タンク)3部分で、吐出圧は第1の水タンク(上部水タンク)2部分でそれぞれ遮断され、直接多孔膜エレメント1の扁平筒状素子1a,1a・・・の多孔膜41,41部分に作用しなくなり、従来のような多孔膜41,41部分の変形を防止して高性能で安定した運転状態を実現することができる。   In this way, the suction pressure of the water circulation pump 9 is cut off at the second water tank (lower water tank) 3 portion, and the discharge pressure is cut off at the first water tank (upper water tank) 2 portion, and the porous membrane element is directly 1 does not act on the porous membranes 41, 41 of the flat cylindrical elements 1a, 1a,... Prevents the deformation of the porous membranes 41, 41 as in the prior art and realizes a high-performance and stable operating state. be able to.

上記先願発明では、上記の構成に加えて、さらに上記上下2つの水タンク2,3の各々に、それぞれ大気側に開放された大気連通管2a,3aを設け、これらの各大気連通管2a,3aを介して上下2つの水タンク2,3が大気側に開放されるようにしている。   In the prior invention, in addition to the above-described configuration, the upper and lower two water tanks 2 and 3 are further provided with atmospheric communication pipes 2a and 3a opened to the atmosphere side, respectively. , 3a, the upper and lower two water tanks 2, 3 are opened to the atmosphere side.

このように、上下2つの水タンク2,3の各々が、それぞれ大気側に開放された大気連通管2a,3aを介して大気側に開放されていると、上部水タンク2のヘッドおよび下部水タンク3のポンプ吸込圧を共に大気基準とすることができる。   Thus, when each of the upper and lower two water tanks 2 and 3 is opened to the atmosphere side through the atmosphere communication pipes 2a and 3a opened to the atmosphere side, the head and the lower water tank of the upper water tank 2 are provided. Both the pump suction pressure of the tank 3 can be used as the atmospheric standard.

上記先願発明では、上記の構成に加えて、さらに上記下部水タンク3の大気連通管3aを、上部水タンク2の最大水面位よりも上方まで伸ばして設けている。   In the prior application invention, in addition to the above-described configuration, the atmosphere communication pipe 3a of the lower water tank 3 is further extended above the maximum water level of the upper water tank 2.

このようにすると、運転停止時に大気連通管3aから系外に水が漏出するのを防ぐことができる。   In this way, it is possible to prevent water from leaking out of the system from the atmosphere communication pipe 3a when the operation is stopped.

また、上記先願発明では、上記の構成に加えて、さらに上記上下各水タンク2,3間に、相互の間を連通させるオーバーフロー管10を設けており、上部水タンク2内の水位が所定レベル以上に高くなると、上部水タンク2内の水を下部水タンク3側にバイパスさせるようにしている。   In the invention of the prior application, in addition to the above-described configuration, an overflow pipe 10 is provided between the upper and lower water tanks 2 and 3 so as to communicate with each other, and the water level in the upper water tank 2 is predetermined. When it becomes higher than the level, the water in the upper water tank 2 is bypassed to the lower water tank 3 side.

このようにすると、水循環ポンプ9で上部側水タンク2に戻す水の量を多孔膜エレメント1から流れ出る水の量よりも少し多くし、残りを上部水タンク2部分でオーバーフロー管10から下部水タンク3にバイパスさせるだけの極めて簡単な方法で、上記下部水タンク3内の最適な水面位を保つことができる。   In this way, the amount of water returned to the upper water tank 2 by the water circulation pump 9 is made slightly larger than the amount of water flowing out of the porous membrane element 1, and the rest is from the overflow pipe 10 to the lower water tank at the upper water tank 2 portion. The optimum water surface level in the lower water tank 3 can be maintained by an extremely simple method that is simply bypassed to 3.

また、上記先願発明では、上記構成に加えて、さらに上記多孔膜エレメント1の入口側に、第1の水量調整弁V1を設け、供給水圧と循環量(通過水量)を最適に調整するようにしている。 In the invention of the prior application, in addition to the above configuration, a first water amount adjusting valve V 1 is further provided on the inlet side of the porous membrane element 1 to optimally adjust the supply water pressure and the circulation amount (passing water amount). I am doing so.

このような構成にすると、多孔膜エレメント1に対する供給水圧と循環量(通過水量)を、必要な流路圧を得るためのヘッド高Hと多孔膜エレメント1上流側の第1の水量調整弁V1によって最適に調整することができるようになる。 With such a configuration, the supply water pressure and the circulation amount (passage water amount) to the porous membrane element 1 are set such that the head height H for obtaining a required flow passage pressure and the first water amount adjustment valve V upstream of the porous membrane element 1 are obtained. 1 can be adjusted optimally.

上記先願発明では、上記構成に加えて、さらに上記多孔膜エレメント1の出口側に、第2の水量調整弁V2を設け、供給水圧と循環量(通過水量)を最適に調整するようにしている。 In the invention of the prior application, in addition to the above configuration, a second water amount adjusting valve V 2 is further provided on the outlet side of the porous membrane element 1 so as to optimally adjust the supply water pressure and the circulation amount (passing water amount). ing.

このような構成にすると、多孔膜エレメント1に対する水圧と循環量(通過水量)を、必要な流路圧を得るためのヘッド高Hと多孔膜エレメント1下流側の第2の水量調整弁V2によって最適に調整することができるようになる。 With such a configuration, the water pressure and the circulation amount (passing water amount) with respect to the porous membrane element 1 are set to the head height H for obtaining the necessary flow path pressure and the second water amount adjustment valve V 2 downstream of the porous membrane element 1. Can be adjusted optimally.

ところで、上記の説明は、先願発明を単一段の多孔膜エレメント1に対して適用した場合についてしたものであるが、上記先願発明では、同先願発明を上下方向に高度差のある複数段(たとえば4段)の多孔膜エレメントについて適用した場合についても言及されている。これを図15〜図17を参照して説明すると、同先願発明の明細書においては、概ね次のような指摘がある。   By the way, the above explanation is about the case where the invention of the prior application is applied to the single-stage porous membrane element 1. A case where it is applied to a porous membrane element having a stage (for example, four stages) is also mentioned. This will be described with reference to FIGS. 15 to 17. In the specification of the invention of the prior application, the following points are generally pointed out.

(多段構造の扁平筒状素子の段間接続について)
今、例えば上記上部水タンク2を複数の各多孔膜エレメント1A〜1Dに共通なものとした場合の各段間の接続パターンを考えると(下部水タンク3のことは考えないものとして)、(1)図15のような全ての多孔膜エレメント1A〜1Dの直列接続(相互に連続する接続通路4a〜4d〜5)、(2)図16のような各多孔膜エレメント1A〜1Dの並列接続(各多孔膜エレメント1A〜1Dに個別の並列な接続通路4a〜5a、4b〜5b、4c〜5c、4d〜5d、それら各接続通路毎の第1,第2の水量調整弁V11〜V14、V21〜V24)、(3)図17のような最上段〜第3段目までの多孔膜エレメント1A〜1Cの直列接続と第4段目の多孔膜エレメント1Dとの並列接続(相互に直列な接続通路4a〜4c〜5a、同接続通路4a〜4c〜5aに並列な接続通路4d〜5b、それら2組の接続通路の各々に対応した2組の第1,第2の水量調整弁V11,V12、V21,V22)の3種類のものが考えられる。
(Interstage connection of multi-stage flat cylindrical elements)
Considering the connection pattern between the stages when the upper water tank 2 is common to the plurality of porous membrane elements 1A to 1D, for example (assuming that the lower water tank 3 is not considered), 1) Series connection of all porous membrane elements 1A to 1D as shown in FIG. 15 (connecting passages 4a to 4d to 5 which are continuous with each other), (2) Parallel connection of each porous membrane element 1A to 1D as shown in FIG. (Individual parallel connection passages 4a to 5a, 4b to 5b, 4c to 5c, 4d to 5d for the respective porous membrane elements 1A to 1D, and first and second water amount adjusting valves V 11 to V for each of the connection passages. 14 , V 21 to V 24 ), (3) The serial connection of the porous membrane elements 1A to 1C from the uppermost stage to the third stage as shown in FIG. 17 and the parallel connection of the porous membrane element 1D of the fourth stage ( Connection passages 4a to 4c to 5a in series with each other, the same connection The connection passages 4d to 5b parallel to the passages 4a to 4c to 5a, and two sets of first and second water amount adjusting valves V 11 , V 12 , V 21 and V 22 corresponding to each of the two sets of connection passages) There are three possible types.

(1)の図15のような完全な直列接続によると、各段の水循環量を確実に共通にすることができるメリットがある。   According to the complete series connection as shown in FIG. 15 of (1), there is an advantage that the water circulation amount of each stage can be surely made common.

また(2)の図16のような並列接続によると、配管本数、水量調整弁の数は多くなるが、圧損が小さく、水循環量の個別制御が可能となる。もちろん、第1,第2の水量調整弁を共通のものに集約して分配、合流させるようにすれば、各段の水循環量を等しくすることもできる。   Further, according to the parallel connection as shown in FIG. 16 in (2), the number of pipes and the number of water amount adjusting valves are increased, but the pressure loss is small, and the water circulation amount can be individually controlled. Of course, if the first and second water amount adjusting valves are aggregated into a common one and distributed and merged, the water circulation amount of each stage can be made equal.

装置コストやメンテナンスを考えれば、なるべく上下の水タンク等を共通にして部品数を減らし、配管経路も簡略化したいが、対象ガスによってはそれらの共通化により前段の影響を受けた循環水が流入することがその段にとって良くない結果となることもあるので、除去対象ガスや装置の用途により、上記の組合せを適切に使い分けることになる。   Considering the equipment cost and maintenance, we want to reduce the number of parts by sharing the upper and lower water tanks as much as possible, and simplify the piping route. However, depending on the target gas, circulating water affected by the previous stage flows in due to the common use of them. Doing so may result in an unfavorable result for that stage, so the above combinations are properly used depending on the gas to be removed and the application of the apparatus.

また各段の水循環量は、基本的には多孔膜エレメント1A〜1Dの上下の第1,第2の水量調整弁で調節するが、これらの弁を各段毎に個別に設けるか、または集約して設けるか、さらには上下のうちの片側(循環量調節弁のみの場合が多い)とする等といった変形例も考えられる。   In addition, the amount of water circulation in each stage is basically adjusted by the first and second water amount regulating valves above and below the porous membrane elements 1A to 1D. These valves are provided individually for each stage or are aggregated. It is also conceivable to provide a modification such as providing one or both of the upper and lower sides (often only the circulation amount adjusting valve).

特開2000−51647号公報(明細書1−29頁、図1−81参照)。Japanese Unexamined Patent Publication No. 2000-51647 (see specification page 1-29, FIG. 1-81).

特開2005−27983号公報JP 2005-27983 A 特開2005−313076号公報JP 2005-313076 A

上記のように、上記先願発明にあっては、共通の上部水タンクを使用し、かつ複数の多孔膜エレメントを多段にした場合についての一応の記述はあるが、上部水タンクと各多孔膜エレメントとの間の高度差に起因する各多孔膜エレメントに対する供給水のヘッド差に関して何らかの配慮を示した記述はみられない。すなわち、単一の上部タンクから高度差のある複数の多孔膜エレメントに空気浄化用の水(以下、「浄化水」という)を供給する場合、図18に示すように、各多孔膜エレメント1A,1B,1C,1Dに対する上部タンク2からの浄化水の水圧(ヘッド)H1,H2,H3,H4はそれぞれの多孔膜エレメント1A〜1Dの高さに応じて差異があるが、さきの先願発明においては、この各多孔膜エレメント1A〜1Dに対する供給水のヘッド差(下段の多孔膜エレメントほどヘッドが大きい)が各多孔膜エレメントの空気浄化能力に及ぼす影響については特に言及するところがない。 As described above, in the above-mentioned prior application, there is a temporary description about the case where a common upper water tank is used and a plurality of porous membrane elements are multi-staged. There is no description showing any consideration regarding the head difference of the feed water for each porous membrane element due to the height difference between the elements. That is, when water for air purification (hereinafter referred to as “purified water”) is supplied from a single upper tank to a plurality of porous membrane elements having different altitudes, as shown in FIG. The pressures (heads) H 1 , H 2 , H 3 , and H 4 of purified water from the upper tank 2 with respect to 1B, 1C, and 1D are different depending on the height of each porous membrane element 1A to 1D. In the prior invention of this application, the influence of the head difference of the feed water for each of the porous membrane elements 1A to 1D (the head of the lower porous membrane element is larger) on the air purification ability of each porous membrane element is particularly mentioned. Absent.

本願発明はこの点に着目してなされたもので、共通の上部水タンクから高度差をもって設けられている複数段の多孔膜エレメントに対して空気浄化用の水を供給する場合における、上部水タンクと各多孔膜エレメントとの間の浄化水のヘッド差に起因する各多孔膜エレメントの空気浄化能力の低下を防止しようとすることを目的とするものである。   The present invention has been made paying attention to this point, and an upper water tank in the case where water for air purification is supplied from a common upper water tank to a plurality of stages of porous membrane elements provided with a difference in altitude. The purpose of the present invention is to prevent a decrease in the air purification capacity of each porous membrane element due to the head difference of the purified water between each of the porous membrane elements.

次に、本願発明の多孔膜式空気浄化装置の構成について説明するにあたり、先ず本願発明で使用する多孔膜エレメントについて説明すると、本願発明ではさきに図10を使用して例示したような扁平筒状素子からなる多孔膜エレメントを使用する。   Next, in describing the configuration of the porous membrane type air purification device of the present invention, first, the porous membrane element used in the present invention will be described. In the present invention, a flat cylindrical shape as exemplified above with reference to FIG. A porous membrane element composed of elements is used.

続けて、本願発明の多孔膜式空気浄化装置の構成について説明すると、本願発明の多孔膜式空気浄化装置は、図1〜図5に例示するように「上下方向に高度差をもたせて配置された扁平筒状素子よりなる複数段の多孔膜エレメント(1A,1B,1C,1D)と、前記各多孔膜エレメントよりも高位置にあって前記各多孔膜エレメントに対する空気浄化用の水を貯留する水タンク(上部水タンク)2」とを必須の構成要素とするが、本願発明においては、以下に記述するように、上記各多孔膜エレメント1A,1B,1C,1Dに対して上部タンク2からの空気浄化用の水を並列に供給する方式(図1〜図3,図5)と直列に供給する方式(図4)とにその構成が大別される。   Next, the configuration of the porous membrane air purification device of the present invention will be described. The porous membrane air purification device of the present invention is arranged with an altitude difference in the vertical direction as illustrated in FIGS. A plurality of stages of porous membrane elements (1A, 1B, 1C, 1D) made of flat cylindrical elements and air purification water for each of the porous membrane elements that are higher than the porous membrane elements. The water tank (upper water tank) 2 ”is an essential constituent element. In the present invention, as described below, the porous tank elements 1A, 1B, 1C, 1D are separated from the upper tank 2. The structure is roughly classified into a system (FIGS. 1 to 3 and 5) for supplying water for air purification in parallel (FIGS. 1 to 3 and 5) and a system (FIG. 4) for supplying water in series.

なお、ここで図5の実施形態の多孔膜式空気浄化装置について若干の説明を加えておくと、図1〜図4に示す実施形態は、各段の多孔膜エレメント1A〜1Dに対してそれぞれ共通の入口管(4A〜4D)及び出口管(5A〜5D)が接続されて浄化水が各多孔膜エレメント1A〜1D内を1つの供給路でもって貫流するのに対し、図5に示す実施形態のものは、各段の多孔膜エレメント(集合体)1A〜1Dがそれぞれ多数の多孔膜エレメント要素の並列集合体から構成されているものであり、各段の多孔膜エレメント(集合体)1A〜1Dを構成する各多孔膜エレメント要素に対しては、各段ごとの入口管(4A〜4D)と出口管(5A〜5D)がそれぞれ分岐接続されている。さらに図5の実施形態のものでは、各段の出口管(5A〜5D)は集合出口管5Eに集約されて下部水タンク3に接続されている。   In addition, here, if some explanation is added about the porous membrane type air purification apparatus of embodiment of FIG. 5, embodiment shown in FIGS. 1-4 is each with respect to the porous membrane element 1A-1D of each step | level. The common inlet pipe (4A to 4D) and outlet pipe (5A to 5D) are connected to allow purified water to flow through each porous membrane element 1A to 1D with one supply path, whereas the implementation shown in FIG. In the embodiment, each stage of the porous membrane elements (aggregates) 1A to 1D is composed of a parallel aggregate of a large number of porous membrane element elements, and each stage of the porous membrane elements (aggregates) 1A. For each porous membrane element constituting ˜1D, an inlet pipe (4A-4D) and an outlet pipe (5A-5D) for each stage are branched and connected, respectively. Further, in the embodiment of FIG. 5, the outlet pipes (5 </ b> A to 5 </ b> D) of each stage are integrated into the collecting outlet pipe 5 </ b> E and connected to the lower water tank 3.

続けて、先ず図1〜図3及び図5の実施形態の多孔膜式空気浄化装置について説明すると、図1〜図3,図5に例示する浄化水並列供給方式のものでは、上部タンク2とそれぞれの多孔膜エレメント1A,1B,1C,1Dとは個別の浄化水入口管(4A,4B,4C,4D)で連結され、また各多孔膜エレメント1A,1B,1C,1Dにはそれぞれ個別に浄化水出口管(5A,5B,5C,5D)が連結されている。   Next, the porous membrane type air purification apparatus of the embodiment of FIGS. 1 to 3 and 5 will be described first. In the case of the purified water parallel supply system illustrated in FIGS. 1 to 3 and FIG. Each porous membrane element 1A, 1B, 1C, 1D is connected by a separate purified water inlet pipe (4A, 4B, 4C, 4D), and each porous membrane element 1A, 1B, 1C, 1D is individually connected. The purified water outlet pipe (5A, 5B, 5C, 5D) is connected.

このように、上下方向に高度差をもって配設された複数の多孔膜エレメント1A,1B,1C,1Dに対して同一水圧レベルの水源(上部タンク2)を接続すると、上方位にある多孔膜エレメント(たとえば1A)より下方位にある多孔膜エレメント(たとえば1D)に対する水圧(ヘッド)が大きくなる。   Thus, when a water source (upper tank 2) of the same water pressure level is connected to a plurality of porous membrane elements 1A, 1B, 1C, 1D arranged with a height difference in the vertical direction, a porous membrane element in an upward direction The water pressure (head) for the porous membrane element (for example, 1D) located lower than (for example, 1A) is increased.

このような場合において、各多孔膜エレメントに浄化水を供給する入口管(4A,4B,4C,4D)と各多孔膜エレメント(1A,1B,1C,1D)とについて浄化水導通抵抗の共通仕様のものを使用したとすれば、下方位にある多孔膜エレメント(たとえば1D)に対する浄化水の供給圧が、上方位にある多孔膜エレメント(たとえば1A)に対する浄化水供給圧よりも大きくなる(逆に、上方位にある多孔膜エレメント(たとえば1A)に対する浄化水供給圧が下方位にある多孔膜エレメント(たとえば1D)に対する浄化水供給圧よりも小さくなる)。その結果、上方位にある多孔膜エレメント(たとえば1A)においては扁平筒状素子1a,1a・・・が図11に示すような凹状態となり、下方位にある多孔膜エレメント(たとえば1D)においては、扁平筒状素子1a,1a・・・が図12に示すような凸状態となる傾向を生じ、一部の多孔膜エレメントについては、最適の空気浄化能力が得られないことになる。   In such a case, the common specification of purified water conduction resistance for the inlet pipe (4A, 4B, 4C, 4D) for supplying purified water to each porous membrane element and each porous membrane element (1A, 1B, 1C, 1D) Is used, the supply pressure of purified water to the lower porous membrane element (for example, 1D) is larger than the supply pressure of purified water to the porous membrane element (for example, 1A) in the upper direction (reversely In addition, the purified water supply pressure for the porous membrane element (for example, 1A) in the upper direction is smaller than the purified water supply pressure for the porous membrane element (for example, 1D) in the lower position). As a result, in the porous membrane element (for example, 1A) in the upper direction, the flat cylindrical elements 1a, 1a,... Become concave as shown in FIG. The flat cylindrical elements 1a, 1a,... Tend to be convex as shown in FIG. 12, and the optimum air purification capability cannot be obtained for some porous membrane elements.

そこで、本願発明においては、上下方向に高度差をもって配置された複数の多孔膜エレメント(1A〜1D)に対する浄化水供給路について、比較的上方位にある多孔膜エレメント(たとえば1A,1B)については、浄化水出口管(たとえば5A,5B)側に絞り弁(たとえばV21,V22)等の絞り手段を設けて各多孔膜エレメント(1A〜1D)に対する浄化水の供給圧を可及的に均等化しようとするものである。 Therefore, in the present invention, with respect to the purified water supply passages for the plurality of porous membrane elements (1A to 1D) arranged with a height difference in the vertical direction, the porous membrane elements (for example, 1A, 1B) in a relatively upward direction are used. In addition, throttle means such as throttle valves (for example, V 21 , V 22 ) are provided on the purified water outlet pipe (for example, 5A, 5B) side so that the supply pressure of purified water to each porous membrane element (1A to 1D) is as much as possible. It is intended to equalize.

図1は、上方位にある多孔膜エレメント(たとえば1A,1B)の出口管(たとえば5A,5B)に対して絞り手段として絞り弁(V21,V22)を設けた例を示し、図2は下方位にある多孔膜エレメント(たとえば1C,1D)の入口管(たとえば4C,4D)に対して絞り手段として絞り弁(V23,V24)を設けた例を示し、図3は、上方位にある多孔膜エレメント(たとえば1A,1B)の出口管(たとえば5A,5B)に絞り手段として絞り弁(V21,V22)を設けるとともに下方位にある多孔膜エレメント(たとえば1C,1D)の入口管(たとえば4C,4D)についても絞り手段として絞り弁(V23,V24)を設けた例を示している。 FIG. 1 shows an example in which throttle valves (V 21 , V 22 ) are provided as throttle means for the outlet pipes (eg, 5A, 5B) of the porous membrane elements (eg, 1A, 1B) in the upper direction. FIG. 3 shows an example in which throttle valves (V 23 , V 24 ) are provided as throttle means for the inlet pipe (eg, 4C, 4D) of the porous membrane element (eg, 1C, 1D) in the lower position. Throttle valves (V 21 , V 22 ) are provided as throttle means on the outlet pipe (eg, 5A, 5B) of the porous membrane element (eg, 1A, 1B) in the orientation, and the porous membrane element (eg, 1C, 1D) at the lower position is provided. In this example, throttle valves (V 23 , V 24 ) are provided as throttle means for the inlet pipes (for example, 4C, 4D).

また、図5に示す実施形態の多孔膜式空気浄化装置では、最上方位にある多孔膜エレメント(集合体)1Aについては、出口管(集合管)5A側に絞り手段となる絞り弁V21を設け、それより下方位の多孔膜エレメント(集合体)1B,1C,1Dについてはそれぞれ入口管(集合管)4B,4C,4D側にそれぞれ絞り手段となる絞り弁V22,V23,V24を設けている。 Further, a porous membrane type air purification device of the embodiment shown in FIG. 5, for the porous membrane element (aggregate) 1A in the top direction, the throttle valve V 21 as a means aperture to the outlet tube (collection tube) 5A side For the porous membrane elements (aggregates) 1B, 1C, 1D located below, throttle valves V 22 , V 23 , V 24 serving as throttling means are respectively provided on the inlet pipes (aggregate tubes) 4B, 4C, 4D side. Is provided.

次に、上下方向に高度差をもって配置された複数の多孔膜エレメント(たとえば1A〜1D)に対して空気浄化用の水を直列に供給する構成の例を図4を参照して説明すると、図4に示す構成例では上部水タンク2と最上方位の多孔膜エレメント(1A)〜最下方位の多孔膜エレメント(1D)とは直列の浄化水供給路で連通している。すなわち、最上方位の多孔膜エレメント1Aの出口管5Aが次下位の多孔膜エレメント1Bの入口管4Bとなり、多孔膜エレメント1Bの出口管5Bがさらに次下位の多孔膜エレメント1Cの入口管4Cとなり、多孔膜エレメント1Cの出口管5Cが最下方位の多孔膜エレメント1Dの入口管4Dとなっている。   Next, an example of a configuration in which water for air purification is supplied in series to a plurality of porous membrane elements (for example, 1A to 1D) arranged with a height difference in the vertical direction will be described with reference to FIG. In the configuration example shown in FIG. 4, the upper water tank 2 and the uppermost porous membrane element (1A) to the lowermost porous membrane element (1D) communicate with each other through a series of purified water supply paths. That is, the outlet pipe 5A of the uppermost porous membrane element 1A becomes the inlet pipe 4B of the next lower porous film element 1B, the outlet pipe 5B of the porous membrane element 1B becomes the inlet pipe 4C of the next lower porous film element 1C, The outlet pipe 5C of the porous membrane element 1C is the inlet pipe 4D of the lowermost porous membrane element 1D.

このような直列接続の場合においても、下方位の多孔膜エレメントになる程、浄化水の供給圧が大きくなる(上方位の多孔膜エレメントになる程、浄化水の供給圧が小さくなる)ため、図4に例示する多孔膜式空気浄化装置では、中間位置(多孔膜エレメント1Bと多孔膜エレメント1Cの間の管路4C)において絞り手段となる絞り弁V25を設けて全体の多孔膜エレメント1A〜1Dに対する浄化水の供給圧が可及的に均等化するようにしている。 Even in the case of such series connection, the lower the porous membrane element, the larger the supply pressure of purified water (the higher the porous membrane element in the upper direction, the smaller the supply pressure of purified water), In the porous membrane type air purification apparatus illustrated in FIG. 4, a throttle valve V 25 serving as a throttle means is provided at an intermediate position (the pipeline 4C between the porous membrane element 1B and the porous membrane element 1C) to provide the entire porous membrane element 1A. The supply pressure of the purified water with respect to ˜1D is made as uniform as possible.

以上の結果、本願発明によると、多孔膜式の空気浄化装置(ケミカル除去ユニット)において、先願発明の場合よりも一層高性能で安定した運転状態を実現することができる(多孔膜エレメントにおける各扁平筒状素子の形状が図13に示すように可及的に凹凸のない矩形断面形状とすることができる)。   As a result of the above, according to the present invention, in the porous membrane type air purification device (chemical removal unit), it is possible to realize a higher performance and stable operation state than in the case of the prior invention (each of the porous membrane elements). The shape of the flat cylindrical element can be a rectangular cross-sectional shape with as little unevenness as possible as shown in FIG.

続いて図1〜図5に示す多孔膜式空気浄化装置の例により、本願発明の好適な実施形態を説明すると、図1〜図3,図5には上述した通り、上下方向に高度差をもって配置された4つの多孔膜エレメント1A,1B,1C,1Dに対して上部水タンク2からに対して空気浄化用の水を並列供給する例が示され、図4には、空気浄化用の水を直列供給する例が示されている。   Next, a preferred embodiment of the present invention will be described with reference to the examples of the porous membrane type air purification apparatus shown in FIGS. 1 to 5. As described above in FIGS. 1 to 3 and 5, there is an altitude difference in the vertical direction. An example is shown in which air purification water is supplied in parallel from the upper water tank 2 to the four porous membrane elements 1A, 1B, 1C, 1D arranged, and FIG. 4 shows the water for air purification. An example is shown in which is supplied in series.

図1〜図3,図5に示す浄化水並列供給方式の4つの装置例も、図4に示す浄化水直列供給方式の装置例も、各多孔膜エレメント1A,1B,1C,1Dに対する浄化水の供給方式が異なっているのみで、その他の部分は共通の構成とされているので、以下においては、先ず図1〜図5に示す5つの装置例に共通の構成部分について説明する。   The purified water parallel supply system shown in FIGS. 1 to 3 and 5 and the purified water serial supply system shown in FIG. 4 both have purified water for the porous membrane elements 1A, 1B, 1C and 1D. Since only the supply system is different and the other parts have a common configuration, the following will first describe the common parts in the five apparatus examples shown in FIGS.

図1〜図5において、符号1A,1B,1C,1Dは図10に示したように、合成樹脂製の枠体40及び多数の微小孔41a,41a・・・を有する疎水性多孔膜41,41・・により形成された扁平筒状素子1a,1aよりなる多孔膜エレメントである。   1 to 5, reference numerals 1A, 1B, 1C, and 1D denote a hydrophobic porous membrane 41 having a synthetic resin frame 40 and a large number of micropores 41a, 41a, as shown in FIG. 41 is a porous membrane element formed of flat cylindrical elements 1a, 1a formed by.

この多孔膜エレメント1A〜1Dの上方には第1の水タンク(上部水タンク)2が、また下方には第2の水タンク(下部水タンク)3が、それぞれ設けられている。   A first water tank (upper water tank) 2 is provided above the porous membrane elements 1A to 1D, and a second water tank (lower water tank) 3 is provided below.

そして、上部水タンク2には第1の給水弁v1(ソレノイドバルブSOL1)を有する第1の給水ライン6を介して一定の水位まで純水が供給されるようになっているとともに、下部水タンク3には第2の給水弁v2(ソレノイドバルブSOL2)を有する第2の水供給ライン7を介して一定の水位まで純水が供給されるようになっている。 The upper water tank 2 is supplied with pure water to a certain water level via a first water supply line 6 having a first water supply valve v 1 (solenoid valve SOL 1 ), and a lower part. Pure water is supplied to the water tank 3 to a certain water level via a second water supply line 7 having a second water supply valve v 2 (solenoid valve SOL 2 ).

また、上記下部及び上部の水タンク3,2には、それぞれ所定の上下両高さ位置に水位センサA,Bおよび水位センサD,Cが設けられており、これら各水位センサA,B,C,Dによって当該下部及び上部水タンク3,2の実際の水位の変動を検出するようになっている。   The lower and upper water tanks 3 and 2 are provided with water level sensors A and B and water level sensors D and C at predetermined height positions, respectively, and these water level sensors A, B and C are provided. , D are used to detect the actual water level fluctuations in the lower and upper water tanks 3 and 2.

一方、上記下部水タンク3と上部水タンク2とは、水循環ポンプ9を有する水循環通路8を介して連通されており、上記下部水タンク3側に供給された純水を上記上部水タンク2に戻し、上記上部水タンク2内の一定水位の純水を多孔膜エレメント1A〜1D、下部水タンク3を介して連続的に循環させて使用するようになっている。   On the other hand, the lower water tank 3 and the upper water tank 2 are communicated with each other via a water circulation passage 8 having a water circulation pump 9, and pure water supplied to the lower water tank 3 side is supplied to the upper water tank 2. Returning, pure water at a constant water level in the upper water tank 2 is continuously circulated through the porous membrane elements 1A to 1D and the lower water tank 3 for use.

そして、上記水循環通路8の水循環ポンプ9の吐出側には、循環される水の劣化を防ぐために、手動調整又は電気的に制御可能な排水量調整弁V3を介して系内を循環される水の一部を連続的に、または間欠的に排出する排水通路12が設けられている。 The water circulation passage 8 has a water circulation pump 9 on the discharge side where water is circulated in the system via a drainage adjustment valve V 3 that can be manually adjusted or electrically controlled to prevent deterioration of the circulated water. A drainage passage 12 is provided for discharging a part of the water continuously or intermittently.

さらに、上記上部及び下部水タンク2,3には、それぞれ所定の長さの大気連通管2a,3aが上方に伸びて設けられており、両タンク2,3内を大気側に開放することによって大気圧に保つようになっている。また上部水タンク2の大気連通管2aおよび下部水タンク3の大気連通管3aは、その何れも上部水タンク2の天井部よりも上方まで伸ばして、装置の運転停止時に系外に水が漏出するのを防ぐようになっている。   Further, the upper and lower water tanks 2 and 3 are respectively provided with atmospheric communication pipes 2a and 3a having predetermined lengths extending upward, and by opening both tanks 2 and 3 to the atmosphere side, It is designed to maintain atmospheric pressure. Also, the air communication pipe 2a of the upper water tank 2 and the air communication pipe 3a of the lower water tank 3 both extend above the ceiling of the upper water tank 2, and water leaks outside the system when the operation of the apparatus is stopped. To prevent it.

以上のように、この実施の形態の空気浄化装置の構成では、扁平筒状素子1a(1a,1a・・・)よりなる多孔膜エレメント1A〜1Dの上下両方に水タンク2,3を配置し、上部水タンク2の水位面を常時一定に保って所定のヘッド高Hを確保し、同ヘッド高Hと多孔膜エレメント1の扁平筒状素子1a(1a,1a・・・)および前後の配管系の流路抵抗(通路隙間/壁面強度)に応じた最適な流量で水をを流す。そして、それにより各多孔膜エレメント1A〜1Dの扁平筒状素子1a(1a,1a・・・)から流れ出た水を下部水タンク3で受け留め、これを水循環ポンプ9で上部水タンク2に戻すことによって、各多孔膜エレメント1A〜1Dの扁平筒状素子1a(1a,1a・・・)部分に水を循環させる。   As described above, in the configuration of the air purification device of this embodiment, the water tanks 2 and 3 are arranged both above and below the porous membrane elements 1A to 1D made of the flat cylindrical element 1a (1a, 1a...). The water level surface of the upper water tank 2 is always kept constant to ensure a predetermined head height H, and the head height H, the flat cylindrical element 1a (1a, 1a...) Of the porous membrane element 1, and the front and rear pipes Water is flowed at an optimum flow rate according to the flow path resistance (passage gap / wall strength) of the system. And the water which flowed out from the flat cylindrical element 1a (1a, 1a ...) of each porous membrane element 1A-1D by this is received by the lower water tank 3, and this is returned to the upper water tank 2 with the water circulation pump 9. Thereby, water is circulated through the flat cylindrical elements 1a (1a, 1a...) Of the porous membrane elements 1A to 1D.

上記上部水タンク2の必要なヘッド高Hを一定に保つ方法は、制御ではなく、上記水循環ポンプ9で下部水タンク3内に戻す水の量を多孔膜エレメント1A〜1Dの扁平筒状素子1a(1a,1a・・・)から流れ出る水の量よりも多くし、残りを上方側第1の水タンク2のオーバーフロー管10(流入口部10a)からバイパスさせる簡単な方法として構成を簡単にしている。   The method of keeping the required head height H of the upper water tank 2 constant is not control, but the amount of water returned into the lower water tank 3 by the water circulation pump 9 is the flat cylindrical element 1a of the porous membrane elements 1A to 1D. The amount of water flowing out from (1a, 1a...) Is increased, and the configuration is simplified as a simple method of bypassing the remainder from the overflow pipe 10 (inflow port portion 10a) of the upper first water tank 2. Yes.

そして、上記上下水タンク2,3には、それぞれ大気連通管2a,3aを設け、両タンク2,3内を大気圧に保つようにしている。このように、上下2つの水タンク2,3の各々が、それぞれ大気側に開放された大気連通管2a,3aを介して大気側に開放されていると、上部水タンク2のヘッドおよび下部水タンク3のポンプ吸込圧を共に大気基準とすることができる。   The water and sewage tanks 2 and 3 are provided with air communication pipes 2a and 3a, respectively, so that the tanks 2 and 3 are kept at atmospheric pressure. Thus, when each of the upper and lower two water tanks 2 and 3 is opened to the atmosphere side through the atmosphere communication pipes 2a and 3a opened to the atmosphere side, the head and the lower water tank of the upper water tank 2 are provided. Both the pump suction pressure of the tank 3 can be used as the atmospheric standard.

また、この場合下部水タンク3の大気連通管3aは、上記上部水タンク2の大気連通管2aと同様に同上部水タンク2の上方まで伸ばして、装置の運転停止時に系外に水が漏出するのを防ぐようにしている。   In this case, the air communication pipe 3a of the lower water tank 3 extends to the upper part of the upper water tank 2 in the same manner as the air communication pipe 2a of the upper water tank 2, and water leaks outside the system when the operation of the apparatus is stopped. I try to prevent it.

以上の構成では、上部水タンク2および多孔膜エレメント1A〜1Dと下部水タンク3および水循環ポンプ9、水循環通路8が上部水タンク2、下部水タンク3部分で各々大気側にオープンにされ、水循環ポンプ9の吸入圧および吐出圧の何れもが、扁平筒状素子1a(1a,1a・・・)よりなる多孔膜エレメント1A〜1D内には作用しない。   In the above configuration, the upper water tank 2 and the porous membrane elements 1A to 1D, the lower water tank 3, the water circulation pump 9, and the water circulation passage 8 are opened to the atmosphere side at the upper water tank 2 and lower water tank 3 portions, respectively. Neither the suction pressure nor the discharge pressure of the pump 9 acts in the porous membrane elements 1A to 1D composed of the flat cylindrical elements 1a (1a, 1a...).

このような水循環系とすると、扁平筒状素子1a(1a,1a・・・)よりなる各多孔膜エレメント1A〜1Dの扁平筒状素子1a(1a,1a・・・)内の水圧は上部水タンク2のヘッド高Hと、これから詳述する前後(上下)の水量調整弁によって決められる。したがって、同構成によれば、上記のように多孔膜エレメント1A〜1Dの扁平筒状素子1a(1a,1a・・・)の多孔膜部分に水循環ポンプ9の吸入圧、吐出圧が直接かかることを防ぐことができ、高性能で安定した運転状態を実現することができる。   In such a water circulation system, the water pressure in the flat cylindrical elements 1a (1a, 1a...) Of the porous membrane elements 1A to 1D composed of the flat cylindrical elements 1a (1a, 1a. It is determined by the head height H of the tank 2 and the front and rear (upper and lower) water amount adjustment valves to be described in detail. Therefore, according to the same configuration, the suction pressure and the discharge pressure of the water circulation pump 9 are directly applied to the porous membrane portions of the flat cylindrical elements 1a (1a, 1a...) Of the porous membrane elements 1A to 1D as described above. Can be prevented, and a high-performance and stable operation state can be realized.

(制御方法)
次に図19は、上記図1〜図5の多孔膜式空気浄化装置の液面制御装置の構成を示す制御回路図(リレー回路図)である。
(Control method)
Next, FIG. 19 is a control circuit diagram (relay circuit diagram) showing the configuration of the liquid level control device of the porous membrane type air purification device of FIGS.

以上の装置では、水質劣化防止のための水排出通路12からの微量排水および加湿現象などにより、上記純水循環系内の総水量は所定量減ってくる。したがって、これを上記上下の水位センサA,Bで下部水タンク3の水面位変化として検知し、その水量の低下に応じて下部水タンク3内に給水して安定した運転を継続する必要がある。   In the above apparatus, the total amount of water in the pure water circulation system is reduced by a predetermined amount due to a small amount of drainage from the water discharge passage 12 for preventing water quality deterioration and a humidification phenomenon. Therefore, it is necessary to detect this as a change in the water level of the lower water tank 3 by the upper and lower water level sensors A and B, and to supply water into the lower water tank 3 according to the decrease in the amount of water to continue stable operation. .

また、上部水タンク2内が空状態の停止時からの起動時には上部水タンク2にも並行して給水することにより起動時間を短縮する必要がある。   In addition, it is necessary to shorten the start-up time by supplying water to the upper water tank 2 in parallel at the time of start-up from when the upper water tank 2 is empty.

図19の制御回路は、このような見地から構成されており、次に述べるように動作する。   The control circuit of FIG. 19 is configured from such a viewpoint, and operates as described below.

図15中、A′,B′、C′,D′は上記図1ないし図5中の上下水位センサA,B、C,Dの出力接点(A′,C′,D′は常閉接点構成、B′は常開接点構成)である。   In FIG. 15, A ', B', C ', and D' are the output contacts (A ', C', and D 'are normally closed contacts) of the water level sensors A, B, C, and D in FIGS. Configuration, B ′ is a normally open contact configuration).

(1) 起動時の制御動作(上、下部の水タンク2,3が共に空の状態からの運転開始動作)
先ず上、下部の水タンク2,3が共に空の状態では、上部水タンク2の低位側水位センサCの出力接点C′は閉じている。したがって、同状態で装置の電源がONされ、例えばDC24(V)が印加されると、第1の給水弁v1制御用のリレーR1が作動し、そのリレー接点R11を閉じ、第1の給水弁v1を開いて、上部水タンク2内に給水を始める。そして、同給水開始後、低位側水位センサCが作動して出力接点C′を開にする水検知位置まで純水が留ると、今度は同水位センサCの出力接点C′の開により、上記第1の給水弁v1を開作動させていた第1の給水弁v1制御用のリレーR1がOFFになって、上部水タンク2への給水が停止される。
(1) Control action at start-up (operation to start operation when the upper and lower water tanks 2, 3 are both empty)
First, when both the upper and lower water tanks 2 and 3 are empty, the output contact C ′ of the lower water level sensor C of the upper water tank 2 is closed. Therefore, power of the apparatus in the same state is turned ON, for example, DC24 (V) is applied, the relay R 1 is operated in the first water supply valve v 1 control, it closes its relay contact R 11, first The water supply valve v 1 is opened and water supply into the upper water tank 2 is started. After the water supply starts, when the lower water level sensor C is activated and the pure water stays at the water detection position where the output contact C ′ is opened, this time, by opening the output contact C ′ of the water level sensor C, relay R 1 of the first water supply valve v 1 control which has by opening operation of the water supply valve v 1 of the first is turned OFF, the water supply to the upper water tank 2 is stopped.

他方、起動時間を短かくする見地から、上記上部水タンク2内への給水と同時に下部水タンク3内への給水が行われる。   On the other hand, from the viewpoint of shortening the start-up time, water is supplied into the lower water tank 3 simultaneously with the water supply into the upper water tank 2.

すなわち、上記下部水タンク3内が空の状態では、その上下水位センサA,Bの出力接点A′,B′の内、A′は閉、B′は開であり、装置の電源ONによりバルブ制御回路に例えばDC24(V)が印加されると、第2の給水弁v2制御用のリレーR3が作動して、その自己保持接点R31およびリレー接点R32を閉じる。その結果、第2の給水弁v2が開いて下部水タンク3内への純水の給水が開始される。 That is, when the lower water tank 3 is empty, the output contacts A 'and B' of the upper and lower water level sensors A and B are closed, A 'is closed, and B' is opened. When, for example, DC 24 (V) is applied to the control circuit, the relay R 3 for controlling the second water supply valve v 2 is activated to close the self-holding contact R 31 and the relay contact R 32 . As a result, the second water supply valve v 2 is opened and the supply of pure water into the lower water tank 3 is started.

この下部水タンク3内への純水の供給は、上記のように低位側水位センサAの出力接点A′に第2の給水弁v2制御用のリレーR3の自己保持接点R31が並列に設けられていることから、そのまま給水が継続され、下部水タンク3内の水が上位側の水位センサBの検知位置に達して、その出力接点B′が閉じ、それによってリレーR2が作動して、その第1のリレー接点(常閉接点)R21を開いた時に初めてリレー接点R32がOFFになり、第2の給水弁v2が閉じられて給水が停止される。 Supply of pure water to the lower water tank 3, the self-holding contacts R 31 of the relay R 3 of the second water supply valve v 2 control the output contact A 'of the low-potential level sensor A as described above in parallel Therefore, the water supply is continued as it is, the water in the lower water tank 3 reaches the detection position of the upper water level sensor B, the output contact B 'is closed, and the relay R 2 is thereby activated. to, first relay contact R 32 when opening the first relay contact (normally closed contact) R 21 that is OFF, the second water supply valve v water 2 is closed is stopped.

一方、それに対応して上記リレーR2の作動により、その第2のリレー接点(常開接点)R22がONになり、ポンプ制御用のリレーR4が作動する。その結果、同ポンプ制御用のリレーR4の自己保持接点R41およびリレー接点42がONになるので、水循環ポンプ9が駆動され、前述のような水の循環が開始される。 On the other hand, the second relay contact (normally open contact) R 22 is turned ON by the operation of the relay R 2 , and the pump control relay R 4 is operated. As a result, since the self-holding contacts R 41 and relay contacts 42 of the relay R 4 for controlling the pump is turned ON, the water circulation pump 9 is driven, circulation of the water as described above is started.

(2) 通常運転時の制御動作
先ず上部水タンク2の場合、水位センサCは常時作動の位置に設置されているので、その出力接点C′はOFFのままであり、給水は行われない。
(2) Control operation during normal operation First, in the case of the upper water tank 2, the water level sensor C is installed at a constantly operating position, so its output contact C ′ remains OFF, and water supply is not performed.

しかし、さらに水量が増えて水位センサDがOFF作動すると、そのままでは上部水タンク2内の水が溢れるので水循環ポンプ9の駆動は停止される。   However, if the amount of water further increases and the water level sensor D is turned OFF, the water circulation pump 9 is stopped because the water in the upper water tank 2 overflows as it is.

他方、下部水タンク3の場合、水位センサAの出力接点A′がOFFになると給水を開始する一方、水位センサBの出力接点B′がONになると給水を停止し、水循環ポンプ9は、そのまま駆動する。   On the other hand, in the case of the lower water tank 3, water supply is started when the output contact A ′ of the water level sensor A is turned off, while water supply is stopped when the output contact B ′ of the water level sensor B is turned on, and the water circulation pump 9 is left as it is. To drive.

(3) 再起動時の制御(通常運転の途中で一旦運転を停止し、その後再び起動する場合)
図1〜図5の通常運転状態から運転を停止すると、下部水タンク3内に満水状態となる。
(3) Control at the time of restart (when operation is temporarily stopped during normal operation and then restarted)
When the operation is stopped from the normal operation state of FIGS. 1 to 5, the lower water tank 3 becomes full.

したがって、この状態から運転を再開する場合、下部水タンク3内は水が満杯となっているために、低位側水位センサAの出力接点A′は開、高位側水位センサBの出力接点B′は閉となっている。   Therefore, when the operation is resumed from this state, the lower water tank 3 is full of water, so that the output contact A ′ of the lower water level sensor A is opened and the output contact B ′ of the higher water level sensor B is opened. Is closed.

このため、同状態において、装置の電源がONされ、ポンプ制御回路に例えばAC100(V)およびバルブ制御回路に例えばDC24(V)が各々印加されると、上記通常運転時と同様に水循環ポンプ9が駆動されて水が循環される。   For this reason, in this state, when the power of the apparatus is turned on and, for example, AC100 (V) is applied to the pump control circuit and DC24 (V) is applied to the valve control circuit, respectively, the water circulation pump 9 is the same as in the normal operation. Is driven and water is circulated.

上部水タンク2は、低位側水位センサCの出力接点C′が閉となるまで水位が低下している場合には、第1の給水弁v1制御用のリレーR1が作動してリレー接点R11が閉じ、第1の給水弁v1が開かれて同水位センサCの出力接点C′が開となる水位レベルまで給水が行われる。 Upper water tank 2, when the output contact C of the low-side water level sensor C 'is lowered water level until closed, the first water supply valve v 1 relay contact relay R 1 is actuated for control R 11 is closed, water is supplied to a water level of the output contact C of the first water supply valve v 1 is opened the water level sensor C 'is opened.

この結果、水質劣化防止のための微量排水や加湿現象により上記水循環系内の給水量が減ってきても、これを下部水タンク3側の2つの水位センサA,Bで同下部水タンク3の液面変化として検知し、同下部水タンク3内に給水補充して運転を継続することができる。   As a result, even if the amount of water supply in the water circulation system is reduced due to a minute amount of drainage or humidification phenomenon for preventing water quality deterioration, the two water level sensors A and B on the lower water tank 3 side are used for this. It can be detected as a change in the liquid level, and the operation can be continued by replenishing the lower water tank 3 with water supply.

また、上、下部の水タンク2,3が空の状態からの起動時には、上述のごとく上部水タンク2にも並行して給水することにより、実質的な起動時間を短縮することができる。   Further, when the upper and lower water tanks 2 and 3 are started from an empty state, the substantial start-up time can be shortened by supplying water to the upper water tank 2 in parallel as described above.

(水再生手段について)
図1ないし図5の構成では、循環水の劣化対策として、水循環ポンプ9の吐出側に排水量調整弁V3を設けて系内の水を連続微量または間欠的に排出する方式を採用したが、その他の水再生手段として、例えばイオン交換樹脂、RO膜使用、UV照射などの手段との組合せも考えられる。また排水場所や再生装置の取り付け場所は、もちろん図1ないし図5の記載に限定されるものではない。
(About water recycling means)
In the configuration of FIG. 1 to FIG. 5, as a countermeasure against deterioration of the circulating water, a system is adopted in which a drainage amount adjustment valve V 3 is provided on the discharge side of the water circulation pump 9 to discharge the water in the system continuously or intermittently. As other water regeneration means, for example, combinations with means such as ion exchange resin, RO membrane use, UV irradiation, etc. are also conceivable. Of course, the drainage location and the location where the regenerator is attached are not limited to those shown in FIGS.

続いて、図1ないし図5に示す本願発明の5つの実施形態について個別に説明する。   Subsequently, five embodiments of the present invention shown in FIGS. 1 to 5 will be individually described.

(図1に示す実施形態)
この実施形態の多孔膜式空気浄化装置は、上下方向に高度差をもって配置された4基の多孔膜エレメント1A,1B,1C,1Dに対して上部水タンク2から並列に空気浄化用の水を供給するものであって最上方位の多孔膜エレメント1Aは入口管4Aと出口管5Aによって上下の水タンク2,3と接続され、それより下方位の多孔膜エレメント1Bは入口管4Bと出口管5Bによって、多孔膜エレメント1Cは入口管4Cと出口管5Cによって、多孔膜エレメント1Dは入口管4Dと出口管5Dによって、それぞれ上下の水タンク2,3に接続されている。
(Embodiment shown in FIG. 1)
The porous membrane type air purification device of this embodiment supplies water for air purification in parallel from the upper water tank 2 to four porous membrane elements 1A, 1B, 1C, 1D arranged with a height difference in the vertical direction. The uppermost porous membrane element 1A to be supplied is connected to the upper and lower water tanks 2 and 3 by the inlet pipe 4A and the outlet pipe 5A, and the lower porous membrane element 1B is connected to the inlet pipe 4B and the outlet pipe 5B. Thus, the porous membrane element 1C is connected to the upper and lower water tanks 2, 3 by the inlet tube 4C and the outlet tube 5C, and the porous membrane element 1D is connected by the inlet tube 4D and the outlet tube 5D, respectively.

この場合、各多孔膜エレメント1A〜1Dのうち、下方位にある多孔膜エレメントほどより大きなヘッドがかかることは既に説明した通りであるが、この図1の実施形態では、各多孔膜エレメント1A〜1Dに加わる浄化水の供給圧を均等化するために、最上方位の第1段多孔膜エレメント1Aの出口管5Aと次下位の第2段多孔膜エレメント1Bの出口管5Bとにそれぞれ絞り手段として絞り弁V21又はV22を設けている。 In this case, among the porous membrane elements 1A to 1D, as described above, the lower the porous membrane element, the larger the head is applied. However, in the embodiment of FIG. In order to equalize the supply pressure of the purified water applied to 1D, the outlet pipe 5A of the first-stage porous membrane element 1A in the uppermost direction and the outlet pipe 5B of the second-stage porous membrane element 1B in the next lower order are used as throttle means, respectively. and a throttle valve V 21 or V 22 provided.

このようにすると、絞り手段のない、下方位にある多孔膜エレメント1C,1Dに対する浄化水の供給圧と、絞り手段のある上方位の多孔膜エレメント1A,1Bとの間で水供給圧の均等化が図られ(そのように絞り弁V21,V22の絞り度を調節する)、全ての多孔膜エレメント1A〜1Dにおいて、扁平筒状素子1a,1a・・・に凹凸のない(又は可及的に小さい)状態(図13参照)を実現することができ、高効率でもって空気浄化作用を実現することができる。 In this case, the water supply pressure is equalized between the supply pressure of the purified water to the lower porous membrane elements 1C and 1D without the throttle means and the upper direction porous membrane elements 1A and 1B with the throttle means. is attained (that way throttle valve V 21, adjusts the aperture of the V 22), in all the porous membrane elements 1A to 1D, flat tubular element 1a, with no irregularities 1a · · · (or Yes As small as possible) (see FIG. 13) can be realized, and the air purification action can be realized with high efficiency.

(図2に示す実施形態)
図2に示す実施形態の多孔膜式空気浄化装置は、図1の実施形態の場合が、上方位の多孔膜エレメント1A,1Bの出口管5A,5Bに絞り手段となる絞り弁V21,V22を設けているのに対して、下方位の多孔膜エレメント1C,1Dの入口管4C,4Dに絞り手段となる絞り弁V23,V24を設けて各多孔膜エレメント1A〜1Dに加わる浄化水の供給圧を可及的に均等化し(そのように絞り弁V23,V24の絞り度を調節する)、もって図1に示す実施形態の場合と同様、多孔膜エレメント1A〜1Dによる空気浄化作用の高効率化を実現するものである。
(Embodiment shown in FIG. 2)
The porous membrane type air purification apparatus of the embodiment shown in FIG. 2 is the same as that of the embodiment of FIG. 1 except that the throttle valves V 21 , V 21 serving as throttle means are provided in the outlet pipes 5A, 5B of the porous membrane elements 1A, 1B in the upper direction. 22 whereas the is provided, applied to the lower position of the porous membrane element 1C, 1D of the inlet pipe 4C, provided a throttle valve V 23, V 24 as a throttle means to 4D each membrane element 1A~1D purification The water supply pressure is equalized as much as possible (thus adjusting the degree of throttling of the throttle valves V 23 and V 24 ), and the air by the porous membrane elements 1A to 1D is the same as in the embodiment shown in FIG. A high efficiency of the purification action is realized.

(図3に示す実施形態)
図3に示す実施形態の多孔膜式空気浄化装置は、図1の実施形態と図2の実施形態を併用したもので、上方位の多孔膜エレメント1A,1Bの出口管5A,5Bに絞り手段となる絞り弁V21,V22を、また、下方位の多孔膜エレメント1C,1Dの入口管4C,4Dに絞り手段となる絞り弁V23,V24を設けたものであり、それらの絞り弁V21〜V24の絞り度を適当に設定することにより、各多孔膜エレメント1A〜1Dに対する浄化水の供給圧が可及的に均等化され、それによって図1、図2の実施形態の場合と同様、多孔膜エレメント1A〜1Dによる空気浄化作用の高効率化を実現しようとするものである。
(Embodiment shown in FIG. 3)
The porous membrane type air purification apparatus of the embodiment shown in FIG. 3 is a combination of the embodiment of FIG. 1 and the embodiment of FIG. 2, and restricts the outlet pipes 5A and 5B of the porous membrane elements 1A and 1B in the upper direction. The throttle valves V 21 and V 22 are provided, and the throttle pipes V 23 and V 24 serving as throttle means are provided in the inlet pipes 4C and 4D of the lower porous membrane elements 1C and 1D. By appropriately setting the throttling degree of the valves V 21 to V 24 , the supply pressure of the purified water to each of the porous membrane elements 1A to 1D is equalized as much as possible, whereby the embodiment shown in FIGS. As in the case, the high efficiency of the air purification action by the porous membrane elements 1A to 1D is to be realized.

なお、図1〜図3の実施形態の多孔膜式空気浄化装置は垂直送風タイプのものであるが、同実施形態の場合は、各段の多孔膜エレメント1A〜1Dに対して同じ純度の浄化水が並列供給されるため、これらの多孔膜エレメント1A〜1Dに対する送風方向は上向き(W1)又は下向き(W2)のいずれでもよい。 In addition, although the porous membrane type | formula air purification apparatus of embodiment of FIGS. 1-3 is a thing of a vertical ventilation type, in the case of the same embodiment, purification | cleaning of the same purity with respect to the porous membrane element 1A-1D of each stage Since water is supplied in parallel, the air blowing direction for these porous membrane elements 1A to 1D may be either upward (W 1 ) or downward (W 2 ).

(図4に示す実施形態)
図4に示す実施形態の多孔膜式空気浄化装置は、各多孔膜エレメント1A〜1Dに対して上部水タンク2の浄化水を直列に供給するもので、第2段目の多孔膜エレメント1Bと第3段目の多孔膜エレメント1Cとの間の配管(第2段目の多孔膜エレメント1Bに対しては水出口管5Bとなり、第3段目の多孔膜エレメント1Cに対しては水入口管4Cとなる)に絞り手段となる絞り弁V25を設けたものである。すなわち、この実施形態の場合は、絞り弁V25は、上方位の多孔膜エレメント1A,1Bに対しては、水供給路の出口側を絞る絞り手段として作用し、下方位の多孔膜エレメント1C,1Dに対しては水供給路の入口側を絞る絞り手段として作用することとなる。これにより、本来ならば、上部水タンク2からの水供給圧が小さい上方位の多孔膜エレメント1A,1Bと、本来ならば上部水タンク2の水供給圧が大きい下方位の多孔膜エレメント1C,1Dとの間で水供給圧の均等化が図られ、各多孔膜エレメント1A〜1Dにおいて空気浄化作用の高効率化が実現されるものである。
(Embodiment shown in FIG. 4)
The porous membrane type air purification device of the embodiment shown in FIG. 4 supplies purified water from the upper water tank 2 in series to each porous membrane element 1A to 1D. Piping between the third-stage porous membrane element 1C (water outlet pipe 5B for the second-stage porous membrane element 1B and water inlet pipe for the third-stage porous membrane element 1C it is provided with a throttle valve V 25 as a throttle means in a 4C). That is, in the case of this embodiment, the throttle valve V 25 acts as a throttle means for restricting the outlet side of the water supply path with respect to the upper-oriented porous membrane elements 1A and 1B, and the lower porous membrane element 1C. , 1D acts as a throttle means for narrowing the inlet side of the water supply path. Thereby, the porous membrane elements 1A and 1B in the upper direction where the water supply pressure from the upper water tank 2 is small, and the lower porous membrane elements 1C and 1C in the lower direction where the water supply pressure in the upper water tank 2 is high. The water supply pressure is equalized with 1D, and high efficiency of the air purification action is realized in each of the porous membrane elements 1A to 1D.

なお、この図4の実施形態の多孔膜式空気浄化装置も、図1〜図3の実施形態のものと同様、垂直送風タイプのものであるが、各段の多孔膜エレメント1A〜1Dに対して直列に浄化水が供給されるため、下方位の多孔膜エレメントになる程、浄化水の汚染度が高くなる。したがって、この実施形態の場合は、浄化水の供給方向と送風方向とは対向流(送風方向は上向きW1)として、出口側の空気に対してもっとも汚染度の小さい浄化水が接触するようにするのがよい。 The porous membrane type air purification device of this embodiment of FIG. 4 is also of the vertical ventilation type, similar to the embodiment of FIGS. 1 to 3, but with respect to the porous membrane elements 1A to 1D at each stage. Since the purified water is supplied in series, the lower the porous membrane element, the higher the degree of contamination of the purified water. Therefore, in the case of this embodiment, the purified water supply direction and the air blowing direction are opposite flows (the air blowing direction is upward W 1 ) so that the purified water having the lowest degree of contamination contacts the air on the outlet side. It is good to do.

(図5に示す実施形態)
図5に示す実施形態の多孔膜式空気浄化装置は、図3の実施形態の変形として考えられるもので、上方位の多孔膜エレメント(集合体)1A,1Bの出口管5Aに絞り手段となる絞り弁V21を、また、下方位の多孔膜エレメント(集合体)1B,1C,1Dの入口管4B,4C,4Dに絞り手段となる絞り弁V22,V23,V24を設けたものであり、それらの絞り弁V21〜V24の絞り度を適当に設定することにより、各多孔膜エレメント(集合体)1A〜1Dに対する浄化水の供給圧が可及的に均等化され、それによって図3の実施形態の場合と同様、多孔膜エレメント(集合体)1A〜1Dによる空気浄化作用の高効率化を実現しようとするものである。
(Embodiment shown in FIG. 5)
The porous membrane type air purification apparatus of the embodiment shown in FIG. 5 can be considered as a modification of the embodiment of FIG. 3, and serves as a throttle means for the outlet pipe 5A of the upper-oriented porous membrane elements (aggregates) 1A and 1B. A throttle valve V 21 is provided, and throttle valves V 22 , V 23 , V 24 serving as throttle means are provided in the inlet pipes 4B, 4C, 4D of the lower porous membrane elements (aggregates) 1B, 1C, 1D. By appropriately setting the throttling degree of the throttle valves V 21 to V 24 , the supply pressure of the purified water to each porous membrane element (aggregate) 1A to 1D is equalized as much as possible. Thus, as in the case of the embodiment of FIG. 3, it is intended to achieve high efficiency of the air purification action by the porous membrane elements (aggregates) 1 </ b> A to 1 </ b> D.

なお、図6は、この図5に示す実施形態の多孔膜式空気浄化装置における多孔膜エレメント(集合体)1A〜1Dからなる多孔膜エレメントユニットUを多数(U1,U2,U3・・・)、空気の流通方向に並設した状態を示したものである(図5に示す上下水タンク2,3等、多孔膜エレメントユニットU以外の部材は省略している)。なお、図6において符号31,32は送風用ファン、33は全体ケーシングを示している。 6 shows a large number of porous membrane element units U (U 1 , U 2 , U 3 ...) Composed of porous membrane elements (aggregates) 1A to 1D in the porous membrane type air purification apparatus of the embodiment shown in FIG. ..) Shows a state of being arranged in parallel in the air flow direction (members other than the porous membrane element unit U such as the water and sewage tanks 2 and 3 shown in FIG. 5 are omitted). In FIG. 6, reference numerals 31 and 32 denote blower fans, and 33 denotes an entire casing.

また、図7〜図9は、図6に示す多孔膜エレメントユニットU1,U2,U3・・・の集合体Zに対する純水供給システムを示している。これについて概略説明すると、図7に示す純水供給システムは、各多孔膜エレメントユニットU1〜U5に対して共通の上部水タンク2及び下部水タンク3を設けたものであり、各多孔膜エレメントユニットU1,U2,U3・・・はそれぞれ個別に上下の水タンク2,3に接続されている。上下水タンク2,3はそれぞれ大気圧に開放されており、下部水タンク3の純水は水循環路8を介して水循環ポンプ9により上部水タンク2に送給される。符号12は循環水の一部を抽出する排水管であり、バルブV3により開閉される。 7 to 9 show a pure water supply system for the aggregate Z of the porous membrane element units U 1 , U 2 , U 3 ... Shown in FIG. Briefly describing this, the pure water supply system shown in FIG. 7 is provided with a common upper water tank 2 and lower water tank 3 for each of the porous membrane element units U 1 to U 5 . The element units U 1 , U 2 , U 3 ... Are individually connected to the upper and lower water tanks 2 and 3, respectively. The water and sewage tanks 2 and 3 are open to atmospheric pressure, and the pure water in the lower water tank 3 is supplied to the upper water tank 2 by the water circulation pump 9 through the water circulation path 8. Reference numeral 12 denotes a drain pipe for extracting a part of the circulating water, which is opened and closed by a valve V 3 .

図8に示す純水供給システムは、それぞれの多孔膜エレメントユニットU1,U2,U3・・・をそれぞれ独立して上部水タンク2及び下部水タンク3(いずれも大気圧開放)に接続したものである。 The pure water supply system shown in FIG. 8 connects each porous membrane element unit U 1 , U 2 , U 3 ... Independently to the upper water tank 2 and the lower water tank 3 (both open to atmospheric pressure). It is a thing.

図9に示す純水供給システムは、通風方向下流側から上流側に水を戻し、最も水質が悪くなる1段目から5段目へ戻す途中で排水を行い水消費量削減を図ったものである。   The pure water supply system shown in FIG. 9 is designed to reduce water consumption by returning water from the downstream side to the upstream side in the ventilation direction and draining the water from the first stage to the fifth stage where the water quality is the worst. is there.

ここではガスを吸って劣化した水の再生を部分排水で行う図としているが、経路中にイオン交換樹脂等を用いるものでもよい。   Here, regeneration of water deteriorated by sucking gas is performed by partial drainage, but an ion exchange resin or the like may be used in the path.

この図5〜図9に示す実施形態のものでは、通風空気と水循環系は完全に切り離されているので、水滴飛散が皆無となるというメリットがある。   In the embodiment shown in FIGS. 5 to 9, the ventilation air and the water circulation system are completely separated from each other, so that there is an advantage that there is no water droplet scattering.

本願発明の第1の実施例にかかる多孔膜式空気浄化装置の構成概念図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a structure conceptual diagram of the porous membrane type air purification apparatus concerning 1st Example of this invention. 本願発明の第2の実施例にかかる多孔膜式空気浄化装置の構成概念図である。It is a composition conceptual diagram of the porous membrane type air purification device concerning the 2nd example of the invention in this application. 本願発明の第3の実施例にかかる多孔膜式空気浄化装置の構成概念図である。It is a composition conceptual diagram of the porous membrane type air purification device concerning the 3rd example of the present invention. 本願発明の第4の実施例にかかる多孔膜式空気浄化装置の構成概念図である。It is a composition conceptual diagram of the porous membrane type air purification device concerning the 4th example of the invention in this application. 本願発明の第5の実施例にかかる多孔膜式空気浄化装置の構成概念図である。It is a composition conceptual diagram of the porous membrane type air purification device concerning the 5th example of the invention in this application. 図5に示す多孔膜式空気浄化装置における多孔膜エレメントユニット部分の構成概念図である。FIG. 6 is a conceptual diagram of a configuration of a porous membrane element unit portion in the porous membrane air purification device shown in FIG. 5. 図5に示す多孔膜式空気浄化装置におけ純水供給システムの構成概念図である。FIG. 6 is a conceptual diagram of the configuration of a pure water supply system in the porous membrane type air purification apparatus shown in FIG. 5. 図5に示す多孔膜式空気浄化装置におけ純水供給システムの他の構成概念図である。FIG. 6 is another conceptual diagram of the configuration of the pure water supply system in the porous membrane type air purification apparatus shown in FIG. 5. 図5に示す多孔膜式空気浄化装置におけ純水供給システムのさらに他の構成概念図である。FIG. 6 is still another conceptual diagram of the configuration of the pure water supply system in the porous membrane air purification apparatus shown in FIG. 5. 従来の扁平筒状素子よりなる平膜式多孔膜エレメントを用いた空気浄化装置の扁平筒状素子部分の空気浄化メカニズムを示す説明図である。It is explanatory drawing which shows the air purification mechanism of the flat cylindrical element part of the air purification apparatus using the flat membrane type porous membrane element which consists of a conventional flat cylindrical element. 従来例の構成における多孔膜エレメントの扁平筒状素子部分の問題点を示す説明図である。It is explanatory drawing which shows the problem of the flat cylindrical element part of the porous membrane element in the structure of a prior art example. 従来例の構成における多孔膜エレメントの扁平筒状素子部分の問題点を示す説明図である。It is explanatory drawing which shows the problem of the flat cylindrical element part of the porous membrane element in the structure of a prior art example. 多孔膜エレメントを構成する扁平筒状素子における適正な膨らみ状態の説明図である。It is explanatory drawing of the appropriate swelling state in the flat cylindrical element which comprises a porous membrane element. 先願発明の実施例にかかる多孔膜式空気浄化装置の構成概念図である。It is a composition conceptual diagram of a porous membrane type air purification device concerning an example of a prior invention. 図14に示す装置の多孔膜エレメントにおける複数の扁平筒状素子の各々を直列接続して水循環系を構成した場合の接続形態図である。It is a connection form figure at the time of comprising each of the several flat cylindrical element in the porous membrane element of the apparatus shown in FIG. 14 in series, and comprising a water circulation system. 図14に示す装置の多孔膜エレメントにおける複数の扁平筒状素子の各々を相互に並列に接続して水循環系を構成した場合の接続形態図である。It is a connection form figure at the time of comprising each of several flat cylindrical elements in the porous membrane element of the apparatus shown in FIG. 14 in parallel mutually, and comprising the water circulation system. 図14に示す装置の多孔膜エレメントにおける複数の扁平筒状素子の上から第1段目〜第3段目を相互に直列に接続する一方、第4段目をそれらに並列に接続して水循環系を構成した場合の接続形態図である。The first to third stages from the top of the plurality of flat cylindrical elements in the porous membrane element of the apparatus shown in FIG. 14 are connected in series to each other, while the fourth stage is connected in parallel to them to perform water circulation. It is a connection form figure at the time of comprising a system. 多段配置の各多孔膜エレメントに対する水ヘッドの状態図である。It is a state figure of the water head with respect to each porous membrane element of multistage arrangement. 図1ないし図5に示す多孔膜式空気浄化装置における純水供給システムの運転制御システム図である。FIG. 6 is an operation control system diagram of a pure water supply system in the porous membrane type air purification apparatus shown in FIGS. 1 to 5.

符号の説明Explanation of symbols

1A〜1Dは多孔膜エレメント、2は上部水タンク、3は下部水タンク、4A〜4Dは入口管、5A〜5Dは出口管、6は第1の給水ライン、7は第2の給水ライン、8は水循環通路、9は水循環ポンプ、10はオーバーフロー管、40は合成樹脂製の枠体、41は疎水性多孔膜、41aは微小孔、V21〜V24は絞り弁、U,U1〜U4は多孔膜エレメントユニットである。 1A to 1D are porous membrane elements, 2 is an upper water tank, 3 is a lower water tank, 4A to 4D are inlet pipes, 5A to 5D are outlet pipes, 6 is a first water supply line, 7 is a second water supply line, 8 is a water circulation passage, 9 is a water circulation pump, 10 is an overflow pipe, 40 is a synthetic resin frame, 41 is a hydrophobic porous membrane, 41 a is a micropore, V 21 to V 24 are throttle valves, U, U 1 to U 4 is a porous membrane element unit.

Claims (4)

上下方向に高度差をもたせて配置された扁平筒状素子よりなる複数段の多孔膜エレメント(1A〜1D)と、前記各多孔膜エレメントよりも高位置にあって前記各多孔膜エレメントに対する空気浄化用の水を貯留する水タンク(2)と、前記水タンクから前記各多孔膜エレメントに空気浄化用の水を並列供給する複数の入口管(4A〜4D)と、前記各多孔膜エレメントから前記水を排出する複数の出口管(5A〜5D)とをそなえた多孔膜式空気浄化装置であって、前記複数段の多孔膜エレメントのうち、上方位にある多孔膜エレメントに対しては出口管側に絞り手段を設けたことを特徴とする多孔膜式空気浄化装置。   A plurality of porous membrane elements (1A to 1D) made of flat cylindrical elements arranged with a height difference in the vertical direction, and air purification for each porous membrane element at a higher position than each of the porous membrane elements A water tank (2) for storing water for use, a plurality of inlet pipes (4A to 4D) for supplying water for air purification from the water tank to the porous membrane elements in parallel, and the porous membrane elements to A porous membrane type air purifying apparatus having a plurality of outlet pipes (5A to 5D) for discharging water, wherein an outlet pipe is provided for a porous membrane element in an upper direction among the plurality of stages of porous membrane elements. A porous membrane type air purifier characterized in that a throttle means is provided on the side. 上下方向に高度差をもたせて配置された扁平筒状素子よりなる複数段の多孔膜エレメント(1A〜1D)と、前記各多孔膜エレメントよりも高位置にあって前記各多孔膜エレメントに対する空気浄化用の水を貯留する水タンク(2)と、前記水タンクから前記各多孔膜エレメントに空気浄化用の水を並列供給する複数の入口管(4A〜4D)と、前記各多孔膜エレメントから前記水を排出する複数の出口管(5A〜5D)とをそなえた多孔膜式空気浄化装置であって、前記複数段の多孔膜エレメントのうち、下方位にある多孔膜エレメントに対しては入口管側に絞り手段を設けたことを特徴とする多孔膜式空気浄化装置。   A plurality of porous membrane elements (1A to 1D) made of flat cylindrical elements arranged with a height difference in the vertical direction, and air purification for each porous membrane element at a higher position than each of the porous membrane elements A water tank (2) for storing water for use, a plurality of inlet pipes (4A to 4D) for supplying water for air purification from the water tank to the porous membrane elements in parallel, and the porous membrane elements to A porous membrane type air purification apparatus comprising a plurality of outlet pipes (5A to 5D) for discharging water, wherein an inlet pipe is provided for a porous membrane element at a lower position among the plurality of stages of porous membrane elements. A porous membrane type air purifier characterized in that a throttle means is provided on the side. 上下方向に高度差をもたせて配置された扁平筒状素子よりなる複数段の多孔膜エレメント(1A〜1D)と、前記各多孔膜エレメントよりも高位置にあって前記各多孔膜エレメントに対する空気浄化用の水を貯留する水タンク(2)と、前記水タンクから前記各多孔膜エレメントに空気浄化用の水を並列供給する複数の入口管(4A〜4D)と、前記各多孔膜エレメントから前記水を排出する複数の出口管(5A〜5D)とをそなえた多孔膜式空気浄化装置であって、前記複数段の多孔膜エレメントのうち、上方位にある多孔膜エレメントに対しては出口管側に絞り手段を設け、下方位にある多孔膜エレメントに対しては入口管側に絞り手段を設けたことを特徴とする多孔膜式空気浄化装置。   A plurality of porous membrane elements (1A to 1D) made of flat cylindrical elements arranged with a height difference in the vertical direction, and air purification for each porous membrane element at a higher position than each of the porous membrane elements A water tank (2) for storing water for use, a plurality of inlet pipes (4A to 4D) for supplying water for air purification from the water tank to the porous membrane elements in parallel, and the porous membrane elements to A porous membrane type air purifying apparatus having a plurality of outlet pipes (5A to 5D) for discharging water, wherein an outlet pipe is provided for a porous membrane element in an upper direction among the plurality of stages of porous membrane elements. A porous membrane type air purifier characterized in that a throttle means is provided on the side and a throttle means is provided on the inlet pipe side for the porous membrane element in the lower position. 上下方向に高度差をもたせて配置された扁平筒状素子よりなる複数段の多孔膜エレメント(1A〜1D)と、前記各多孔膜エレメントよりも高位置にあって前記複数の多孔膜エレメントに対する空気浄化用の水を貯留する水タンク(2)と、前記水タンクから前記各多孔膜エレメントのうちの全部又は一部の多孔膜エレメントに対して前記空気浄化用の水を直列に供給する水供給路をなえた多孔膜式空気浄化装置であって、前記直列水供給路の中間部に絞り手段を設けたことを特徴とする多孔膜式空気浄化装置。   A plurality of porous membrane elements (1A to 1D) made of flat cylindrical elements arranged with a height difference in the vertical direction, and air to the plurality of porous membrane elements at a higher position than each of the porous membrane elements A water tank (2) for storing purification water, and a water supply for supplying the air purification water in series from the water tank to all or some of the porous membrane elements A porous membrane air purification apparatus having a channel, wherein a throttle means is provided in an intermediate portion of the series water supply channel.
JP2006082320A 2006-03-24 2006-03-24 Porous membrane type air-cleaning appliance Pending JP2007253089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082320A JP2007253089A (en) 2006-03-24 2006-03-24 Porous membrane type air-cleaning appliance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082320A JP2007253089A (en) 2006-03-24 2006-03-24 Porous membrane type air-cleaning appliance

Publications (1)

Publication Number Publication Date
JP2007253089A true JP2007253089A (en) 2007-10-04

Family

ID=38627854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082320A Pending JP2007253089A (en) 2006-03-24 2006-03-24 Porous membrane type air-cleaning appliance

Country Status (1)

Country Link
JP (1) JP2007253089A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104826433A (en) * 2015-04-28 2015-08-12 朱锋 Multifunctional environment-friendly smoke filtering apparatus
US9873088B2 (en) 2011-05-17 2018-01-23 Natrix Separations Inc. Layered tubular membranes for chromatography, and methods of use thereof
US10800808B2 (en) 2008-09-02 2020-10-13 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
KR20230003935A (en) * 2021-06-30 2023-01-06 현대제철 주식회사 Dust collector and its control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005230796A (en) * 2004-01-23 2005-09-02 Daikin Ind Ltd Air purification device
JP2005279483A (en) * 2004-03-30 2005-10-13 Daikin Ind Ltd Air cleaning apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005230796A (en) * 2004-01-23 2005-09-02 Daikin Ind Ltd Air purification device
JP2005279483A (en) * 2004-03-30 2005-10-13 Daikin Ind Ltd Air cleaning apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10800808B2 (en) 2008-09-02 2020-10-13 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
US10981949B2 (en) 2008-09-02 2021-04-20 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
US11884701B2 (en) 2008-09-02 2024-01-30 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
US9873088B2 (en) 2011-05-17 2018-01-23 Natrix Separations Inc. Layered tubular membranes for chromatography, and methods of use thereof
US10195567B2 (en) 2011-05-17 2019-02-05 Natrix Separations Inc. Layered tubular membranes for chromatography, and methods of use thereof
US10874990B2 (en) 2011-05-17 2020-12-29 Merck Millipore Ltd. Layered tubular membranes for chromatography, and methods of use thereof
CN104826433A (en) * 2015-04-28 2015-08-12 朱锋 Multifunctional environment-friendly smoke filtering apparatus
KR20230003935A (en) * 2021-06-30 2023-01-06 현대제철 주식회사 Dust collector and its control method
KR102558377B1 (en) 2021-06-30 2023-07-24 현대제철 주식회사 Dust collector and its control method

Similar Documents

Publication Publication Date Title
JP4304534B2 (en) Gas purification device
EP1364167B1 (en) Air conditioner having oxygen enriching device
EP2062762A1 (en) Drainage structure for vehicle air conditioner
JP5182413B2 (en) Immersion type membrane separator, method of cleaning a diffuser and membrane separation method
JP2007253089A (en) Porous membrane type air-cleaning appliance
JP2006284087A (en) Air cleaner
JP5984135B2 (en) Membrane separator
US11872521B2 (en) Air purifying system
EP1759755A1 (en) Gas purifying device
JP2007136349A (en) Porous membrane type air cleaner
KR20190007772A (en) Air purifier
WO2016178366A1 (en) Membrane separation active sludge treatment method and membrane separation active sludge treatment system
KR101980284B1 (en) Dehumidification system with membrane installed in duct
CN105944513B (en) Adaptive adjustable type plate column
JP4539541B2 (en) Porous membrane air purifier
JP4651417B2 (en) Air conditioner with water film and method of supplying pure water to water film
JP2006212553A (en) Gas cleaning device
JP5369363B2 (en) Hazardous substance removal device
JP2005279483A (en) Air cleaning apparatus
JP2000271409A (en) Operation of multistage stacked immersion type membrane separation device
JP2006142233A (en) Gas clarifying apparatus
JP3847208B2 (en) Dissolved oxygen removing device and heat medium water circulation facility using the same
US20220323884A1 (en) Air-dirt separator with degasser unit
JP2010115576A (en) Water treatment system
JPH0889960A (en) Treating device for sewage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412