JP3846633B2 - Method and apparatus for forming transparent electrode thin film - Google Patents

Method and apparatus for forming transparent electrode thin film Download PDF

Info

Publication number
JP3846633B2
JP3846633B2 JP2003038503A JP2003038503A JP3846633B2 JP 3846633 B2 JP3846633 B2 JP 3846633B2 JP 2003038503 A JP2003038503 A JP 2003038503A JP 2003038503 A JP2003038503 A JP 2003038503A JP 3846633 B2 JP3846633 B2 JP 3846633B2
Authority
JP
Japan
Prior art keywords
substrate
thin film
transparent electrode
film forming
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003038503A
Other languages
Japanese (ja)
Other versions
JP2004247685A (en
Inventor
慎 下沢
伸二 藤掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003038503A priority Critical patent/JP3846633B2/en
Publication of JP2004247685A publication Critical patent/JP2004247685A/en
Application granted granted Critical
Publication of JP3846633B2 publication Critical patent/JP3846633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、透明電極薄膜形成方法および装置、特に、フィルム基板にアモルファスシリコン,多結晶シリコン,微結晶シリコン等の薄膜太陽電池や薄膜トランジスタ(TFT)等の薄膜半導体デバイスを形成する場合に、その基板上に、減圧下において、スパッタ法または蒸着法により透明電極薄膜を形成する透明電極薄膜形成方法および装置に関する。
【0002】
【従来の技術】
一般的に、透明導電膜の作製方法には物理的作製法としてスパツタ法や蒸着法等があり、化学的作製法としてはスプレー法やディツプ法、CVD法等が挙げられ、各研究機関等で種々の用途に適した膜を、種々の手法で透明電極の作製が試みられている。蒸着法としては、通常の真空蒸着(電子ビーム加熱、抵抗加熱)、イオンプレーティングなどがある。
【0003】
上記各種方法において、真空装置内で、40Pa以下(スパッタ法または蒸着法等では2Pa以下)の減圧下で透明電極を作製するような場合、装置内の熱伝導の悪さから目的の温度までの上昇、また装置内温度分布が均一になるまでに時間を要する。ここでは、そのような中で薄膜太陽電池に透明導電膜を形成する従来例について述べる(例えば、特許文献1および2参照)。
【0004】
アモルファスシリコン(a‐Si)や微結晶シリコンからなる薄膜非単結晶シリコンを用いた太陽電池は、薄膜、低温プロセス、大面積化が容易という特徴を持ち、低コスト太陽電池の本命として開発が進められている。この種の太陽電池はガラスやPET等の透光性基板あるいはステンレスホイルやポリイミド等の非透光性基板を用い、光入射側から透明電極、非単結晶光電変換層、金属電極を順次積層した構造となっている。
【0005】
具体的なプロセス手順の一例としては、基板上に金属電極を形成した後、プラズマCVD装置により非単結晶からなる薄膜のpin型光電変換素子を堆積した後、透明電極としてITOをマグネトロンスパッタ法により製膜する。なお、マグネトロンスパッタ法としては、DCマグネトロンスパッタ法またはRFマグネトロンスパッタ法があり、いずれでもよい。また、透明電極としては、ITOだけでなく、SnO2やZnO等、光電変換素子が吸収を生じる波長領域の波長を比較的透過し、かつ比較的低抵抗という特徴を有する薄膜であれば適用できる。
【0006】
ITOを製膜するスパッタ装置は、真空装置内に主に基板を加熱するヒーターと、ヒーターと対向して平行に設置してあるITOターゲットから成る。ターゲットと基板間の距離は、3〜10cm程度が一般的である。この製造装置内に、既に第一電極、pin型光電変換層を製膜した基板を、非製膜面側をヒーターに接触させた状態で設置し、真空引きを行った後、放電ガスとしてAr+O2ガス(O2濃度1〜5%)を導入し、装置内圧力を1〜20Pa程度に保持する。この時、ビーター温度は100〜200℃とする。
【0007】
ヒーターによる基板の加熱は、生産性を考慮して1〜5分程度の比較的短時間の加熱とする。この時、基板にプラスチック基板やステンレス基板等の可とう性基板を適用した場合、基板の皺や反り等で実際の基板温度に分布が出る。例えば、ヒーター温度が200℃の場合、基板温度はおよそ120℃土20℃程度の分布が出る。これは、大面積基板になる程その影響が大きくなる。
【0008】
その後、ターゲット〜基板間に直流、もしくは高周波電力を印加し、放電させることによってスパッタを行う。スパッタの際、マグネツトは固定式を採用しても製膜は行えるが、ターゲット寿命の長期化、また面内膜厚均一性の向上のためにマグネットを可動式にする方が好ましい。また、DC放電の場合、放電の持続性を向上させるために、基板とターゲットの間にアノード電極一個、もしくは複数個を挿入しても良い。アノード電極を固定すると、固定されたアノード電極とターゲット間で放電が集中してしまい、ターゲットの短寿命化をもたらす。また、ステッピングロール装置等の基板を固定した製膜を行う際、薄膜の不均一性が問題となる。上記のような方法を用いて得られるITO膜は、アモルファスもしくは結晶率の比較的低い微結晶状態であり、透明電極としての重要な機能の一つである抵抗率は結晶化したITO膜に劣る。
【0009】
前記薄膜の不均一性の問題を解決するために、例えば、前記特許文献1に開示される発明のように、アノード電極を可動させる可動部を設ける。アノード電極は、ターゲットから1〜2cmの距離に設置する。
【0010】
また、ITOは光電変換層の直上に製膜することから、特許文献2に開示されたようなステッピングロール装置のように、光電変換層の製膜を行う装置と同真空装置内でスパッタを行うことが好ましい。光電変換層を製膜するプラズマCVD装置と、ITOを製膜するスパッタ装置が異なる装置の場合には、光電変換層を製膜後、一度エアーブレイクする必要があり、その際にパーティクルが薄膜表面に付着し、リークの原因となる他、生産性の低下に繋がる。
【0011】
【特許文献1】
特開平9−268369号公報(第3−5頁、図1,2)
【特許文献2】
特開平6−291349号公報(第4−6頁、図1,図5−17)
【0012】
【発明が解決しようとする課題】
ところで、生産性を考慮して、基板および製膜装置内の所要部分等の加熱時間が十分に取れない場合、基板等の温度を十分に上昇させることができなくなり、透明電極の膜質の劣化等が生ずる。
【0013】
また、nip型光電変換層上にITO薄膜を形成する際、基板加熱用ヒーターのみで基板の加熱を行う場合であって、特に、基板がフィルム基板やステンレス基板等の場合、フィルムの皺や反り等でヒーターによる加熱が均一に行われず、その結果膜質等の均一性が損なわれて分布が生じ、抵抗率が増大して太陽電池の特性が低下する問題がある。
【0014】
さらに、ヒーターによる加熱時間を長くすると、生産性を低下させてしまう。また、ヒーターの温度を上げすぎると、光電変換素子部分の温度が高くなり、例えばnip型光電変換層中のp層にドーピングされたボロンがi層中に拡散してしまい、光電変換素子の性能が大きく低下してしまう問題がある。
【0015】
上記のような加熱に関わる問題は、特に、スパッタリングや蒸着のように製膜時の圧力が2Pa以下と低い場合に、ガスの熱伝導によって均熱性を保つことが困難なために、より大きな問題となる。
【0016】
この発明は、上記のような問題点を解消するためになされたもので、本発明の課題は、基板の加熱温度の均一化および加熱時間の短縮化を図り、もって透明電極の抵抗率の低減と膜質の向上並びに生産性の向上を図った透明電極薄膜の形成方法と装置を提供することにある。
【0017】
【課題を解決するための手段】
前述の課題を解決するため、この発明においては、薄膜半導体デバイスの基板上に、減圧下において、スパッタ法または蒸着法により透明電極薄膜を形成する方法において、前記基板の製膜面側および非製膜面側の両側から基板を所定温度に加熱して製膜する(請求項1の発明)。これにより、基板の加熱温度の均一化および加熱時間の短縮化を図ることができる。
【0018】
また、前記発明の実施態様としては、下記請求項2ないし5の発明が好ましい。即ち、請求項1に記載の薄膜形成方法において、前記基板の所定温度は、150〜200℃とする。基板の温度は、サブストレート型太陽電池の場合、下地のデバイスの熱劣化を防ぐために200〜250℃以下に設定する必要がある。また、基板にプラスチックフィルムを用いる場合には、サブストレート型、スーパーストレート型に関係なく耐熱温度の関係で300℃以下とする必要があり、ポリエチレンテレフタレート(PET),ポリエチレンナフタレート(PEN),ポリエーテルサルフォン(PES)等のフィルムを用いる場合には、150〜200℃とする必要がある。この発明は、基板温度の上限が200℃程度に設定されるような微細な制御が必要な場合に、特に有効である。
【0019】
また、請求項1または2に記載の薄膜形成方法において、前記薄膜形成時の圧力は、2Pa以下とする(請求項3の発明)。この発明は、前述のように、ガスの熱伝導によって均熱性を保つことが困難な2Pa以下の場合に有効である。
【0020】
さらに、請求項1ないし3のいずれか1項に記載の薄膜形成方法において、前記基板は、樹脂フィルム基板やステンレススティールフィルム基板等の可とう性基板とする(請求項4の発明)。さらにまた、請求項1ないし4のいずれか1項に記載の薄膜形成方法において、前記透明電極薄膜は、薄膜太陽電池用の透明電極薄膜とする(請求項5の発明)。
【0021】
また、上記発明の方法を実施するための装置としては、下記請求項6の発明が好ましい。即ち、請求項1ないし5のいずれか1項に記載の透明電極薄膜形成方法を実施するためのスパッタまたは蒸着による薄膜形成装置であって、真空容器内に、基板に対面して、スパッタターゲットまたは蒸着源を有し、かつ基板を挟んでその製膜面側および非製膜面側の両側に基板の加熱手段を備えるものとする。
【0022】
前記請求項6の発明の実施態様としては、下記請求項7ないし9の発明が好ましい。即ち、請求項6に記載の透明電極薄膜形成装置において、前記製膜面側の加熱手段は、基板の製膜面に対向して複数個の開口を有する棒状,網目状もしくは平板状のヒーターとする(請求項7の発明)。複数個の開口は、スパッタターゲットまたは蒸着源と基板との間を閉塞しないようにするための開口である。
【0023】
また、請求項7に記載のスパッタによる透明電極薄膜形成装置において、前記製膜面側の加熱手段としてのヒーターの外殻部材は金属とし、前記ヒーターはアノード電極を兼ねる構成とする(請求項8の発明)。これにより、ヒーターにアノード電極としての機能を付与できる。
【0024】
さらに、請求項8に記載のスパッタによる透明電極薄膜形成装置において、前記アノード電極を兼ねる構成のヒーターは、基板の製膜面と平行に可動させる可動装置を備えるものとする(請求項9の発明)。面内膜厚均一性の向上のために、ヒーターを可動式にする方が好ましい。
【0025】
【発明の実施の形態】
図面に基づき、本発明の実施の形態について以下に述べる。
【0026】
図1は、本発明の実施の形態に関わる基本的な透明電極薄膜形成装置の模式的概略構成図を示す。図1に示すように、真空容器a2内に基板a1を挟んで非製膜面側のヒーターh1と製膜面側ヒーターh2を一個、または複数個配置する。また、スパッタターゲツトや蒸発源等の透明電極を形成する粒子の発生源a3を、製膜面側ヒーターh2の反基板側に設け、粒子の基板a1への流れを塞がないように、製膜面側ヒーターh2の形状は、例えば、複数個の開口を有する棒状、網目状、平板状、あるいはリング状にする。また、スパッタ法を用いて製膜を行う場合には、製膜面側ヒーターh2の外部材質を金属として、アノード電極を兼用する。また、製膜面側ヒーターh2には、基板a1と平行方向に可動させる図示しない駆動装置を取り付ける。
【0027】
図2は、本発明に関わる装置のうち、スパッタ法を用いて透明電極膜を形成する装置の実施の形態の模式的概略構成図を示す。図中、真空容器a2内にヒーターh1、スパッタターゲツトa31、マグネットa4が設置してあり、ヒーターh1上に基板a1が設置してある。スパッタターゲツトa31には、DC電源が接続され、スパッタターゲツトとしてはITOを用い、基板a1には可とう性基板のポリイミド基板を適用した。
【0028】
また、基板a1とスパッタターゲツトa31との間には、リング状の棒状ヒーターh21が取り付けてある。リング状の棒状ヒーターh21は、マグネットa4の外周の寸法とほぼ同寸法のヒーターとした。図2の実施例では、棒状ヒーターh21を一つ設けた例を示すが、例えば、図3に示すように、ヒーターを複数個上下2段に配置し、加熱効果を高めることも出来る。
【0029】
棒状ヒーターh21は外部材質が金属であるヒーターを用い、電位的に接地電位となるような電気的接続を施した。この場合、棒状ヒーターh21には、アノード電極としての役割も付与するが、棒状ヒーターh21の材質は、絶縁物でも加熱機能を有していれば良い。また、基板1aとスパッタターゲツトa31との距離は、5cmで、スパッタターゲツトa31と棒状ヒーターh21との距離は1cmとした。棒状ヒーターh21は、加熱効果を向上させるために基板a1側に近づけても良い。この場合、棒状ヒーターh21のアノード電極としての効果は小さくなる。
【0030】
マグネットa4および棒状ヒーターh21は、ターゲットの利用効率向上と薄膜の面内均一性向上のため、基板と平行に稼動する可動式を用いた。棒状ヒーターh21およびマグネットa4は、製膜室外の図示しないモーターによって駆動される駆動軸によって往復運動する移動台に固定されている。また、棒状ヒーターh21は、移動台を介して外部ヒーター電源まで接続されており、電源を調整することにより温度を制御できる。
【0031】
図1に示す製膜面側ヒーターh2は、図2に示した棒状の他に、平板状や網目状等でも良いが、透明電極を形成する粒子を発生させる機能を有する粒子の発生源a3と基板a1との間を塞がないように、開口を有する必要がある。図4に、網目状ヒーターh3を用いた場合の一例を示す。図4では、網目状ヒーターh3を、基板a1〜網目状ヒーターh3間距離より基板a1〜粒子の発生源a3間距離が小さくなるように設置したが、加熱効果を向上させるために網目状ヒーターh3を基板a1に近づけても良い。この場合、網目状ヒーターh3のアノード電極としての効果は小さくなる。
【0032】
【実施例】
次に、図2の実施の形態のスパッタ装置により製膜した場合の実施例について、以下に述べる。図2におけるヒーターh1と棒状ヒーターh21とは、それぞれ独立に温度制御機構を有しており、それぞれ独立に温度を設定できる。このような設備を有する透明電極スパッタ室を、前記特許文献2に開示されたような、光電変換層を形成するプラズマCVD室と連結させたステッピングロール方式の装置であって、各層の製膜を行い、かつ真空を保ったまま製膜面を搬送できる装置を用いて製膜を行った。
【0033】
実施例に用いた装置は、40cm×80cmの比較的大面積の光電変換素子を一度で作製できる機能を有する。このような装置を用いて、サブストレート型光電変換素子を作製した。ポリイミド基板上に既に金属電極の製膜を終了した基板をステッピングロール方式の装置に入れ、真空引き後、搬送を行いながら光電変換層の各層をプラズマCVD法を用いて製膜を行った後、透明電極スパッタ室まで搬送した。透明電極を製膜する直前までで、基板1a上には既に金属電極、pin型光電変換層が製膜してある。光電変換層としては、a‐Siシングルセルとa‐SiGeシングルセルとを直列に接続したa‐Si/a‐SiGeタンデムセルを作製した。
【0034】
透明電極の製膜条件としては、ヒーターh1を200℃、棒状ヒーターh21を非加熱および300℃の2通りの条件で製膜を行った。事前に、棒状ヒーターh21の各温度条件において熱電対を用いた基板温度の測定を行ったところ、非加熱の場合、40cm×80cmの面内において120℃±20℃程度の温度分布が存在していたのに対し、300℃(基板と平行に棒状ヒーターh21を可動させた状態)では、170℃土5℃となり、基板温度の高温化と温度の均一性向上が図られていることが分かった。
【0035】
スパッタ室まで搬送後、スパッタ室内を外部と隔離して真空引きを行った後、ArとO2の混合ガスをスパッタ室内に入れ、2Paに保持した。この作業中からマグネットa4、棒状ヒーターh21を基板a1と平行方向に可動させ始めた。O2の流量は、各条件でITOの膜中酸素濃度が約1.2%程度になるような流量を用いた。その後、圧力安定と基板加熱のため、約1分その状態を保持した後、DC電源からDCを500W印加した。事前に調べてある製膜レートから、透明電極の膜厚が約80nm程度になるようにスパッタ時間を調節した。
【0036】
製膜終了後、完成した光電変換素子を真空容器から取り出し、モジュール化工程を経て太陽電池の作製を終了した。今回は、製膜条件の全く同じセルを各2サンプル以上作製し、そのうち1サンプルはモジュール化工程を行わず、透明電極のシート抵抗評価用サンプルとした。
【0037】
各条件で作製した太陽電池の特性を調べるため、モジュール化した太陽電池を用いて白色光下(100mW/cm2)でのIV特性を測定した。測定の際、面積を正確にするため、既知の面積を有するマスクを太陽電池上に覆った状態で測定した。また、測定したデータは温度補正で25℃相当の値に補正した。測定した結果を表1に示す。
【0038】
【表1】

Figure 0003846633
表1には、開放電圧,短絡電流密度,曲線因子,変換効率および直列抵抗の測定値に関し、棒状ヒーターh21の非加熱および加熱温度300℃について、それぞれ示す。表1の結果から明らかなように、棒状ヒーターh21の温度を300℃に設定した場合、太陽電池の直列抵抗成分が低減し、太陽電池の特性が向上していることが分かる。
【0039】
また、シート抵抗について、モジュール化工程を行わなかったセルに関し、四端子法を用いて測定を行った。各条件で作製した太陽電池の透明電極のシート抵抗の測定結果を表2に示す。
【0040】
【表2】
Figure 0003846633
表2の結果から明らかなように、棒状ヒーターh21の温度を300℃に設定した場合、太陽電池の透明電極シート抵抗は、非加熱に設定した太陽電池のシート抵抗に比べ低下していることが分かる。
【0041】
【発明の効果】
前述のように、この発明によれば、スパッタまたは蒸着による透明電極薄膜形成装置において、真空容器内に、基板に対面して、スパッタターゲットまたは蒸着源を有し、かつ基板を挟んでその製膜面側および非製膜面側の両側に基板の加熱手段を備えるものとし、基板の製膜面側および非製膜面側の両側から基板を所定温度に加熱して製膜することとしたので、
基板の加熱温度の均一化および加熱時間の短縮化を図り、もって透明電極の抵抗率の低減と膜質の向上並びに生産性の向上を図ることができる。特に、薄膜太陽電池に適用した場合、太陽電池の直列抵抗成分が低減し、太陽電池の特性が向上する効果が得られる。
【図面の簡単な説明】
【図1】この発明の基本的な透明電極薄膜形成装置の実施の形態の模式的概略構成図
【図2】図1の装置をスパッタ装置に適用した場合の実施の形態の模式的概略構成図
【図3】図2とは異なるスパッタ装置の実施の形態の模式的概略構成図
【図4】図1とは異なる透明電極薄膜形成装置の実施の形態の模式的概略構成図
【符号の説明】
a1:基板、a2:真空容器、a3:粒子の発生源、a4:マグネット、a31:スパッタターゲット、h1:非製膜面側ヒーター、h2:製膜面側ヒーター、h3:網目状ヒーター、h21:棒状ヒーター。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for forming a transparent electrode thin film, particularly when a thin film solar cell such as amorphous silicon, polycrystalline silicon, or microcrystalline silicon or a thin film semiconductor device such as a thin film transistor (TFT) is formed on a film substrate. Further, the present invention relates to a transparent electrode thin film forming method and apparatus for forming a transparent electrode thin film by a sputtering method or a vapor deposition method under reduced pressure.
[0002]
[Prior art]
In general, a transparent conductive film is produced by a sputtering method or vapor deposition method as a physical production method, and a chemical production method includes a spray method, a dip method, a CVD method, etc. Attempts have been made to produce transparent electrodes by various techniques for films suitable for various applications. Examples of the vapor deposition method include normal vacuum vapor deposition (electron beam heating, resistance heating), ion plating, and the like.
[0003]
In the above-mentioned various methods, when a transparent electrode is produced under reduced pressure of 40 Pa or less (2 Pa or less for sputtering or vapor deposition) in a vacuum apparatus, the temperature rises from the poor heat conduction in the apparatus to the target temperature. In addition, it takes time until the temperature distribution in the apparatus becomes uniform. Here, a conventional example in which a transparent conductive film is formed on a thin film solar cell will be described (for example, see Patent Documents 1 and 2).
[0004]
Solar cells using thin-film non-single-crystal silicon made of amorphous silicon (a-Si) or microcrystalline silicon are characterized by thin films, low-temperature processes, and easy area expansion. It has been. This type of solar cell uses a light-transmitting substrate such as glass or PET or a non-light-transmitting substrate such as stainless steel foil or polyimide, and a transparent electrode, a non-single crystal photoelectric conversion layer, and a metal electrode are sequentially stacked from the light incident side. It has a structure.
[0005]
As an example of a specific process procedure, after forming a metal electrode on a substrate, depositing a thin film type pin photoelectric conversion element made of a non-single crystal by a plasma CVD apparatus, then using ITO as a transparent electrode by magnetron sputtering Form a film. As the magnetron sputtering method, there are a DC magnetron sputtering method and an RF magnetron sputtering method, and any of them may be used. In addition, as a transparent electrode, not only ITO but also a thin film having characteristics of relatively low resistance and a relatively low resistance such as SnO 2 and ZnO that can absorb wavelengths in a photoelectric conversion element can be applied. .
[0006]
A sputtering apparatus for depositing ITO consists of a heater mainly for heating a substrate in a vacuum apparatus, and an ITO target placed in parallel to face the heater. The distance between the target and the substrate is generally about 3 to 10 cm. In this manufacturing apparatus, the substrate on which the first electrode and the pin type photoelectric conversion layer are already formed is placed in a state where the non-film forming surface is in contact with the heater, and after evacuation, Ar + O is used as a discharge gas. Two gases (O 2 concentration 1-5%) are introduced, and the pressure in the apparatus is maintained at about 1-20 Pa. At this time, the beater temperature is 100 to 200 ° C.
[0007]
The substrate is heated by the heater in a relatively short time of about 1 to 5 minutes in consideration of productivity. At this time, when a flexible substrate such as a plastic substrate or a stainless steel substrate is applied to the substrate, the actual substrate temperature is distributed due to wrinkles or warpage of the substrate. For example, when the heater temperature is 200 ° C., the substrate temperature has a distribution of about 120 ° C. and about 20 ° C. This influence becomes larger as the substrate becomes larger.
[0008]
Thereafter, sputtering is performed by applying a direct current or high-frequency power between the target and the substrate to cause discharge. During sputtering, the magnet can be formed even if a fixed type is adopted. However, it is preferable to make the magnet movable in order to extend the life of the target and to improve the in-plane film thickness uniformity. In the case of DC discharge, one or more anode electrodes may be inserted between the substrate and the target in order to improve the sustainability of the discharge. When the anode electrode is fixed, the discharge is concentrated between the fixed anode electrode and the target, and the life of the target is shortened. In addition, when forming a film with a substrate fixed, such as a stepping roll apparatus, non-uniformity of the thin film becomes a problem. The ITO film obtained by using the above method is in an amorphous state or a microcrystalline state with a relatively low crystal ratio, and the resistivity, which is one of important functions as a transparent electrode, is inferior to a crystallized ITO film. .
[0009]
In order to solve the problem of non-uniformity of the thin film, for example, as in the invention disclosed in Patent Document 1, a movable portion that moves the anode electrode is provided. The anode electrode is installed at a distance of 1 to 2 cm from the target.
[0010]
Further, since ITO is formed directly on the photoelectric conversion layer, sputtering is performed in the same vacuum apparatus as the apparatus for forming the photoelectric conversion layer, such as a stepping roll apparatus disclosed in Patent Document 2. It is preferable. If the plasma CVD device that forms the photoelectric conversion layer is different from the sputtering device that forms ITO, it is necessary to air-break once after the photoelectric conversion layer is formed. In addition to being a cause of leakage, it leads to a decrease in productivity.
[0011]
[Patent Document 1]
JP-A-9-268369 (page 3-5, FIGS. 1 and 2)
[Patent Document 2]
JP-A-6-291349 (page 4-6, FIGS. 1 and 5-17)
[0012]
[Problems to be solved by the invention]
By the way, in consideration of productivity, when the heating time of the required part in the substrate and the film forming apparatus is not sufficient, the temperature of the substrate cannot be sufficiently increased, the film quality of the transparent electrode is deteriorated, etc. Will occur.
[0013]
In addition, when forming the ITO thin film on the nip-type photoelectric conversion layer, the substrate is heated only by the substrate heating heater, particularly when the substrate is a film substrate, a stainless steel substrate, or the like. As a result, there is a problem that the heating by the heater is not uniformly performed, and as a result, the uniformity of the film quality and the like is impaired and the distribution is generated, the resistivity is increased and the characteristics of the solar cell are deteriorated.
[0014]
Furthermore, if the heating time by the heater is lengthened, productivity is lowered. Moreover, if the temperature of the heater is raised too much, the temperature of the photoelectric conversion element portion becomes high, for example, boron doped in the p layer in the nip type photoelectric conversion layer diffuses into the i layer, and the performance of the photoelectric conversion element There is a problem that the level is greatly reduced.
[0015]
The above-mentioned problems related to heating are more serious, especially when the pressure during film formation is as low as 2 Pa or less, such as sputtering or vapor deposition, because it is difficult to maintain soaking by heat conduction of gas. It becomes.
[0016]
The present invention has been made to solve the above problems, and the object of the present invention is to make the heating temperature of the substrate uniform and shorten the heating time, thereby reducing the resistivity of the transparent electrode. Another object of the present invention is to provide a method and apparatus for forming a transparent electrode thin film that improves film quality and productivity.
[0017]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a method for forming a transparent electrode thin film on a substrate of a thin film semiconductor device under reduced pressure by a sputtering method or a vapor deposition method. The substrate is heated to a predetermined temperature from both sides on the film surface side to form a film (Invention of Claim 1). Thereby, the heating temperature of the substrate can be made uniform and the heating time can be shortened.
[0018]
In addition, as an embodiment of the invention, the inventions of the following claims 2 to 5 are preferable. That is, in the thin film forming method according to claim 1, the predetermined temperature of the substrate is 150 to 200 ° C. In the case of a substrate type solar cell, the substrate temperature needs to be set to 200 to 250 ° C. or lower in order to prevent thermal degradation of the underlying device. When plastic film is used for the substrate, it must be 300 ° C or less due to the heat resistance regardless of the substrate type or super straight type. Polyethylene terephthalate (PET), polyethylene naphthalate (PEN), poly When using a film such as ether sulfone (PES), it is necessary to set the temperature to 150 to 200 ° C. The present invention is particularly effective when fine control is required such that the upper limit of the substrate temperature is set to about 200 ° C.
[0019]
In the thin film forming method according to claim 1 or 2, the pressure at the time of forming the thin film is 2 Pa or less (the invention of claim 3). As described above, the present invention is effective in the case of 2 Pa or less where it is difficult to maintain the soaking property due to the heat conduction of the gas.
[0020]
Furthermore, in the thin film forming method according to any one of claims 1 to 3, the substrate is a flexible substrate such as a resin film substrate or a stainless steel film substrate (the invention of claim 4). Furthermore, in the thin film formation method according to any one of claims 1 to 4, the transparent electrode thin film is a transparent electrode thin film for a thin film solar cell (invention of claim 5).
[0021]
As an apparatus for carrying out the method of the present invention, the invention of claim 6 is preferable. That is, a thin film forming apparatus by sputtering or vapor deposition for carrying out the transparent electrode thin film forming method according to any one of claims 1 to 5, wherein the sputtering target or It has a vapor deposition source and is provided with heating means for the substrate on both sides of the film forming surface side and the non-film forming surface side of the substrate.
[0022]
As an embodiment of the invention of claim 6, the inventions of claims 7 to 9 below are preferable. That is, in the transparent electrode thin film forming apparatus according to claim 6, the heating means on the film forming surface side includes a rod-shaped, mesh-shaped or flat plate-shaped heater having a plurality of openings facing the film forming surface of the substrate. (Invention of Claim 7) The plurality of openings are openings for preventing clogging between the sputtering target or the vapor deposition source and the substrate.
[0023]
In addition, in the apparatus for forming a transparent electrode thin film by sputtering according to claim 7, the outer shell member of the heater as the heating means on the film-forming surface side is made of metal, and the heater also serves as the anode electrode. Invention). Thereby, the function as an anode electrode can be provided to a heater.
[0024]
Furthermore, in the transparent electrode thin film forming apparatus according to claim 8, the heater having the structure also serving as the anode electrode includes a movable device that is movable in parallel with the film forming surface of the substrate. ). In order to improve the in-plane film thickness uniformity, it is preferable to make the heater movable.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0026]
FIG. 1 is a schematic schematic configuration diagram of a basic transparent electrode thin film forming apparatus according to an embodiment of the present invention. As shown in FIG. 1, one or a plurality of non-film-formation-side heaters h1 and film-formation-side heaters h2 are arranged in a vacuum container a2 with a substrate a1 interposed therebetween. In addition, a particle generation source a3 that forms a transparent electrode such as a sputtering target or an evaporation source is provided on the side opposite to the substrate-side heater h2 to form a film so as not to block the flow of particles to the substrate a1. The shape of the surface side heater h2 is, for example, a rod shape having a plurality of openings, a mesh shape, a flat plate shape, or a ring shape. When film formation is performed using the sputtering method, the external material of the film formation surface side heater h2 is used as a metal, and the anode electrode is also used. A driving device (not shown) that is movable in the direction parallel to the substrate a1 is attached to the film-forming surface side heater h2.
[0027]
FIG. 2 shows a schematic schematic configuration diagram of an embodiment of an apparatus for forming a transparent electrode film using a sputtering method, among apparatuses related to the present invention. In the figure, a heater h1, a sputtering target a31, and a magnet a4 are installed in a vacuum container a2, and a substrate a1 is installed on the heater h1. A DC power source was connected to the sputter target a31, ITO was used as the sputter target, and a flexible polyimide substrate was applied to the substrate a1.
[0028]
Further, a ring-shaped rod heater h21 is attached between the substrate a1 and the sputter target a31. The ring-shaped rod heater h21 was a heater having substantially the same dimensions as the outer circumference of the magnet a4. 2 shows an example in which one rod-shaped heater h21 is provided. For example, as shown in FIG. 3, a plurality of heaters may be arranged in two upper and lower stages to enhance the heating effect.
[0029]
The rod-shaped heater h21 was a heater whose external material was metal, and was electrically connected so as to be ground potential. In this case, the rod-shaped heater h21 is also given a role as an anode electrode, but the rod-shaped heater h21 may be an insulating material as long as it has a heating function. The distance between the substrate 1a and the sputter target a31 was 5 cm, and the distance between the sputter target a31 and the rod heater h21 was 1 cm. The rod heater h21 may be close to the substrate a1 side in order to improve the heating effect. In this case, the effect of the bar heater h21 as an anode electrode is reduced.
[0030]
The magnet a4 and the rod-shaped heater h21 used movable types that operate in parallel with the substrate in order to improve the utilization efficiency of the target and the in-plane uniformity of the thin film. The rod-shaped heater h21 and the magnet a4 are fixed to a moving table that reciprocates by a drive shaft that is driven by a motor (not shown) outside the film forming chamber. Further, the rod heater h21 is connected to an external heater power source via a moving table, and the temperature can be controlled by adjusting the power source.
[0031]
The film-forming surface side heater h2 shown in FIG. 1 may have a flat plate shape or a mesh shape in addition to the rod shape shown in FIG. 2, but a particle generation source a3 having a function of generating particles forming a transparent electrode; It is necessary to have an opening so as not to block between the substrate a1. FIG. 4 shows an example when the mesh heater h3 is used. In FIG. 4, the mesh heater h3 is installed so that the distance between the substrate a1 and the particle generation source a3 is smaller than the distance between the substrate a1 and the mesh heater h3. However, in order to improve the heating effect, the mesh heater h3 is used. May be brought closer to the substrate a1. In this case, the effect of the mesh heater h3 as an anode electrode is reduced.
[0032]
【Example】
Next, an example when the film is formed by the sputtering apparatus of the embodiment of FIG. 2 will be described below. The heater h1 and the rod heater h21 in FIG. 2 each have a temperature control mechanism independently, and the temperature can be set independently. A stepping roll type apparatus in which a transparent electrode sputtering chamber having such a facility is connected to a plasma CVD chamber for forming a photoelectric conversion layer, as disclosed in Patent Document 2, wherein each layer is formed. The film was formed using an apparatus capable of transporting the film forming surface while maintaining the vacuum.
[0033]
The apparatus used in the examples has a function of manufacturing a photoelectric conversion element having a relatively large area of 40 cm × 80 cm at a time. A substrate type photoelectric conversion element was manufactured using such an apparatus. After the metal electrode film has already been formed on the polyimide substrate, the substrate is put into a stepping roll type apparatus, and after vacuuming, each layer of the photoelectric conversion layer is formed using the plasma CVD method while being transported, It was conveyed to the transparent electrode sputtering chamber. A metal electrode and a pin type photoelectric conversion layer are already formed on the substrate 1a until just before forming the transparent electrode. As the photoelectric conversion layer, an a-Si / a-SiGe tandem cell in which an a-Si single cell and an a-SiGe single cell are connected in series was fabricated.
[0034]
As the film forming conditions for the transparent electrode, film formation was performed under the following conditions: heater h1 at 200 ° C., rod heater h21 unheated and 300 ° C. When the substrate temperature was measured using a thermocouple in advance under each temperature condition of the rod heater h21, in the case of non-heating, there was a temperature distribution of about 120 ° C ± 20 ° C in a 40cm x 80cm plane. In contrast, at 300 ° C (the rod heater h21 was moved in parallel with the substrate), it became 170 ° C and 5 ° C, indicating that the substrate temperature was increased and the uniformity of the temperature was improved. .
[0035]
After transporting to the sputtering chamber, the sputtering chamber was isolated from the outside and evacuated, and then a mixed gas of Ar and O 2 was put in the sputtering chamber and maintained at 2 Pa. During this work, the magnet a4 and the rod-shaped heater h21 began to move in the direction parallel to the substrate a1. The flow rate of O 2 was such that the oxygen concentration in the ITO film was about 1.2% under each condition. Thereafter, the state was maintained for about 1 minute for pressure stabilization and substrate heating, and then 500 W of DC was applied from a DC power source. The sputtering time was adjusted so that the film thickness of the transparent electrode was about 80 nm from the film formation rate examined in advance.
[0036]
After film formation was completed, the completed photoelectric conversion element was taken out from the vacuum vessel, and the production of the solar cell was completed through a modularization process. This time, two or more samples each having the same film forming conditions were produced, and one sample was used as a sample for evaluating the sheet resistance of the transparent electrode without performing the modularization process.
[0037]
In order to investigate the characteristics of the solar cell produced under each condition, IV characteristics under white light (100 mW / cm 2 ) were measured using a modularized solar cell. In the measurement, in order to make the area accurate, the measurement was performed in a state where a mask having a known area was covered on the solar cell. The measured data was corrected to a value corresponding to 25 ° C. by temperature correction. The measured results are shown in Table 1.
[0038]
[Table 1]
Figure 0003846633
Table 1 shows the measured values of open-circuit voltage, short-circuit current density, fill factor, conversion efficiency, and series resistance for the non-heated bar heater h21 and the heating temperature of 300 ° C., respectively. As is apparent from the results in Table 1, it can be seen that when the temperature of the rod-shaped heater h21 is set to 300 ° C., the series resistance component of the solar cell is reduced and the characteristics of the solar cell are improved.
[0039]
In addition, the sheet resistance was measured using a four-terminal method for a cell that was not subjected to the modularization process. Table 2 shows the measurement results of the sheet resistance of the transparent electrode of the solar cell produced under each condition.
[0040]
[Table 2]
Figure 0003846633
As is apparent from the results in Table 2, when the temperature of the bar heater h21 is set to 300 ° C., the transparent electrode sheet resistance of the solar cell is lower than the sheet resistance of the solar cell set to non-heating. I understand.
[0041]
【The invention's effect】
As described above, according to the present invention, in the transparent electrode thin film forming apparatus by sputtering or vapor deposition, the vacuum container has the sputtering target or vapor deposition source facing the substrate, and the film is formed by sandwiching the substrate. Since the heating means for the substrate is provided on both the surface side and the non-film-forming surface side, and the substrate is heated to a predetermined temperature from both sides of the substrate-forming surface side and the non-film-forming surface side to form a film. ,
By uniformizing the heating temperature of the substrate and shortening the heating time, it is possible to reduce the resistivity of the transparent electrode, improve the film quality, and improve the productivity. In particular, when applied to a thin film solar cell, the series resistance component of the solar cell is reduced, and the effect of improving the characteristics of the solar cell can be obtained.
[Brief description of the drawings]
1 is a schematic schematic configuration diagram of an embodiment of a basic transparent electrode thin film forming apparatus according to the present invention. FIG. 2 is a schematic schematic configuration diagram of an embodiment when the apparatus of FIG. 1 is applied to a sputtering apparatus. 3 is a schematic schematic configuration diagram of an embodiment of a sputtering apparatus different from FIG. 2. FIG. 4 is a schematic schematic configuration diagram of an embodiment of a transparent electrode thin film forming apparatus different from FIG.
a1: Substrate, a2: Vacuum container, a3: Particle source, a4: Magnet, a31: Sputter target, h1: Non-film-forming surface side heater, h2: Film-forming surface side heater, h3: Mesh heater, h21: Rod heater.

Claims (9)

薄膜半導体デバイスの基板上に、減圧下において、スパッタ法または蒸着法により透明電極薄膜を形成する方法において、前記基板の製膜面側および非製膜面側の両側から基板を所定温度に加熱して製膜することを特徴とする透明電極薄膜形成方法。In a method of forming a transparent electrode thin film on a substrate of a thin film semiconductor device by a sputtering method or a vapor deposition method under reduced pressure, the substrate is heated to a predetermined temperature from both the film forming surface side and the non-film forming surface side of the substrate. And forming a transparent electrode thin film. 請求項1に記載の薄膜形成方法において、前記基板の所定温度は、150〜200℃とすることを特徴とする透明電極薄膜形成方法。2. The thin film forming method according to claim 1, wherein the predetermined temperature of the substrate is 150 to 200 [deg.] C. 請求項1または2に記載の薄膜形成方法において、前記薄膜形成時の圧力は、2Pa以下とすることを特徴とする透明電極薄膜形成方法。The method for forming a thin film according to claim 1 or 2, wherein the pressure during the formation of the thin film is 2 Pa or less. 請求項1ないし3のいずれか1項に記載の薄膜形成方法において、前記基板は、樹脂フィルム基板やステンレススティールフィルム基板等の可とう性基板とすることを特徴とする透明電極薄膜形成方法。4. The thin film forming method according to claim 1, wherein the substrate is a flexible substrate such as a resin film substrate or a stainless steel film substrate. 請求項1ないし4のいずれか1項に記載の薄膜形成方法において、前記透明電極薄膜は、薄膜太陽電池用の透明電極薄膜とすることを特徴とする透明電極薄膜形成方法。5. The thin film forming method according to claim 1, wherein the transparent electrode thin film is a transparent electrode thin film for a thin film solar cell. 請求項1ないし5のいずれか1項に記載の透明電極薄膜形成方法を実施するためのスパッタまたは蒸着による薄膜形成装置であって、真空容器内に、基板に対面して、スパッタターゲットまたは蒸着源を有し、かつ基板を挟んでその製膜面側および非製膜面側の両側に基板の加熱手段を備えることを特徴とする透明電極薄膜形成装置。A thin film forming apparatus by sputtering or vapor deposition for carrying out the transparent electrode thin film forming method according to any one of claims 1 to 5, wherein the sputtering target or vapor deposition source faces a substrate in a vacuum vessel. And a substrate heating means on both the film-forming surface side and the non-film-forming surface side across the substrate. 請求項6に記載の透明電極薄膜形成装置において、前記製膜面側の加熱手段は、基板の製膜面に対向して複数個の開口を有する棒状,網目状もしくは平板状のヒーターとすることを特徴とする透明電極薄膜形成装置。7. The transparent electrode thin film forming apparatus according to claim 6, wherein the heating means on the film forming surface side is a rod-shaped, mesh-shaped or flat plate-shaped heater having a plurality of openings facing the film forming surface of the substrate. A transparent electrode thin film forming apparatus. 請求項7に記載のスパッタによる透明電極薄膜形成装置において、前記製膜面側の加熱手段としてのヒーターの外殻部材は金属とし、前記ヒーターはアノード電極を兼ねる構成とすることを特徴とする透明電極薄膜形成装置。8. The transparent electrode thin film forming apparatus by sputtering according to claim 7, wherein an outer shell member of a heater as a heating means on the film forming surface side is made of metal, and the heater also serves as an anode electrode. Electrode thin film forming device. 請求項8に記載のスパッタによる透明電極薄膜形成装置において、前記アノード電極を兼ねる構成のヒーターは、基板の製膜面と平行に可動させる可動装置を備えることを特徴とする透明電極薄膜形成装置。9. The transparent electrode thin film forming apparatus by sputtering according to claim 8, wherein the heater configured to serve also as the anode electrode includes a movable device that is movable in parallel with the film forming surface of the substrate.
JP2003038503A 2003-02-17 2003-02-17 Method and apparatus for forming transparent electrode thin film Expired - Fee Related JP3846633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003038503A JP3846633B2 (en) 2003-02-17 2003-02-17 Method and apparatus for forming transparent electrode thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038503A JP3846633B2 (en) 2003-02-17 2003-02-17 Method and apparatus for forming transparent electrode thin film

Publications (2)

Publication Number Publication Date
JP2004247685A JP2004247685A (en) 2004-09-02
JP3846633B2 true JP3846633B2 (en) 2006-11-15

Family

ID=33023020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038503A Expired - Fee Related JP3846633B2 (en) 2003-02-17 2003-02-17 Method and apparatus for forming transparent electrode thin film

Country Status (1)

Country Link
JP (1) JP3846633B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4761326B2 (en) * 2010-01-15 2011-08-31 シャープ株式会社 Thin film forming apparatus system and thin film forming method
JP6305864B2 (en) * 2014-07-31 2018-04-04 東京エレクトロン株式会社 Film forming apparatus and film forming method

Also Published As

Publication number Publication date
JP2004247685A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
EP0002383B1 (en) Method and apparatus for depositing semiconductor and other films
US6245648B1 (en) Method of forming semiconducting materials and barriers
US4328258A (en) Method of forming semiconducting materials and barriers
EP1465262A2 (en) Zinc oxide film treatment method and method of manufacturing photovoltaic device and utilizing the same
US20040191950A1 (en) Method of producing photovoltaic device
JPH10335684A (en) Manufacture of photoelectric converter
JP3897622B2 (en) Method for producing compound semiconductor thin film
US20120156827A1 (en) Method for forming cadmium tin oxide layer and a photovoltaic device
JPWO2017170125A1 (en) Manufacturing method of substrate with transparent conductive film, manufacturing apparatus for substrate with transparent conductive film, substrate with transparent conductive film, and solar cell
WO2023124048A1 (en) Heterojunction solar cell, preparation method thereof and power generation apparatus
US6413794B1 (en) Method of forming photovoltaic element
JP4067589B2 (en) Thin film solar cell fabrication method
JP3846633B2 (en) Method and apparatus for forming transparent electrode thin film
EP2693496B1 (en) Method for manufacturing cigs thin-film solar cells using substrates not containing sodium
JP2006269607A (en) Method of manufacturing photovoltaic power element
US5049523A (en) Method of forming semiconducting materials and barriers
KR100936487B1 (en) Manufacturing method of cds/cdte thin film solar cells
CN115295658A (en) Solvation-free all-inorganic perovskite solar cell and preparation method thereof
KR20100085769A (en) Cds/cdte thin film solar cells and manufacturing method thereof
JP3006701B2 (en) Thin-film semiconductor solar cells
CN113793900A (en) AZO film-based resistive random access memory and preparation method thereof
US5543634A (en) Method of forming semiconductor materials and barriers
JP3504838B2 (en) Amorphous silicon solar cell
Takano et al. Excitation frequency effects on stabilized efficiency of large-area amorphous silicon solar cells using flexible plastic film substrate
JP2000004036A (en) Forming method of fine crystal semiconductor layer and photovoltaic element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060816

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees