JP3846209B2 - Multilayer printed wiring board manufacturing method and multilayer printed wiring board - Google Patents

Multilayer printed wiring board manufacturing method and multilayer printed wiring board Download PDF

Info

Publication number
JP3846209B2
JP3846209B2 JP2001076419A JP2001076419A JP3846209B2 JP 3846209 B2 JP3846209 B2 JP 3846209B2 JP 2001076419 A JP2001076419 A JP 2001076419A JP 2001076419 A JP2001076419 A JP 2001076419A JP 3846209 B2 JP3846209 B2 JP 3846209B2
Authority
JP
Japan
Prior art keywords
hole
conductive
printed wiring
wiring board
multilayer printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001076419A
Other languages
Japanese (ja)
Other versions
JP2002280750A (en
Inventor
孝一 神山
浩之 笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2001076419A priority Critical patent/JP3846209B2/en
Publication of JP2002280750A publication Critical patent/JP2002280750A/en
Application granted granted Critical
Publication of JP3846209B2 publication Critical patent/JP3846209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、上下の面に導電性箔をそれぞれ形成した絶縁基板内に貫通孔を穿設し、且つ、この貫通孔内及び上下の導電性箔に内層導電性メッキ層を形成して上下の導電性箔同士を電気的に接続すると共に、貫通孔内で内層導電性メッキ層を形成した孔内に絶縁性樹脂を充填することでIVH(Interstitial Via Hole )を形成した多層印刷配線基板において、多層印刷配線基板への高温ハンダ付け時にIVHに生じた熱応力を緩和するための多層印刷配線基板の製造方法及び多層印刷配線基板に関するものである。
【0002】
【従来の技術】
近年、電子機器の小型化に伴って、この電子機器に適用される印刷配線基板(プリント配線基板)への高密度な部品実装を実現するために、多層化を図った多層印刷配線基板が用いられている。この際、多層印刷配線基板はビルドアップ基板とも呼称されており、とくに、この種の多層印刷配線基板は携帯用電子機器に多用されている。
【0003】
図6(a),(b)は従来の多層印刷配線基板を摸式的に示した上面図,縦断面図である。
【0004】
図6(a),(b)に示した従来の多層印刷配線基板1Aにおいて、コア材としてガラスエポキシ樹脂を用いた絶縁基板2は、上下の面2a,2bに導電性がある銅箔などを用いて導電性箔3,3がそれぞれ形成されており、この絶縁基板2の上面2a及び/又は下面2b側を多層化する際に、ドリルなどを用いて絶縁基板2及び導電性箔3,3を貫通して貫通孔2cが穿設されている。そして、絶縁基板2の貫通孔2c内及び導電性箔3,3上に銅メッキなどにより内層導電性メッキ層4,4を形成して、上下の導電性箔3,3同士を電気的に接続した後に、貫通孔2c内で内層導電性メッキ層4を形成した孔4a内に孔埋め用として絶縁性を有するエポキシ樹脂5を充填することでIVH(Interstitial Via Hole )6が形成されている。尚、上記したIVH6に対して周知のスルーホール(図示せず)は、絶縁基板2の貫通孔2c内に内層導電性メッキ層4を形成して上下の導電性箔3,3同士を電気的に接続したまま孔4a内にエポキシ樹脂5が充填されていないものである。
【0005】
更に、IVH6を形成した後、絶縁基板2の上下の面2a,2bに形成した導電性箔3,3及びこの導電性箔3,3上に積層して形成した内層導電性メッキ層4,4が所定の回路パターンとなるようにマスキング処理及びエッチング処理を施して導電性回路パターン(3A,4A),(3B,4B)を形成し、これらの導電性回路パターン(3A,4A),(3B,4B)上及びIVH6の上下に絶縁層7,7を膜付けして硬化させ、更に、絶縁層7,7上から炭酸ガスレーザなどを用いて導電性回路パターン(3A,4A),(3B,4B)に到達するまで有底孔7a,7bを穿設し、この後、絶縁層7,7上及び有底孔7a,7b内を粗面化して銅メッキなどにより外層導電性メッキ層(又は内層導電性メッキ層)8,8を形成して、外層導電性メッキ層(又は内層導電性メッキ層)8,8が所定の回路パターンとなるようにマスキング処理及びエッチング処理を施して絶縁層7,7上に導電性回路パターン8A,8Bを形成することで、多層化した従来の多層印刷配線基板1Aが構成されている。
【0006】
尚、絶縁層7,7上及び有底孔7a,7b内に内層導電性メッキ層8,8を形成する場合には、以下、同様に多層化を繰り返して、より多層化された従来の多層印刷配線基板1Aが構成されている。
【0007】
【発明が解決しようとする課題】
ところで、近年の環境問題を考慮して、接合用のハンダ成分から鉛を削除する傾向にあり、これによりハンダの融点は上昇し、IVH6を形成した従来の多層印刷配線基板1Aに対して高温ハンダ付けが行われている。
【0008】
また、従来の多層印刷配線基板1Aでは、IVH6の上下に層間を絶縁するための絶縁層7,7が膜付けされているが、このIVH6は異種材料に囲まれた状態にあり、絶縁基板2の貫通孔2c内に形成した内層導電性メッキ層4と、孔4a内に充填したエポキシ樹脂5との熱膨脹率の違いからIVH6内に熱応力が生じることが本発明者等による有限要素法を用いて解析した結果判明した。
【0009】
具体的には、図6(a),(b)に示したように、例えばIVH6の上方で絶縁層7を介して対向する位置に、アース用又はシールド用として大きな導電性回路パターン8A1が形成されている場合に、高温ハンダ付け時にIVH6に生じた熱応力により絶縁層7と導電性回路パターン8A1との間で層間剥離やクラックなどが発生し、多層印刷配線基板1Aの機能を失うといった致命的な問題が起きる。この際、本発明者等の予備実験によれば矩形状や円形状の大きな導電性回路パターン8A1の面積が25mm以上の時に、層間剥離やクラックなどが発生し易いことが判明した。
【0010】
そこで、従来の多層印刷配線基板1Aへの高温ハンダ付け時において、IVH6の熱応力による問題点を解決する方法の一例として、IVH6を形成する際に内層導電性メッキ層4と同じ成分(例えば銅ペースト)の孔埋め材料を用いて熱伝導率を略等しくすることで熱応力の発生を低減させる方法があるが、この場合には孔埋め材料自体のコストも高くつき且つ銅ペーストなどではIVH6から突出した余分な銅ペーストを平坦に研磨できない。また、高温ハンダ付け時の問題点を解決する方法の他例として、絶縁層7上でIVH6と対向する位置に面積の大きな導電性回路パターンを形成しないければ良いものの、この方法を適用すると導電性回路パターンを設計する際に導電性回路パターンの位置が規制されてしまうといった課題がある。
【0011】
【課題を解決するための手段】
本発明は上記課題に鑑みてなされたものであり、第1の発明は、上下の面に導電性箔をそれぞれ形成した絶縁基板内に貫通孔を穿設する工程と、
前記貫通孔内及び上下の前記導電性箔上に内層導電性メッキ層を形成して上下の前記導電性箔同士を電気的に接続させる工程と、
前記内層導電性メッキ層を形成した後、前記絶縁基板をベーキング(乾燥)する工程と、
前記絶縁基板をベーキングした後、前記貫通孔内で前記内層導電性メッキ層を形成した孔内に絶縁性樹脂を充填して、IVH(Interstitial Via Hole )を形成する工程と、
前記絶縁基板の上下の面のうち多層化する面側で前記IVHから突出した余分な前記絶縁性樹脂を研磨して該IVHの端部を平坦化する工程と、
前記絶縁基板の上下の面のうち多層化する面側に絶縁層を膜付けする工程と、
前記絶縁層上に導電性回路パターンを形成すると共に、前記絶縁層上で前記IVHと対向する位置に応力緩和用のベント(孔)を有するベント用導電性パターンを形成する工程とからなることを特徴とする多層印刷配線基板の製造方法である。
【0012】
また、第2の発明は、上下の面に導電性箔をそれぞれ形成した絶縁基板内に貫通孔を穿設し、且つ、この貫通孔内及び上下の前記導電性箔に内層導電性メッキ層を形成して上下の前記導電性箔同士を電気的に接続すると共に、前記貫通孔内で前記内層導電性メッキ層を形成した孔内に絶縁性樹脂を充填することでIVH(Interstitial Via Hole )を形成し、更に、絶縁基板の上下の面のうち多層化する面側に絶縁層を膜付けして、この絶縁層上に導電性回路パターンを形成した多層印刷配線基板において、
前記絶縁層上で前記IVHと対向する位置に応力緩和用のベント(孔)を有するベント用導電性パターンを形成したことを特徴とする多層印刷配線基板である。
【0013】
また、第3の発明は、上記した第2の発明の多層印刷配線基板において、
前記ベント用導電性パターンは面積が25mm以上であり、且つ、前記ベント(孔)の中心位置のズレ量は前記貫通孔の中心位置に対して0.8mm以内であり、且つ、前記ベント(孔)の径は前記貫通孔の径dに対して1/3d以上であることを特徴とする多層印刷配線基板である。
【0014】
【発明の実施の形態】
以下に本発明に係る多層印刷配線基板の製造方法及び多層印刷配線基板の一実施例を図1乃至図5を参照して詳細に説明する。
【0015】
図1は本発明に係る多層印刷配線基板の製造方法を工程順に説明するための工程図(その1)、
図2は本発明に係る多層印刷配線基板の製造方法を工程順に説明するための工程図(その2)、
図3(a),(b)は本発明に係る多層印刷配線基板を摸式的に示した上面図,縦断面図、
図4は本発明に係る多層印刷配線基板と、従来の多層印刷配線基板とを比較するために、有限要素法を用いて解析した結果を示した図であり、(a)は応力解析結果を示し、(b)は歪み解析結果を示した図、
図5は本発明に係る多層印刷配線基板において、IVHに対する評価内容と、この評価内容に対応した結果を示した図である。
【0016】
尚、説明の便宜上、先に従来例で示した構成部材と同一構成部材に対しては同一の符号を付して説明し、且つ、従来例と異なる構成部材に新たな符号を付して説明する。
【0017】
まず、本発明に係る多層印刷配線基板1Bの製造方法について、図1及び図2を用いて工程順に説明する。
【0018】
図1(a)に示したように、コア材としてガラスエポキシ樹脂を用いた絶縁基板2の上下の面2a,2bに導電性がある銅箔などを用いて導電性箔3,3がそれぞれ形成されており、ドリルなどを用いて絶縁基板2及び導電性箔3,3を貫通して直径が0.3mm程度の貫通孔2cが穿設されている。
【0019】
次に、図1(b)に示したように、絶縁基板2の貫通孔2c内及び上下の導電性箔3,3上に銅メッキなどにより内層導電性メッキ層4を形成して、上下の導電性箔3,3を電気的に接続している。この際、上下の導電性箔3,3上に積層された内層導電性メッキ層4,4は導電性箔3,3と一体の導電体となる。
【0020】
この後、絶縁基板2の貫通孔2c内で内層導電性メッキ層4を形成した孔4a内を孔埋めするために、孔埋め用の絶縁性樹脂(例えばエポキシ樹脂)の硬化温度以上の例えば80°C〜180°Cの温度でベーキング(乾燥)を行う。このベーキングにより、孔埋め硬化温度で発生する絶縁基板2からのアウトガスや絶縁基板2の貫通孔2c内で内層導電性メッキ層4を形成した孔4a内に存在する水分を除去している。
【0021】
次に、図1(c)に示したように、絶縁基板2の下面2b側を受け台U上に載置し、且つ、絶縁基板2の貫通孔2c内で層導電性メッキ層4を形成した孔4aの近傍部位だけを開口したマスク材Mを絶縁基板2の上面2a側で導電性箔3b上に積層した内層導電性メッキ層4上に載せて、スクリーン印刷法によるスキージSKを用いて内層導電性メッキ層4を形成した孔4a内に孔埋め用として絶縁性を有するエポキシ樹脂(絶縁性樹脂)5を充填し、このエポキシ樹脂5を所定の硬化温度で硬化させることで、絶縁基板2の貫通孔2c内で内層導電性メッキ層4を形成した孔4a内に硬質となったエポキシ樹脂5が埋め込まれてIVH(Interstitial Via Hole )6が形成される。ここでは、絶縁基板2を事前にベーキングしているために、エポキシ樹脂5の硬化時に気泡が発生しない。
【0022】
次に、図1(d)に示したように、バフB,B(又はベルトサンダー)により、IVH6から突出した余分な孔埋め用のエポキシ樹脂5を研磨して、IVH6の上下の端部を導電性箔3,3上に積層した内層導電性メッキ層4,4の表面と略同一になるまで平坦化する。
【0023】
次に、図1(e)に示したように、導電性箔3,3上に積層した内層導電性メッキ層4,4上に、所定の回路パターン部位以外の部位を開口したドライフィルム(図示せず)を貼りつけて、フォトマスクを通して開口した部位を紫外線により露光し、この後、塩化第2銅エッチング液により露光部位をエッチングすることにより、絶縁基板2の上下の面2a,2b上に導電性回路パターン(3A,4A),(3B,4B)が形成される。この際、絶縁基板2の貫通孔2c内に形成した内層導電性メッキ層4は、導電性回路パターン(3A,4A),(3B,4B)に接続されている。
【0024】
次に、図2(a)に示したように、絶縁基板2の上下の面2a,2b上に形成した導電性回路パターン(3A,4A),(3B,4B)上及びIVH6の上下にエポキシ樹脂を主成分とした層間絶縁樹脂を用いて絶縁層7,7を膜付けし、これら上下の絶縁層7,7を所定硬化温度で硬化させる。この後、絶縁層7,7上から炭酸ガスレーザなどを用いて導電性回路パターン(3A,4A),(3B,4B)に到達するまで有底孔7a,7bを穿設している。
【0025】
次に、図2(b)に示したように、絶縁層7,7の表面及び有底孔7a,7b内を過マンガン酸などを用いて粗面化して銅メッキなどにより外層導電性メッキ層(又は内層導電性メッキ層)8,8を形成している。尚、外層導電性メッキ層8,8を形成する場合にはこの上に絶縁層を膜付けすることなくこの外層導電性メッキ層8,8で多層化を終了した場合であり、内層導電性メッキ層8,8を形成する場合にはこの上に更に絶縁層を膜付けしてより多層化を施すものである。
【0026】
次に、図2(c)に示したように、外層導電性メッキ層(又は内層導電性メッキ層)8,8上に、所定の回路パターン部位以外の部位を開口したドライフィルム(図示せず)を貼りつけて、フォトマスクを通して開口した部位を紫外線により露光し、この後、塩化第2銅エッチング液により露光部位をエッチングすることにより、上下の絶縁層7,7上に導電性回路パターン8A,8Bが形成されると共に、絶縁層7,7上でIVH6の上下と対向する位置に応力緩和用のベント(Vent…孔)V,Vを有するベント用導電性パターン8C,8Dが導電性回路パターン8A,8Bと同時に形成される。この際、応力緩和用のベント(孔)V,V の中心位置を、後述するようにIVH6の中心位置(=貫通孔2cの中心位置)と略一致させることが必要である。
【0027】
またこの際、外層導電性メッキ層8,8を形成した場合には、導電性回路パターン8A,8B及びベント用導電性パターン8C,8Dは外部に露出しており、一方、内層導電性メッキ層8,8を形成した場合には、図2(d)に示したように、導電性回路パターン8A,8B上及びベント用導電性パターン8C,8D上に絶縁層9,9が更に膜付けされることでより多層化が図られる。
【0028】
尚、上記の製造方法では、絶縁基板2の上下の面2a,2bを多層化して説明したが、絶縁基板2内にIVH6を形成した状態で上下の面2a,2bのいずれか一方の面だけを多層化しても良く、この場合には多層化する面側でIVH6から突出した余分なエポキシ樹脂を研磨して平坦化すると共に、絶縁基板2の上下の面2a,2bのうち多層化する面側だけに絶縁層7を膜付けして、この絶縁層7上に導電性回路パターン(8A,8B)を形成すると同時に、この絶縁層7上でIVH6と対向する位置に応力緩和用のベント(孔)Vを有するベント用導電性パターン(8C,8D)を形成すれば良いものである。
【0029】
次に、図3に示した如く、上記のようにして製造した本発明に係る多層印刷配線基板1Bでは、上下の面2a,2bに導電性箔3,3をそれぞれ形成した絶縁基板2内に貫通孔2cを穿設し、且つ、貫通孔2c内及び上下の導電性箔3,3上に内層導電性メッキ層4を形成して上下の導電性箔3,3同士を電気的に接続すると共に、絶縁基板2の貫通孔2c内で内層導電性メッキ層4を形成した孔4a内にポキシ樹脂(絶縁性樹脂)5を充填することでIVH(Interstitial Via Hole )6を形成し、更に、絶縁基板2の上下の面2a,2bのうち多層化する面側だけに絶縁層7を膜付けして、この絶縁層7上に導電性回路パターン(8A,8B)を形成すると共に、絶縁層7上でIVH6と対向する位置に応力緩和用のベント(孔)Vを有するベント用導電性パターン(8C,8D)を形成していることを特徴とするものである。
【0030】
この際、ベント用導電性パターン(8C,8D)は導電性回路パターン(8A,8B)として機能させることも可能であり、後述するようにベント用導電性パターン(8C,8D)の面積がアース用、シールド用などとして大きく形成された場合に、ここに応力緩和用のベント(孔)Vを形成することで高温ハンダ付け時にIVH6に発生する熱応力を緩和するものである。
【0031】
ここで、本発明に係る多層印刷配線基板1Bと、従来の多層印刷配線基板1A(図6)とを比較するため、図4(a),(b)では、絶縁基板2の貫通孔2c内にIVH6を形成した状態で、上側に示した本発明側では絶縁基板2の上面2a側に膜付けした絶縁層7上でIVH6と対向する位置に応力緩和用のベント(孔)Vを有するベント用導電性パターン8Cを形成し、一方、下側に示した従来例側では絶縁基板2の下面2b側に膜付けした絶縁層7上でIVH6と対向する位置に導電性回路パターン8Bを形成し、この状態で汎用有限要素プログラム「ANSYS」を用いて250°Cにおける熱応力解析を行った。
【0032】
この際、絶縁基板2の貫通孔2cの径はφ0.3mm、ベント(孔)Vの径もφ0.3mmとし、且つ、貫通孔2c内に形成したIVH6の中心位置とベント(孔)Vの中心位置とを一致させると共に、ベント用導電性パターン8C及び導電性回路パターン8Bの面積を共に1mmに設定して、有限要素法による応力解析と歪み解析とを行った。
【0033】
まず、図4(a)に示した有限要素法による応力解析結果から、本発明側ではベント用導電性パターン8C内に応力緩和用のベント(孔)Vを形成しため、このベント(孔)Vによって高温ハンダ付け時にIVH6に生じる熱応力が緩和されるので、IVH6の上方部位と対向した部位に応力がほとんど発生していないのに対し、従来例側では高温ハンダ付け時にIVH6に生じる熱応力が絶縁層7,導電性回路パターン8Bへと伝達されるので、IVH6の下方部位と対向した導電性回路パターン8Bに応力が発生していることが明らかである。
【0034】
次に、図4(b)に示した有限要素法による歪み解析結果から、本発明側ではIVH6の上方部位と対向した絶縁層7に僅かに歪みが発生しているものの、従来例側ではIVH6の下方部位と対向した絶縁層7に大きな歪みが発生していることが明らかである。
【0035】
ここで、上記した応力緩和用のベント(孔)V,Vを有するベント用導電性パターン8C,8Dを形成する際に、従来技術で説明したように、本発明者等の予備実験によれば大きな導電性回路パターン8A1(図6)の面積が25mm以上の時に層間剥離やクラックなどが発生し易いので、ベント用導電性パターン8C,8Dの面積を25mm以上とし、更に、図3及び図5(a),(b)に示した如く、IVH6の中心位置に対してベント(孔)の中心位置のズレ量δを、IVH6の真上(0mm)、0.5mm、0.8mm、1.0mmと振った時に、ズレ量δを0.8mm以内に設定することで層間剥離やクラックが発生しないことが判明した。また、IVH6を形成するために絶縁基板2に穿設した貫通孔2cの孔径d(=0.3mm)に対して、ベント(孔)Vの孔径を、貫通孔2cの孔径dと同径、1/2d、1/3d、1/5dと振った時に、ベント(孔)Vの孔径を貫通孔2cの孔径dに対して1/3d以上に設定することで層間剥離やクラックが発生しないことが判明した。
【0036】
これにより、本発明に係る多層印刷配線基板1Bの製造方法及び多層印刷配線基板1Bでは、絶縁基板2の上下の面2a,2bにそれぞれ形成した上下の導電性箔3,3同士を接合するためのIVH6を絶縁基板2内に形成しても、絶縁基板2の上下の面2a,2bのうち多層化した面側に膜付けした絶縁層7上でIVH6と対向する位置に応力緩和用のベント(孔)Vを有するベント用導電性パターン(8C,8D)を形成することで、高温ハンダ付け時にIVH6で発生する熱応力による層間剥離やクラックが全く発生しないため、多層印刷配線基板1Bの品質及び信頼性を向上させることができる。
【0037】
【発明の効果】
以上詳述した本発明に係る多層印刷配線基板の製造方法及び多層印刷配線基板によると、絶縁基板の上下の面にそれぞれ形成した導電性箔同士を接合するためのIVHを絶縁基板内に形成しても、絶縁基板の上下の面のうち多層化した面側に膜付けした絶縁層上でIVHと対向する位置に応力緩和用のベント(孔)を有するベント用導電性パターンを形成することで、高温ハンダ付け時にIVHで発生する熱応力による層間剥離やクラックが全く発生しないため、多層印刷配線基板の品質及び信頼性を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係る多層印刷配線基板の製造方法を工程順に説明するための工程図(その1)である。
【図2】本発明に係る多層印刷配線基板の製造方法を工程順に説明するための工程図(その2)である。
【図3】(a),(b)は本発明に係る多層印刷配線基板を摸式的に示した上面図,縦断面図である。
【図4】本発明に係る多層印刷配線基板と、従来の多層印刷配線基板とを比較するために、有限要素法を用いて解析した結果を示した図であり、(a)は応力解析結果を示し、(b)は歪み解析結果を示した図である。
【図5】本発明に係る多層印刷配線基板において、IVHに対する評価内容と、この評価内容に対応した結果を示した図である。
【図6】(a),(b)は従来の多層印刷配線基板を摸式的に示した上面図,縦断面図である。
【符号の説明】
1…本発明に係る多層印刷配線基板、
2…絶縁基板、2a,2b…上下の面、2c…貫通孔、
3…導電性箔、3A,3B…導電性回路パターン、
4…内層導電性メッキ層、4a…孔、4A,4B…導電性回路パターン、
5…絶縁性樹脂(エポキシ樹脂)、
6…IVH(Interstitial Via Hole )、
7…絶縁層、
8…内層導電性メッキ層、8A,8B…導電性回路パターン、
8C,8D…ベント用導電性パターン、
V…ベント(Vent…孔)。
[0001]
BACKGROUND OF THE INVENTION
According to the present invention, through holes are formed in insulating substrates having conductive foils formed on upper and lower surfaces, and inner conductive plating layers are formed in the through holes and upper and lower conductive foils. In a multilayer printed wiring board in which IVH (Interstitial Via Hole) is formed by electrically connecting conductive foils and filling an insulating resin in a hole in which an inner conductive plating layer is formed in a through hole, The present invention relates to a method for manufacturing a multilayer printed wiring board and a multilayer printed wiring board for alleviating thermal stress generated in IVH during high-temperature soldering to the multilayer printed wiring board.
[0002]
[Prior art]
In recent years, with the miniaturization of electronic equipment, multilayer printed wiring boards designed to be multilayered have been used to realize high-density component mounting on printed wiring boards (printed wiring boards) applied to electronic equipment. It has been. At this time, the multilayer printed wiring board is also called a build-up board. In particular, this type of multilayer printed wiring board is frequently used in portable electronic devices.
[0003]
6A and 6B are a top view and a longitudinal sectional view schematically showing a conventional multilayer printed wiring board.
[0004]
In the conventional multilayer printed wiring board 1A shown in FIGS. 6A and 6B, the insulating substrate 2 using glass epoxy resin as the core material is made of conductive copper foil or the like on the upper and lower surfaces 2a and 2b. The conductive foils 3 and 3 are respectively formed, and when the upper surface 2a and / or the lower surface 2b side of the insulating substrate 2 is multilayered, the insulating substrate 2 and the conductive foils 3 and 3 are used by using a drill or the like. A through hole 2c is formed through the through hole. Then, inner conductive plating layers 4 and 4 are formed by copper plating or the like in the through hole 2c of the insulating substrate 2 and on the conductive foils 3 and 3, and the upper and lower conductive foils 3 and 3 are electrically connected to each other. After that, an IVH (Interstitial Via Hole) 6 is formed by filling the hole 4a in which the inner conductive plating layer 4 is formed in the through hole 2c with an epoxy resin 5 having an insulating property for filling the hole. A well-known through hole (not shown) for the IVH 6 described above forms an inner conductive plating layer 4 in the through hole 2c of the insulating substrate 2 to electrically connect the upper and lower conductive foils 3 and 3 to each other. The hole 4a is not filled with the epoxy resin 5 while being connected to.
[0005]
Further, after the IVH 6 is formed, the conductive foils 3 and 3 formed on the upper and lower surfaces 2a and 2b of the insulating substrate 2 and the inner conductive plating layers 4 and 4 formed by laminating on the conductive foils 3 and 3 are formed. Are subjected to a masking process and an etching process to form a predetermined circuit pattern to form conductive circuit patterns (3A, 4A), (3B, 4B), and these conductive circuit patterns (3A, 4A), (3B , 4B) and the insulating layers 7 and 7 are formed on the upper and lower sides of the IVH 6 and cured, and the conductive circuit patterns (3A, 4A), (3B, 4B), the bottomed holes 7a and 7b are drilled, and then the outer conductive plating layer (or the copper plating or the like is roughened by roughening the insulating layers 7 and 7 and the bottomed holes 7a and 7b. Inner layer conductive plating layer) 8, 8 formed, outer Conductive masking and etching are performed so that the conductive plating layers (or inner conductive plating layers) 8 and 8 have a predetermined circuit pattern to form conductive circuit patterns 8A and 8B on the insulating layers 7 and 7, respectively. Thus, a multilayered conventional multilayer printed wiring board 1A is configured.
[0006]
In the case where the inner conductive plating layers 8 and 8 are formed on the insulating layers 7 and 7 and in the bottomed holes 7a and 7b, the conventional multi-layering is repeated by repeating the multi-layering in the same manner. A printed wiring board 1A is configured.
[0007]
[Problems to be solved by the invention]
By the way, in consideration of recent environmental problems, there is a tendency to remove lead from the solder component for bonding, and as a result, the melting point of the solder rises, which is higher than that of the conventional multilayer printed wiring board 1A formed with IVH6. The attachment is done.
[0008]
Further, in the conventional multilayer printed wiring board 1A, insulating layers 7 and 7 for insulating layers between the upper and lower sides of the IVH 6 are formed. The IVH 6 is surrounded by different materials, and the insulating substrate 2 The finite element method by the present inventors is that thermal stress is generated in the IVH 6 due to the difference in thermal expansion coefficient between the inner conductive plating layer 4 formed in the through hole 2c and the epoxy resin 5 filled in the hole 4a. As a result of analysis by using it, it became clear.
[0009]
Specifically, as shown in FIGS. 6A and 6B, a large conductive circuit pattern 8A1 for grounding or shielding is formed at a position facing the insulating layer 7 above the IVH 6, for example. In such a case, delamination or cracks occur between the insulating layer 7 and the conductive circuit pattern 8A1 due to the thermal stress generated in the IVH 6 during high-temperature soldering, and the function of the multilayer printed wiring board 1A is lost. Problems arise. At this time, according to preliminary experiments by the present inventors, it was found that delamination and cracks are likely to occur when the conductive circuit pattern 8A1 having a large rectangular shape or circular shape has an area of 25 mm 2 or more.
[0010]
Therefore, as an example of a method for solving the problems caused by the thermal stress of IVH6 during high temperature soldering to the conventional multilayer printed wiring board 1A, the same components (for example, copper as the inner conductive plating layer 4) are formed when forming IVH6. There is a method of reducing the generation of thermal stress by making the thermal conductivity substantially equal using the paste filling material, but in this case, the cost of the filling material itself is high, and in the case of copper paste or the like from IVH6 The protruding excess copper paste cannot be polished flat. As another example of a method for solving the problem at the time of high-temperature soldering, it is sufficient that a conductive circuit pattern having a large area is not formed on the insulating layer 7 at a position facing the IVH 6. When designing a conductive circuit pattern, there is a problem that the position of the conductive circuit pattern is restricted.
[0011]
[Means for Solving the Problems]
The present invention has been made in view of the above problems, and the first invention includes a step of forming a through hole in an insulating substrate in which conductive foils are formed on upper and lower surfaces, respectively.
Forming an inner conductive plating layer in the through hole and on the upper and lower conductive foils to electrically connect the upper and lower conductive foils;
A step of baking (drying) the insulating substrate after forming the inner conductive plating layer;
After baking the insulating substrate, filling the hole in which the inner conductive plating layer is formed in the through hole with an insulating resin to form an IVH (Interstitial Via Hole);
Polishing an excess of the insulating resin protruding from the IVH on the side of the upper and lower surfaces of the insulating substrate that is multi-layered, and flattening the ends of the IVH;
A step of forming an insulating layer on the side of the upper and lower surfaces of the insulating substrate to be multilayered;
Forming a conductive circuit pattern on the insulating layer, and forming a vent conductive pattern having a stress relaxation vent at a position facing the IVH on the insulating layer. It is a manufacturing method of the multilayer printed wiring board characterized.
[0012]
According to a second aspect of the present invention, through holes are formed in an insulating substrate having conductive foils formed on upper and lower surfaces, and inner conductive plating layers are formed in the through holes and on the upper and lower conductive foils. The upper and lower conductive foils are electrically connected to each other, and an IVH (Interstitial Via Hole) is formed by filling an insulating resin in the hole in which the inner conductive plating layer is formed in the through hole. In the multilayer printed wiring board in which an insulating layer is formed on the surface to be multilayered among the upper and lower surfaces of the insulating substrate, and a conductive circuit pattern is formed on the insulating layer.
The multilayer printed wiring board is characterized in that a vent conductive pattern having a stress relaxation vent (hole) is formed on the insulating layer at a position facing the IVH.
[0013]
The third invention is the multilayer printed wiring board of the second invention described above,
The vent conductive pattern has an area of 25 mm 2 or more, and the deviation amount of the center position of the vent (hole) is within 0.8 mm with respect to the center position of the through hole. The diameter of the hole) is 1/3 d or more with respect to the diameter d of the through hole.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a method for manufacturing a multilayer printed wiring board and a multilayer printed wiring board according to the present invention will be described in detail below with reference to FIGS.
[0015]
FIG. 1 is a process diagram (No. 1) for explaining a manufacturing method of a multilayer printed wiring board according to the present invention in the order of processes;
FIG. 2 is a process diagram (No. 2) for explaining the manufacturing method of the multilayer printed wiring board according to the present invention in the order of processes,
3 (a) and 3 (b) are a top view, a longitudinal sectional view schematically showing a multilayer printed wiring board according to the present invention,
FIG. 4 is a diagram showing a result of analysis using a finite element method in order to compare the multilayer printed wiring board according to the present invention with a conventional multilayer printed wiring board. FIG. (B) is a diagram showing the distortion analysis results,
FIG. 5 is a diagram showing evaluation contents for IVH and results corresponding to the evaluation contents in the multilayer printed wiring board according to the present invention.
[0016]
For convenience of explanation, the same constituent members as those shown in the conventional example will be described with the same reference numerals, and the constituent members different from the conventional examples will be given new reference numerals. To do.
[0017]
First, the manufacturing method of the multilayer printed wiring board 1B according to the present invention will be described in the order of steps with reference to FIGS.
[0018]
As shown in FIG. 1A, conductive foils 3 and 3 are formed using conductive copper foils on the upper and lower surfaces 2a and 2b of the insulating substrate 2 using glass epoxy resin as a core material, respectively. A through hole 2c having a diameter of about 0.3 mm is drilled through the insulating substrate 2 and the conductive foils 3 and 3 using a drill or the like.
[0019]
Next, as shown in FIG. 1B, an inner conductive plating layer 4 is formed by copper plating or the like in the through hole 2c of the insulating substrate 2 and on the upper and lower conductive foils 3 and 3, The conductive foils 3 and 3 are electrically connected. At this time, the inner conductive plating layers 4 and 4 laminated on the upper and lower conductive foils 3 and 3 are integrated with the conductive foils 3 and 3.
[0020]
Thereafter, in order to fill the hole 4a in which the inner conductive plating layer 4 is formed in the through hole 2c of the insulating substrate 2, for example, 80 or more of the curing temperature of the insulating resin (for example, epoxy resin) for filling the hole. Baking (drying) is performed at a temperature of ° C to 180 ° C. By this baking, outgas from the insulating substrate 2 generated at the hole-filling curing temperature and moisture present in the hole 4a in which the inner conductive plating layer 4 is formed in the through hole 2c of the insulating substrate 2 are removed.
[0021]
Next, as shown in FIG. 1C, the lower surface 2 b side of the insulating substrate 2 is placed on the receiving table U, and the layer conductive plating layer 4 is formed in the through hole 2 c of the insulating substrate 2. A mask material M having an opening only in the vicinity of the hole 4a is placed on the inner conductive plating layer 4 laminated on the conductive foil 3b on the upper surface 2a side of the insulating substrate 2, and using a squeegee SK by a screen printing method. An insulating substrate is formed by filling an insulating epoxy resin (insulating resin) 5 for filling a hole in the hole 4a in which the inner conductive plating layer 4 is formed, and curing the epoxy resin 5 at a predetermined curing temperature. The hardened epoxy resin 5 is embedded in the hole 4a in which the inner conductive plating layer 4 is formed in the two through holes 2c to form an IVH (Interstitial Via Hole) 6. Here, since the insulating substrate 2 is baked in advance, bubbles are not generated when the epoxy resin 5 is cured.
[0022]
Next, as shown in FIG. 1D, the upper and lower end portions of the IVH 6 are polished by buffing B, B (or belt sander) with the excess epoxy resin 5 for filling the hole protruding from the IVH 6. The surface is flattened until the surface of the inner conductive plating layers 4 and 4 laminated on the conductive foils 3 and 3 is substantially the same.
[0023]
Next, as shown in FIG. 1E, on the inner conductive plating layers 4 and 4 laminated on the conductive foils 3 and 3, a dry film having openings other than a predetermined circuit pattern portion (see FIG. The portion opened through the photomask is exposed with ultraviolet light, and then the exposed portion is etched with cupric chloride etchant, so that the upper and lower surfaces 2a and 2b of the insulating substrate 2 are exposed. Conductive circuit patterns (3A, 4A) and (3B, 4B) are formed. At this time, the inner conductive plating layer 4 formed in the through hole 2c of the insulating substrate 2 is connected to the conductive circuit patterns (3A, 4A), (3B, 4B).
[0024]
Next, as shown in FIG. 2A, epoxy is formed on the conductive circuit patterns (3A, 4A), (3B, 4B) formed on the upper and lower surfaces 2a, 2b of the insulating substrate 2 and on the upper and lower sides of IVH6. The insulating layers 7 and 7 are formed by using an interlayer insulating resin mainly composed of a resin, and the upper and lower insulating layers 7 and 7 are cured at a predetermined curing temperature. Thereafter, the bottomed holes 7a and 7b are formed from above the insulating layers 7 and 7 using a carbon dioxide laser or the like until reaching the conductive circuit patterns (3A, 4A) and (3B, 4B).
[0025]
Next, as shown in FIG. 2B, the surface of the insulating layers 7 and 7 and the inside of the bottomed holes 7a and 7b are roughened using permanganic acid or the like, and an outer conductive plating layer is formed by copper plating or the like. (Or inner conductive plating layer) 8 and 8 are formed. When the outer conductive plating layers 8 and 8 are formed, the outer conductive plating layers 8 and 8 are not multilayered without forming an insulating layer thereon. When the layers 8 and 8 are formed, an insulating layer is further formed thereon to further increase the number of layers.
[0026]
Next, as shown in FIG. 2C, a dry film (not shown) having openings other than a predetermined circuit pattern portion on the outer conductive plating layers (or inner conductive plating layers) 8 and 8 is opened. ) Is exposed to ultraviolet rays through the photomask, and then the exposed portions are etched with a cupric chloride etchant, whereby the conductive circuit pattern 8A is formed on the upper and lower insulating layers 7 and 7. , 8B are formed, and conductive patterns 8C, 8D for venting having vents (Vent... Holes) V, V for stress relaxation at positions facing the upper and lower sides of IVH 6 on insulating layers 7, 7 are conductive circuits. It is formed simultaneously with the patterns 8A and 8B. At this time, it is necessary to make the center positions of the stress relaxation vents (holes) V, V 1 substantially coincide with the center position of the IVH 6 (= the center position of the through hole 2c) as will be described later.
[0027]
At this time, when the outer conductive plating layers 8 and 8 are formed, the conductive circuit patterns 8A and 8B and the vent conductive patterns 8C and 8D are exposed to the outside, while the inner conductive plating layers In the case of forming 8, 8, insulating layers 9, 9 are further formed on the conductive circuit patterns 8A, 8B and the vent conductive patterns 8C, 8D as shown in FIG. By doing so, more layers can be achieved.
[0028]
In the above manufacturing method, the upper and lower surfaces 2a and 2b of the insulating substrate 2 have been described as being multi-layered. However, only one of the upper and lower surfaces 2a and 2b with the IVH 6 formed in the insulating substrate 2 is described. In this case, the excess epoxy resin protruding from the IVH 6 is polished and flattened on the surface to be multilayered, and the multilayered surface of the upper and lower surfaces 2a and 2b of the insulating substrate 2 is laminated. A conductive circuit pattern (8A, 8B) is formed on the insulating layer 7 by coating the insulating layer 7 only on the side, and at the same time, a stress relaxation vent (on the position facing the IVH 6 on the insulating layer 7) A vent conductive pattern (8C, 8D) having a hole V may be formed.
[0029]
Next, as shown in FIG. 3, in the multilayer printed wiring board 1B according to the present invention manufactured as described above, the conductive foils 3 and 3 are formed on the upper and lower surfaces 2a and 2b, respectively. The through hole 2c is formed, and the inner conductive plating layer 4 is formed in the through hole 2c and on the upper and lower conductive foils 3 and 3 to electrically connect the upper and lower conductive foils 3 and 3 to each other. At the same time, an IVH (Interstitial Via Hole) 6 is formed by filling a hole 4a in which the inner conductive plating layer 4 is formed in the through hole 2c of the insulating substrate 2 with a poxy resin (insulating resin) 5; An insulating layer 7 is formed only on the upper and lower surfaces 2a and 2b of the insulating substrate 2 so as to form a multilayer, and conductive circuit patterns (8A and 8B) are formed on the insulating layer 7. 7 having a vent (hole) V for stress relaxation at a position opposite to IVH 6 on 7. The conductive pattern (8C, 8D) is formed.
[0030]
At this time, the vent conductive pattern (8C, 8D) can also function as the conductive circuit pattern (8A, 8B), and the area of the vent conductive pattern (8C, 8D) is grounded as described later. In the case where it is formed widely for use as a shield or shield, a stress relaxation vent (hole) V is formed here to relieve the thermal stress generated in the IVH 6 during high-temperature soldering.
[0031]
Here, in order to compare the multilayer printed wiring board 1B according to the present invention with the conventional multilayer printed wiring board 1A (FIG. 6), in FIGS. 4 (a) and 4 (b), the inside of the through hole 2c of the insulating substrate 2 is shown. In a state where IVH6 is formed on the insulating layer 7 formed on the upper surface 2a side of the insulating substrate 2 on the side of the present invention shown on the upper side, a vent (hole) V for stress relaxation is provided at a position facing the IVH6. On the other hand, the conductive pattern 8B is formed at a position facing the IVH 6 on the insulating layer 7 formed on the lower surface 2b side of the insulating substrate 2 in the conventional side shown below. In this state, a thermal stress analysis at 250 ° C. was performed using a general-purpose finite element program “ANSYS”.
[0032]
At this time, the diameter of the through hole 2c of the insulating substrate 2 is φ0.3 mm, the diameter of the vent (hole) V is also φ0.3 mm, and the center position of the IVH 6 formed in the through hole 2c and the vent (hole) V While matching the center position, the areas of the vent conductive pattern 8C and the conductive circuit pattern 8B were both set to 1 mm 2 , and stress analysis and strain analysis were performed by the finite element method.
[0033]
First, from the result of stress analysis by the finite element method shown in FIG. 4A, the present invention side forms a vent (hole) V for stress relaxation in the conductive pattern 8C for vent, and this vent (hole). Thermal stress generated in IVH6 during high-temperature soldering is relieved by V, so that almost no stress is generated in the portion facing the upper portion of IVH6, whereas in the conventional example, thermal stress generated in IVH6 during high-temperature soldering Is transmitted to the insulating layer 7 and the conductive circuit pattern 8B, it is clear that stress is generated in the conductive circuit pattern 8B facing the lower part of the IVH 6.
[0034]
Next, from the result of strain analysis by the finite element method shown in FIG. 4B, although a slight strain is generated in the insulating layer 7 facing the upper portion of the IVH 6 on the present invention side, the IVH 6 is on the conventional example side. It is clear that a large strain is generated in the insulating layer 7 facing the lower part of the substrate.
[0035]
Here, when forming the vent conductive patterns 8C and 8D having the above-described stress relaxation vents (holes) V and V, according to the preliminary experiments by the present inventors as described in the prior art. When the area of the large conductive circuit pattern 8A1 (FIG. 6) is 25 mm 2 or more, delamination or cracks are likely to occur. Therefore, the area of the vent conductive patterns 8C and 8D is 25 mm 2 or more. As shown in FIGS. 5A and 5B, the deviation δ of the center position of the vent (hole) with respect to the center position of IVH6 is set to be directly above IVH6 (0 mm), 0.5 mm, 0.8 mm, It was found that delamination and cracks do not occur when the deviation amount δ is set within 0.8 mm when shaken at 1.0 mm. In addition, the hole diameter of the vent (hole) V is the same as the hole diameter d of the through hole 2c with respect to the hole diameter d (= 0.3 mm) of the through hole 2c formed in the insulating substrate 2 to form IVH6. No delamination or cracks are generated by setting the hole diameter of the vent (hole) V to be 1 / 3d or more with respect to the hole diameter d of the through hole 2c when shaken to 1 / 2d, 1 / 3d, and 1 / 5d. There was found.
[0036]
Thereby, in the manufacturing method of the multilayer printed wiring board 1B and the multilayer printed wiring board 1B according to the present invention, the upper and lower conductive foils 3, 3 respectively formed on the upper and lower surfaces 2a, 2b of the insulating substrate 2 are joined. Even if the IVH 6 is formed in the insulating substrate 2, a stress relaxation vent is formed at a position facing the IVH 6 on the insulating layer 7 formed on the upper and lower surfaces 2 a and 2 b of the insulating substrate 2. Since the vent conductive pattern (8C, 8D) having (holes) V is formed, there is no delamination or cracking due to thermal stress generated in IVH6 during high temperature soldering, so the quality of the multilayer printed wiring board 1B And reliability can be improved.
[0037]
【The invention's effect】
According to the method for manufacturing a multilayer printed wiring board and the multilayer printed wiring board according to the present invention described in detail above, IVH for bonding the conductive foils formed respectively on the upper and lower surfaces of the insulating substrate is formed in the insulating substrate. However, by forming a conductive pattern for vent having a vent (hole) for stress relaxation at a position facing IVH on the insulating layer formed on the multilayered surface side of the upper and lower surfaces of the insulating substrate. In addition, since delamination and cracks due to thermal stress generated in IVH do not occur at the time of high temperature soldering, the quality and reliability of the multilayer printed wiring board can be improved.
[Brief description of the drawings]
FIG. 1 is a process diagram (part 1) for explaining a manufacturing method of a multilayer printed wiring board according to the present invention in the order of steps;
FIG. 2 is a process diagram (part 2) for explaining the method of manufacturing the multilayer printed wiring board according to the present invention in the order of steps;
3A and 3B are a top view and a longitudinal sectional view schematically showing a multilayer printed wiring board according to the present invention.
FIG. 4 is a diagram showing a result of analysis using a finite element method in order to compare a multilayer printed wiring board according to the present invention with a conventional multilayer printed wiring board, and FIG. (B) is the figure which showed the distortion analysis result.
FIG. 5 is a diagram showing evaluation contents for IVH and results corresponding to the evaluation contents in the multilayer printed wiring board according to the present invention.
FIGS. 6A and 6B are a top view and a longitudinal sectional view schematically showing a conventional multilayer printed wiring board, respectively.
[Explanation of symbols]
1 ... multilayer printed wiring board according to the present invention,
2 ... Insulating substrate, 2a, 2b ... Upper and lower surfaces, 2c ... Through hole,
3 ... conductive foil, 3A, 3B ... conductive circuit pattern,
4 ... inner conductive plating layer, 4a ... hole, 4A, 4B ... conductive circuit pattern,
5. Insulating resin (epoxy resin),
6… IVH (Interstitial Via Hole),
7: Insulating layer,
8: inner conductive plating layer, 8A, 8B ... conductive circuit pattern,
8C, 8D ... conductive pattern for venting,
V ... Vent (Vent ... hole).

Claims (3)

上下の面に導電性箔をそれぞれ形成した絶縁基板内に貫通孔を穿設する工程と、
前記貫通孔内及び上下の前記導電性箔上に内層導電性メッキ層を形成して上下の前記導電性箔同士を電気的に接続させる工程と、
前記内層導電性メッキ層を形成した後、前記絶縁基板をベーキング(乾燥)する工程と、
前記絶縁基板をベーキングした後、前記貫通孔内で前記内層導電性メッキ層を形成した孔内に絶縁性樹脂を充填して、IVH(Interstitial Via Hole )を形成する工程と、
前記絶縁基板の上下の面のうち多層化する面側で前記IVHから突出した余分な前記絶縁性樹脂を研磨して該IVHの端部を平坦化する工程と、
前記絶縁基板の上下の面のうち多層化する面側に絶縁層を膜付けする工程と、
前記絶縁層上に導電性回路パターンを形成すると共に、前記絶縁層上で前記IVHと対向する位置に応力緩和用のベント(孔)を有するベント用導電性パターンを形成する工程とからなることを特徴とする多層印刷配線基板の製造方法。
A step of forming a through hole in an insulating substrate formed with conductive foils on the upper and lower surfaces, and
Forming an inner conductive plating layer in the through hole and on the upper and lower conductive foils to electrically connect the upper and lower conductive foils;
A step of baking (drying) the insulating substrate after forming the inner conductive plating layer;
After baking the insulating substrate, filling the hole in which the inner conductive plating layer is formed in the through hole with an insulating resin to form an IVH (Interstitial Via Hole);
Polishing an excess of the insulating resin protruding from the IVH on the side of the upper and lower surfaces of the insulating substrate that is multi-layered, and flattening the ends of the IVH;
A step of forming an insulating layer on the side of the upper and lower surfaces of the insulating substrate to be multilayered;
Forming a conductive circuit pattern on the insulating layer, and forming a vent conductive pattern having a stress relaxation vent at a position facing the IVH on the insulating layer. A manufacturing method of a multilayer printed wiring board characterized by the above.
上下の面に導電性箔をそれぞれ形成した絶縁基板内に貫通孔を穿設し、且つ、この貫通孔内及び上下の前記導電性箔に内層導電性メッキ層を形成して上下の前記導電性箔同士を電気的に接続すると共に、前記貫通孔内で前記内層導電性メッキ層を形成した孔内に絶縁性樹脂を充填することでIVH(Interstitial Via Hole )を形成し、更に、絶縁基板の上下の面のうち多層化する面側に絶縁層を膜付けして、この絶縁層上に導電性回路パターンを形成した多層印刷配線基板において、
前記絶縁層上で前記IVHと対向する位置に応力緩和用のベント(孔)を有するベント用導電性パターンを形成したことを特徴とする多層印刷配線基板。
A through hole is formed in an insulating substrate having conductive foils formed on the upper and lower surfaces, and inner conductive plating layers are formed in the through hole and on the upper and lower conductive foils to form the upper and lower conductive layers. The foils are electrically connected to each other, and an IVH (Interstitial Via Hole) is formed by filling an insulating resin in the hole in which the inner conductive plating layer is formed in the through hole. In a multilayer printed wiring board in which an insulating layer is formed on the side of the upper and lower surfaces to be multilayered, and a conductive circuit pattern is formed on the insulating layer,
A multilayer printed wiring board, wherein a vent conductive pattern having a stress relaxation vent (hole) is formed at a position facing the IVH on the insulating layer.
請求項2記載の多層印刷配線基板において、
前記ベント用導電性パターンは面積が25mm以上であり、且つ、前記ベント(孔)の中心位置のズレ量は前記貫通孔の中心位置に対して0.8mm以内であり、且つ、前記ベント(孔)の径は前記貫通孔の径dに対して1/3d以上であることを特徴とする多層印刷配線基板。
In the multilayer printed wiring board according to claim 2,
The vent conductive pattern has an area of 25 mm 2 or more, and the deviation amount of the center position of the vent (hole) is within 0.8 mm with respect to the center position of the through hole. The multilayer printed wiring board is characterized in that the diameter of the hole) is 1 / 3d or more with respect to the diameter d of the through hole.
JP2001076419A 2001-03-16 2001-03-16 Multilayer printed wiring board manufacturing method and multilayer printed wiring board Expired - Fee Related JP3846209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001076419A JP3846209B2 (en) 2001-03-16 2001-03-16 Multilayer printed wiring board manufacturing method and multilayer printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001076419A JP3846209B2 (en) 2001-03-16 2001-03-16 Multilayer printed wiring board manufacturing method and multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JP2002280750A JP2002280750A (en) 2002-09-27
JP3846209B2 true JP3846209B2 (en) 2006-11-15

Family

ID=18933353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001076419A Expired - Fee Related JP3846209B2 (en) 2001-03-16 2001-03-16 Multilayer printed wiring board manufacturing method and multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JP3846209B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6586814B2 (en) * 2015-08-05 2019-10-09 富士通株式会社 WIRING BOARD, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE
CN113707671B (en) * 2021-08-03 2023-06-30 深圳市华星光电半导体显示技术有限公司 Display device and array substrate thereof

Also Published As

Publication number Publication date
JP2002280750A (en) 2002-09-27

Similar Documents

Publication Publication Date Title
KR100688768B1 (en) Embedded chip print circuit board and method for fabricating the same
US7282394B2 (en) Printed circuit board including embedded chips and method of fabricating the same using plating
US7506437B2 (en) Printed circuit board having chip package mounted thereon and method of fabricating same
JP6133549B2 (en) Wiring board and method of manufacturing wiring board
KR100898451B1 (en) Method of manufacturing circuit board and communication appliance
KR20060050532A (en) Multilayer wiring board and process for fabricating a multilayer wiring board
US6599617B2 (en) Adhesion strength between conductive paste and lands of printed wiring board, and manufacturing method thereof
WO2011030542A2 (en) Electronic part module and method for producing same
JP5223361B2 (en) Wiring board manufacturing method
US9420696B2 (en) Method of manufacturing wiring substrate
KR101018281B1 (en) Method for fabricating printed circuit board contaning embedded passive components
TW201444440A (en) Printed circuit board and fabricating method thereof
JP3846209B2 (en) Multilayer printed wiring board manufacturing method and multilayer printed wiring board
KR100699237B1 (en) Manufacturing Method for Embedded Printed Circuit Board
JP2000261147A (en) Multilayer wiring board and manufacture thereof
KR100693145B1 (en) Printed circuit board making method
JP2001291956A (en) Multilayered printed wiring board and producing method therefor
JP2011061010A (en) Method for manufacturing module having built-in component
KR100771320B1 (en) Embedded chip printed circuit board and fabricating method of the same
KR100601486B1 (en) Embedded chip print circuit board and method for fabricating the same
JP7430494B2 (en) Connection hole forming method for multilayer wiring board and method for manufacturing multilayer wiring board using the same
KR101609268B1 (en) Embedded board and method of manufacturing the same
KR20060042723A (en) Method for manufacturing rigid-flexible printed circuit board
JP2002026519A (en) Printed-circuit board and its manufacturing method
JP2016207763A (en) Component build-in wiring board and manufacturing method therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090901

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100901

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110901

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120901

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120901

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20130901

LAPS Cancellation because of no payment of annual fees