JP3846065B2 - Electrode for discharge treatment, discharge treatment method and discharge treatment apparatus using the electrode - Google Patents

Electrode for discharge treatment, discharge treatment method and discharge treatment apparatus using the electrode Download PDF

Info

Publication number
JP3846065B2
JP3846065B2 JP30098498A JP30098498A JP3846065B2 JP 3846065 B2 JP3846065 B2 JP 3846065B2 JP 30098498 A JP30098498 A JP 30098498A JP 30098498 A JP30098498 A JP 30098498A JP 3846065 B2 JP3846065 B2 JP 3846065B2
Authority
JP
Japan
Prior art keywords
electrode
discharge treatment
discharge
support
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30098498A
Other languages
Japanese (ja)
Other versions
JP2000133493A (en
Inventor
慶和 近藤
和浩 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP30098498A priority Critical patent/JP3846065B2/en
Publication of JP2000133493A publication Critical patent/JP2000133493A/en
Application granted granted Critical
Publication of JP3846065B2 publication Critical patent/JP3846065B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Plasma Technology (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は放電処理用の電極と該電極を用いた放電処理方法及び放電処理装置に係わり、さらに詳しくは、長時間安定して放電プラズマを発生できる耐久性のよい放電処理用の電極と、この電極を用いて放電プラズマにより支持対に表面性能のよい放電処理をする放電処理方法及び放電処理装置に関する。
【0002】
【従来の技術】
従来より、0.01から10Torr程度の圧力の放電プラズマで支持体表面を放電処理する放電処理装置に用いられる電極が知られているが、この放電処理装置は真空装置が必要となり装置が複雑となるため、その改良として、大気圧または大気圧近傍での放電プラズマが可能な技術が開示されている。そのため、放電プラズマを発生させるために電極の表面を固体誘電体で被覆することが必要となり、その技術が開示されている(特公平2−48626号公報)。
【0003】
しかしながら、この固体誘電体が有機系物質では、物質が経時変化して行き、長時間安定な放電プラズマが得られにくいばかりか、支持体に有機物が付着して品質に悪影響を及ぼすことがあった。そこで、改良として、無機系被覆物として、溶融状態に加熱した溶射材料粉末を金属母材表面に吹き付けて皮膜とするセラミックス溶射法を用いて固体誘電体を形成した電極に関する技術が開示されている(特開平6−96718号公報)。また、ガラスを溶融させて皮膜をつくるガラスライニング法を用いて固体誘電体を金属母材表面に形成した電極に関する技術が開示されている。
【0004】
【発明が解決しようとする課題】
このように、前記従来技術の課題として、上記の放電プラズマ発生用の電極は、いずれもアーク放電防止のために、少なくとも一方の電極表面上にガラス、セラミックス、プラスチック等が被覆されて設けられている。しかしセラミックスの溶射法では、母材の変形は起こりにくいが被覆されたセラミックスの誘電体はポーラス(多孔質)な構造となっており、そこに放電が集中し、ピンホールが生じやすく強い放電が不可能であり、また、均一性に欠けやすく、特に長時間連続して使用すると、絶縁破壊がおこりグロー放電からアーク放電に移行しやすい。また、前記ガラスライニング法で形成した被覆誘電体も母材との熱収縮率差が大きく、そのため歪みや撓みが起こり、長期放電処理が可能な電極製作が不可能であった。以上のように、従来の電極はいずれも耐久性が低く、長時間安定して放電プラズマを発生できるものではなかった。
【0005】
それを避けるためゴムを使用しても有機物であるゴムは支持体面に良からぬ影響を与え、また、どんどんすり減るので耐久性も悪くやや頻繁な交換が必要になる。
【0006】
本発明は上記の課題に鑑みなされたもので、本発明の目的は、長時間安定して放電プラズマを発生でき、短時間に表面処理ができる放電プラズマ用電極を提供することにある。また、本発明の目的は、長時間安定して放電プラズマを発生させ、短時間に表面性能のよい、表面処理ができる表面処理方法、及び表面処理装置を提供することにある。
【0007】
【課題を解決するための手段】
この目的は、次の(1)〜(11)項(請求項1〜11に相当する)の何れか1項により達成される。
【0008】
(1) 一対の対向する電極間に支持体を位置させ、前記電極間に電圧を印加して前記支持体に放電処理を行う放電処理装置に用いる電極において、一対の対向する前記電極の少なくとも一方の対向面は導電性の母材表面に100℃以下で硬化する無機性質の材料をライニングすることで被覆したものであることを特徴とする放電処理用の電極。
【0009】
(2) 前記無機性質材料が常温硬化性のガラスであることを特徴とする(1)項に記載の放電処理用の電極。
【0010】
(3) 前記電極は大気圧近傍下での放電処理を行う電極であることを特徴とする(1)又は(2)項に記載の放電処理用の電極。
【0011】
(4) 前記電極の少なくとも1つは円筒型であることを特徴とする(1)〜(3)項の何れか1項に記載の放電処理用の電極。
【0012】
(5) 前記円筒型の電極の少なくとも1つは支持体と接しながら回転するロール型であることを特徴とする(4)項に記載の放電処理用の電極。
【0013】
(6) 一対の対向する電極の少なくとも一方の対向面に、導電性の母材表面が100℃以下で硬化する無機性質の材料を誘電体としてライニングされた電極を設け、前記一対の対向する電極間に支持体を位置させて、放電処理室を構成し、該放電処理室に60圧力%以上のArガスを含む混合ガスを導入して、前記電極に電圧を印加させ、大気圧または大気圧近傍の圧力下で放電プラズマを励起させて放電出力7.5kW/m2以上で連続搬送される支持体表面の放電処理を行うことを特徴とする放電処理方法。
【0014】
(7) 一対の対向する電極の少なくとも一方の対向面に、導電性の母材表面が100℃以下で硬化する無機性質の材料を誘電体としてライニングされた電極と、前記一対の対向する電極間に支持体を位置させて放電処理する放電処理室と、該処理室に60圧力%以上のArガスを含む混合ガスを導入して充填する充填手段と、前記電極間に電圧を印加する電圧発生手段とを有し、大気圧または大気圧近傍の圧力下で、放電プラズマを励起させて放電出力7.5kW/m2以上で連続搬送される支持体表面を放電処理することを特徴とする放電処理装置。
【0015】
(8) 前記支持体はプラスチックフィルムであることを特徴とする(6)項に記載の放電処理方法。
(9) 前記プラスチックフィルムは感光性材料用支持体であることを特徴とする(8)項に記載の放電処理方法。
(10) 前記支持体はプラスチックフィルムであることを特徴とする(7)項に記載の放電処理装置。
(11) 前記プラスチックフィルムは感光性材料用支持体であることを特徴とする(10)項に記載の放電処理装置。
また、前記の目的は次の技術手段(イ)〜(ヌ)項の何れか1項により達成される。
) 一対の対向する電極間に支持体を位置させ、前記電極間に電圧を印加して前記支持体に放電処理を行う放電処理装置に用いる電極において、一対の対向する前記電極の少なくとも一方の対向面は、金属とセラミックスの複合材料を母材とし、該母材表面に誘電体を被覆したものであることを特徴とする放電処理用の電極。
【0016】
) 前記電極は大気圧近傍下での放電処理を行う電極であることを特徴とする()項に記載の放電処理用の電極。
【0017】
) 前記電極の少なくとも1つは円筒型であることを特徴とする()又は()項に記載の放電処理用の電極。
【0018】
) 前記円筒型の電極の少なくとも1つは支持体と接しながら回転するロール型であることを特徴とする()項に記載の放電処理用の電極。
【0019】
) 一対の対向する電極の少なくとも一方の対向面に、金属とセラミックスの複合材料の母材表面が誘電体をライニングされた電極を設け、前記一対の対向する電極間に支持体を位置させて、放電処理室を構成し、該放電処理室に60圧力%以上のArガスを含む混合ガスを導入して、前記電極に電圧を印加させ、大気圧または大気圧近傍の圧力下で放電プラズマを励起させて放電出力7.5kW/m2以上で連続搬送される支持体表面を放電処理することを特徴とする放電処理方法。
【0020】
) 一対の対向する電極の少なくとも一方の対向面に、金属とセラミックスの複合材料の母材表面が誘電体をライニングされた電極と、前記一対の対向する電極間に支持体を位置させて放電処理する放電処理室と、該処理室に60圧力%以上のArガスを含む混合ガスを導入して充填する充填手段と、前記電極間に電圧を印加する電圧発生手段とを有し、大気圧または大気圧近傍の圧力下で、放電プラズマを励起させて放電出力7.5kW/m2以上で連続搬送される支持体表面を放電処理することを特徴とする放電処理装置。
【0021】
) 前記支持体はプラスチックフィルムであることを特徴とする()項に記載の放電処理方法。
【0022】
) 前記プラスチックフィルムは感光性材料用支持体であることを特徴とする()項に記載の放電処理方法。
【0023】
) 前記支持体はプラスチックフィルムであることを特徴とする()項に記載の放電処理装置。
【0024】
) 前記プラスチックフィルムは感光性材料用支持体であることを特徴とする()項に記載の放電処理装置。
【0025】
本発明者は、放電処理に必要な誘電体を被覆した電極、その中でも特に円筒電極を製作するための重要点が、熱収縮差による制作時のひずみ、たわみ、ひび割れがなく、かつポーラスのない高精度の無機誘電体の被覆であることに着目した。
【0026】
即ち常温下での母材に対する誘電体被覆による電極製作においても、若しくは、高温下での母材に対する誘電体被覆による電極製作においても、母材と誘電体間の熱膨張の差をなるべく小さくすることが必要であり、そのため前者の製作方法においては、誘電体として常温硬化性のガラスを使用することによって達成されることが分かり、後者の製作方法においては、母材として(たとえば京セラ(株)社製サーメット(商品名))のような金属とセラミックの複合材を用いることにより達成されることが分かった。
【0027】
そのようにして作製された電極とそれを用いた放電処理方法及び放電処理装置により本発明の目的が達成される。
【0028】
【発明の実施の形態】
本発明の放電処理用の電極と放電処理方法及び放電処理装置について、以下にその実施の形態を図を用いて説明するが本発明はこれらに限定されない。また、以下の説明には用語等に対する断定的な表現があるが、本発明の好ましい例を示すもので、本発明の用語の意義や技術的な範囲を限定するものではない。
【0029】
図1(a)は本発明における平板型の電極の一例を、図1(b)は参考例における平板型の電極の一例を示す断面図で、図2は本発明における平板型の電極の他の例を示す断面図であり、図3はそれらの電極を用いた放電処理装置の断面図である。また、図4は本発明における円筒型でロール型の電極の一例を示す斜視図で、図5は円筒型で固定型の電極の一例を示す斜視図で、図6及び図7はそれぞれ円筒型の電極を用いた放電処理装置の断面図である。
【0030】
図1で、1対の電極は下側の電極21と上側の電極22で構成され、1対の電極は、電極間に支持体Fを置き、放電プラズマを発生させ支持体Fの両面に放電処理をするためのものである。電極21、22の構造は平行平面型であるが、これに限らず、図6の本発明の別の放電処理装置の断面図に示すように複数の円筒型の電極26を直進する支持体の両側に対向させたものや、図7の本発明の他の放電処理装置の断面図に示すように、支持体Fを巻回して搬送回転するロール型の電極25に対して複数の円筒型で固定型の電極26を対向させたものや、そのほかに図示はしないが円筒対向平面型、球対向平面型等で用途に応じて適時決定される。このような電極は放電プラズマ処理、コロナ放電処理等の電極として使用出来る。
【0031】
先ず図1,図2に示した平行平面型の電極及びそれを用いた図3の断面図に示す放電処理方法と放電処理装置について説明し、その後で上記図4,図5,図6,図7について詳しく説明する。
【0032】
電極21は図1(a)に示すように金属等の導電性のある母材21aへ100℃以下で硬化する無機性質の材料の誘電体21bを被覆した組み合わせ、又は図1(b)に示すように金属とセラミックスとの複合材料の母材21Aへ高温で溶融するガラス材料等の固体誘電体21Bを被覆した組み合わせで構成されている。電極22は上記電極21と同様に次のようになっている。
【0033】
電極22は図1(a)に示すように金属等の導電性のある母材22aへ100℃以下で硬化する無機性質の材料の誘電体22bを被覆した組み合わせ、又は図1(b)に示すように金属とセラミックスとの複合材料の母材22Aへ高温で溶融するガラス材料等の固体誘電体22Bを被覆した組み合わせで構成されている。
【0034】
勿論、図1(a)において電極21を図1(b)の電極21に換えてもよく、図1(b)において電極22を図1(a)の電極22に換えても良い。
【0035】
ここで、金属等の導電性のある母材21a、22aは銀、白金、ステンレススチール、アルミニウム等の金属が使われ、金属とセラミックとの複合材料の母材21A、22Aは、例えば、京セラ(株)社製商品名サーメットが用いられる。また、100℃以下で硬化する無機性質の材料の誘電体21b,22bは例えば常温硬化性のガラスが使われ、高温で溶融するガラス材料等の固体誘電体21B、22Bは各種ガラス(パイレックス、石英等)、セラミック、金属酸化物(酸化チタニウム、酸化ジルコニウム、酸化アルミニウム)等が用いられる。
【0036】
次に、図2で、1対の電極は下側の電極21と上側の電極23で構成されている。電極21は図1と同一で、また電極23は固体誘電体が設けられていない電極である。1対の電極の下側電極21に支持体Fが置かれ、支持体の片面に放電処理をするためのものである。
【0037】
図3は本発明の放電プラズマによる放電処理装置の一例を示す断面図である。図3で、放電処理装置は電極21,22、保持部60、ガス充填手段50、電圧発生手段40、放電処理室30等で構成されている。
【0038】
支持体Fは実施形態では写真感光材料支持体(フィルムともいう)である。電極21,22は図1(a),(b)等に示すもので、電極間のギャップは例えば10mm程度となっている。
【0039】
保持部60は支持体Fを電極21、22の電極間に搬送ローラ対62,63により保持している。また、支持体Fは搬送ローラ対62,63で駆動されながら矢印の方向に搬送されるようになっている。
【0040】
ガス充填手段50は不活性ガス及び反応ガスの混合ガスを放電処理室30に充填する手段であり、混合ガスはヘリュム(He)及び/又はアルゴン(Ar)の不活性ガスと窒素(N)、酸素(O)、炭酸ガス、水素、水(H2O)等の反応ガスが含まれている。なお、比較的安価なアルゴンガスでの放電が望ましい。
【0041】
電圧発生手段40は電源41より導電性の電極部分21a、22a又は21A、22Aに電圧を印加する。その値は適時決定されるが、例えば電圧が3から5kV程度で、電源周波数は1から100kHzである。
【0042】
放電処理室30はパイレックスガラス製の処理容器31で構成され、該処理容器31内に混合ガスが充填される。なお、実施形態では処理容器31はパイレックスガラス製であるが、電極と絶縁がとれていれば金属製であってもよい。
【0043】
処理容器31内に電極21、22を所定位置に配置し、ガス発生装置51で発生させた混合ガス54をポンプ55で送り、給気口52より放電処理室30の処理容器31内に入れ、該処理容器31内を混合ガス54で充填し排気口53より排出するようにする。次に、電源41により電極21、22に電圧を印加して放電プラズマを発生させる。ここで、ロール状のフィルム61より支持体Fを供給し、搬送ローラ対62、63により、放電処理室30内の電極間を搬送させる。支持体Fは搬送中に放電プラズマにより表面が放電処理され、その後に排出するようになっている。
【0044】
なお、支持体Fの両面に放電処理をする例について説明したが、下側の電極に支持体Fを載置し、支持体Fの上側のみを放電処理するようにしてもよい。
【0045】
図6は複数の円筒型の電極26を直進する支持体の両側に対向させたものであり、搬送ローラ対62,63を介して放電処理室30に等速度で搬送される支持体Fの両面は均一に放電処理される。前述したものと同様の混合ガス54は、給気口52より放電処理室30の処理容器31内に入り、該処理容器31内を混合ガス54で充填し排気口53より排出するようにしてある。尚、円筒型の電極26は図5の斜視図に示すように金属等の導電性のある母材26aへ100℃以下で硬化する無機性質の材料の誘電体26bを被覆した組み合わせ、又は金属とセラミックスとの複合材料の母材26Aへ高温で溶融するガラス材料等の固体誘電体26Bを被覆した組み合わせで構成されている。
【0046】
図7は支持体Fを巻回して搬送回転するロール型の電極25に対して複数の円筒で固定型の電極26を対向させたものであり、ロール型の電極25に巻回してニップローラ65,66で押圧され、支持体Fはガイドローラ64,67を介して放電処理室30に出入され等速度で搬送される。前述したものと同様の混合ガスの放電処理室30への充填は図3,図6の場合と同じにしてある。これにより電極間間隔が極めて安定したものになり、支持体Fには良好な放電処理が行われる。ただし支持体は片面のみ放電処理がなされる。尚、円筒でロール型の電極25は図4の斜視図に示すように金属等の導電性のある母材25aへ100℃以下で硬化する無機性質の材料の誘電体25bを被覆した組み合わせ、又は金属とセラミックスとの複合材料の母材25Aへ高温で溶融するガラス材料等の固体誘電体25Bを被覆した組み合わせで構成されている。
【0047】
ポンプ55を含むガス充填手段50の詳細や、電圧発生手段40は図3と全く同じであるので説明を省略する。
【0048】
尚、金属とセラミックの複合母材に対しては、高温で溶融する誘電体をライニングする代わりに100℃以下で硬化する無機性質の材料をライニングしても良い。
【0049】
【実施例】
母材に対して誘電体被覆を下記表1の手法で行い、150cm巾の円筒電極を各20本製作し、放電条件として支持体フィルムFとの間のギャップを1mmとしArガス中で10kHz,200W/mの電圧を印加して1時間放電処理を続け種々の性能を比較してその表にまとめた。尚、誘電体厚は1mmにした。
【0050】
【表1】

Figure 0003846065
【0051】
表1の結果に見られるように、導電性のセラミック即ち金属とセラミックの複合材料を母材にして高温溶融ガラスや常温ガラスをライニングした円筒型の電極や、金属等の導電性の良い母材に常温ガラスをライニングした円筒型の電極のひび割れは皆無であり、たわみ量も殆ど無く、放電処理における均一性も良く安定しており、耐久性も著しく向上したことが認められる。しかし、従来のように金属等の導電性の良い母材に高温溶融ガラスをライニングした円筒型の電極はひび割れがかなり発生し、たわみ量も大きく放電処理は支持体の幅手に対して不均一であり耐久性も作業性も悪かった。また、金属母材にセラミックを溶射したものはひび割れやたわみ量は良好としても、耐久性に乏しく放電処理はアーク放電が入り、全く実用にならない状態であった。
【0052】
【発明の効果】
本発明により放電処理用の電極は曲がり等の歪みが無く、ひび割れを生ずることの無い、加工精度の高いものが得られるようになった。そして電極の耐久度も向上しより強い放電処理が安定して持続可能になった。
【0053】
また、この電極を用いた放電処理方法や放電処理装置により感光材料等の支持体表面と塗布液との接着性が増して塗布性が大きく安定向上した。
【図面の簡単な説明】
【図1】 本発明の平板型の電極の一例及び参考例の平板型の電極を示す断面図である。
【図2】本発明の平板型の電極の他の例を示す断面図である。
【図3】本発明の放電プラズマによる放電処理装置の一例を示す断面図である。
【図4】本発明の円筒型でロール型の電極の一例を示す斜視図である。
【図5】本発明の円筒型で固定型の電極の一例を示す斜視図である。
【図6】本発明の放電プラズマによる放電処理装置の他の一例を示す断面図である。
【図7】本発明の放電プラズマによる放電処理装置の別の一例を示す断面図である。
【符号の説明】
21,22,23,25,26 電極
21a,22a,25a,26a 金属等導電性のある母材
21A,22A,25A,26A 金属とセラミックスの複合材の母材
21b,22b,25b,26b 100℃以下で硬化する無機性誘電体(常温硬化性ガラス等)
21B,22B,25B,26B 高温で溶融する固体誘電体(石英ガラス等)
30 放電処理室
31 処理容器
40 電圧発生手段
41 電源
50 ガス充填手段
51 ガス発生装置
52 給気口
53 排気口
54 混合ガス
60 保持部
61 ロール状のフィルム
62,63 搬送ローラ対
F 基材(写真感光材料用支持体、フィルム)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a discharge treatment electrode, a discharge treatment method and a discharge treatment apparatus using the electrode, and more specifically, a durable discharge treatment electrode capable of generating discharge plasma stably for a long time, and The present invention relates to a discharge processing method and a discharge processing apparatus for performing discharge processing with good surface performance on a support pair by discharge plasma using electrodes.
[0002]
[Prior art]
Conventionally, an electrode used in a discharge processing apparatus that discharges the surface of a support with a discharge plasma having a pressure of about 0.01 to 10 Torr is known. However, this discharge processing apparatus requires a vacuum apparatus and is complicated. Therefore, as an improvement, a technique capable of performing discharge plasma at or near atmospheric pressure is disclosed. Therefore, it is necessary to coat the surface of the electrode with a solid dielectric in order to generate discharge plasma, and this technique has been disclosed (Japanese Patent Publication No. 2-48626).
[0003]
However, when the solid dielectric is an organic material, the material changes with time, and it is difficult to obtain a stable discharge plasma for a long time. In addition, the organic material may adhere to the support and adversely affect the quality. . Therefore, as an improvement, a technique related to an electrode in which a solid dielectric is formed using a ceramic spraying method in which a thermal spraying material powder heated to a molten state is sprayed onto a metal base material surface as an inorganic coating is disclosed. (JP-A-6-96718). In addition, a technique related to an electrode in which a solid dielectric is formed on the surface of a metal base material by using a glass lining method in which glass is melted to form a film is disclosed.
[0004]
[Problems to be solved by the invention]
Thus, as a problem of the prior art, each of the above-mentioned electrodes for generating discharge plasma is provided with at least one electrode surface coated with glass, ceramics, plastic, etc. in order to prevent arc discharge. Yes. However, in the ceramic spraying method, the base material is unlikely to deform, but the coated ceramic dielectric has a porous structure, where the discharge is concentrated and pinholes are likely to occur, causing a strong discharge. It is impossible, and it tends to lack uniformity, and when used continuously for a long time, dielectric breakdown occurs and it tends to shift from glow discharge to arc discharge. Further, the coated dielectric formed by the glass lining method also has a large difference in thermal shrinkage rate from the base material, which causes distortion and deflection, making it impossible to manufacture an electrode capable of long-term discharge treatment. As described above, none of the conventional electrodes has low durability and cannot stably generate discharge plasma for a long time.
[0005]
In order to avoid this, even if rubber is used, the organic rubber has an adverse effect on the surface of the support, and since it wears out more and more, it has poor durability and requires frequent replacement.
[0006]
The present invention has been made in view of the above problems, and an object of the present invention is to provide an electrode for discharge plasma that can generate discharge plasma stably for a long time and can perform surface treatment in a short time. Another object of the present invention is to provide a surface treatment method and a surface treatment apparatus capable of generating a discharge plasma stably for a long time and performing surface treatment with a good surface performance in a short time.
[0007]
[Means for Solving the Problems]
This object is achieved by any one of the following items (1) to (11 ) (corresponding to claims 1 to 11) .
[0008]
(1) At least one of a pair of opposed electrodes in an electrode used in a discharge treatment apparatus that positions a support between a pair of opposed electrodes and applies a voltage between the electrodes to discharge the support. The electrode for discharge treatment is characterized in that the opposite surface is coated with an inorganic material that is cured at 100 ° C. or less on the surface of the conductive base material.
[0009]
(2) The electrode for electrical discharge treatment according to item (1), wherein the inorganic material is a room temperature curable glass.
[0010]
(3) The electrode for discharge treatment according to (1) or (2), wherein the electrode is an electrode that performs discharge treatment near atmospheric pressure.
[0011]
(4) The electrode for electrical discharge treatment according to any one of items (1) to (3), wherein at least one of the electrodes is cylindrical.
[0012]
(5) The electrode for electric discharge treatment according to (4), wherein at least one of the cylindrical electrodes is a roll type that rotates while being in contact with a support.
[0013]
(6) At least one of the pair of opposing electrodes is provided with an electrode lined with an inorganic material whose dielectric base material is hardened at a temperature of 100 ° C. or less as a dielectric, and the pair of opposing electrodes A support is positioned between them to form a discharge treatment chamber, a mixed gas containing Ar gas of 60 pressure% or more is introduced into the discharge treatment chamber, and a voltage is applied to the electrode, so that atmospheric pressure or atmospheric pressure is applied. A discharge treatment method comprising performing discharge treatment on the surface of a support that is continuously conveyed at a discharge output of 7.5 kW / m 2 or more by exciting discharge plasma under a nearby pressure.
[0014]
(7) Between at least one opposing surface of the pair of opposing electrodes, an electrode lined with an inorganic material whose dielectric base material is hardened at 100 ° C. or less as a dielectric, and the pair of opposing electrodes A discharge treatment chamber in which a support is positioned on the substrate, a filling means for introducing and filling a mixed gas containing Ar gas of 60 pressure% or more into the treatment chamber, and voltage generation for applying a voltage between the electrodes And discharge the substrate surface continuously conveyed at a discharge output of 7.5 kW / m 2 or more by exciting the discharge plasma under atmospheric pressure or a pressure near atmospheric pressure. Processing equipment.
[0015]
(8) The discharge treatment method according to (6), wherein the support is a plastic film.
(9) The discharge treatment method according to item (8), wherein the plastic film is a support for photosensitive material.
(10) The discharge treatment apparatus according to item (7), wherein the support is a plastic film.
(11) The discharge processing apparatus according to (10), wherein the plastic film is a support for photosensitive material.
The above object is achieved by any one of the following technical means (a) to (nu).
(B) to position the support between a pair of opposing electrodes, the electrode used in discharge treatment apparatus by applying a voltage between the electrodes to discharge treatment to the support, at least one of the pair of opposing the electrode The electrode for discharge treatment is characterized in that the opposite surface is made of a composite material of metal and ceramic as a base material, and the surface of the base material is covered with a dielectric.
[0016]
(B) the electrode is characterized in that an electrode for performing a discharging process under near atmospheric pressure (a) electrode for discharge treatment according to claim.
[0017]
( C ) At least one of the electrodes is cylindrical, and the electrode for discharge treatment according to ( a ) or ( b ).
[0018]
( D ) At least one of the cylindrical electrodes is a roll type that rotates while being in contact with the support, and the electrode for discharge treatment according to item ( c ).
[0019]
( E ) An electrode having a metal-ceramic composite material matrix lined with a dielectric is provided on at least one opposing surface of a pair of opposing electrodes, and a support is positioned between the pair of opposing electrodes. A discharge treatment chamber is formed, a mixed gas containing Ar gas of 60 pressure% or more is introduced into the discharge treatment chamber, a voltage is applied to the electrode, and a discharge plasma is generated under a pressure at or near atmospheric pressure. The discharge treatment method is characterized in that the surface of the support that is continuously conveyed at a discharge output of 7.5 kW / m 2 or more is discharged.
[0020]
( F ) A support is positioned between an electrode having a metal-ceramic composite material matrix lined with a dielectric on at least one opposing surface of a pair of opposing electrodes and the pair of opposing electrodes. A discharge treatment chamber for performing a discharge treatment, a filling means for introducing and filling a mixed gas containing Ar gas of 60 pressure% or more into the treatment chamber, and a voltage generating means for applying a voltage between the electrodes. A discharge treatment apparatus characterized in that discharge treatment is performed on a support surface that is continuously conveyed at a discharge output of 7.5 kW / m 2 or more by exciting discharge plasma under atmospheric pressure or a pressure near atmospheric pressure.
[0021]
( G ) The discharge treatment method according to item ( e ), wherein the support is a plastic film.
[0022]
(H) the plastic film discharge treatment method according to (g), characterized in that a light-sensitive material support.
[0023]
(I) discharge processing device according to the support is characterized in that it is a plastic film (F) term.
[0024]
(J) the plastic film discharge treatment apparatus according to (re), characterized in that a light-sensitive material support.
[0025]
The inventors of the present invention have important points for manufacturing electrodes coated with a dielectric necessary for discharge treatment, and in particular, cylindrical electrodes, and are free from distortion, deflection, cracks due to thermal shrinkage differences, and porous. We paid attention to the high-precision inorganic dielectric coating.
[0026]
In other words, the difference in thermal expansion between the base material and the dielectric is made as small as possible when manufacturing the electrode by dielectric coating on the base material at room temperature or when manufacturing the electrode by dielectric coating on the base material at high temperature. Therefore, in the former manufacturing method, it can be seen that this is achieved by using room temperature curable glass as a dielectric. In the latter manufacturing method, as a base material (for example, Kyocera Corporation) It has been found that this can be achieved by using a composite of metal and ceramic such as cermet (trade name) manufactured by the company.
[0027]
As such, an object of the present invention by a discharge processing method and discharge apparatus using electrodes and it made with the Ru is achieved.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the electrode for discharge treatment, the discharge treatment method, and the discharge treatment apparatus of the present invention will be described below with reference to the drawings, but the present invention is not limited thereto. Moreover, although there are assertive expressions for terms and the like in the following description, they show preferred examples of the present invention and do not limit the meaning and technical scope of the terms of the present invention.
[0029]
An example of a plate type electrode in FIG. 1 (a) the present invention, in cross section FIG. 1 (b) shows an example of a plate type electrode in Reference Example, another plate type electrode in FIG. 2 the invention FIG. 3 is a cross-sectional view of a discharge treatment apparatus using these electrodes. 4 is a perspective view showing an example of a cylindrical and roll type electrode in the present invention, FIG. 5 is a perspective view showing an example of a cylindrical and fixed type electrode, and FIGS. 6 and 7 are respectively cylindrical types. It is sectional drawing of the discharge processing apparatus using the electrode of this.
[0030]
In FIG. 1, a pair of electrodes is composed of a lower electrode 21 and an upper electrode 22, and the pair of electrodes has a support F placed between the electrodes to generate discharge plasma and discharge on both sides of the support F. It is for processing. The structure of the electrodes 21 and 22 is a parallel plane type, but is not limited to this, and as shown in the cross-sectional view of another discharge processing apparatus of the present invention in FIG. As shown in a cross-sectional view of the opposite side of the present invention or another discharge processing apparatus of the present invention in FIG. The fixed type electrode 26 is opposed to the other, and although not shown in the drawings, a cylindrical opposed plane type, a spherical opposed plane type, or the like is determined as appropriate according to the application. Such an electrode can be used as an electrode for discharge plasma treatment, corona discharge treatment or the like.
[0031]
First, the parallel plane type electrode shown in FIGS. 1 and 2 and the discharge treatment method and discharge treatment apparatus shown in the cross-sectional view of FIG. 3 using the same will be described, and then the above-described FIG. 4, FIG. 5, FIG. 7 will be described in detail.
[0032]
As shown in FIG. 1A, the electrode 21 is a combination in which a conductive base material 21a such as metal is coated with a dielectric 21b made of an inorganic material that cures at 100 ° C. or lower, or shown in FIG. Thus, the base material 21A of the composite material of metal and ceramics is configured by a combination of a solid dielectric 21B such as a glass material that melts at a high temperature. The electrode 22 is as follows in the same manner as the electrode 21.
[0033]
As shown in FIG. 1 (a), the electrode 22 is a combination of a conductive base material 22a such as metal coated with a dielectric 22b of an inorganic material that cures at 100 ° C. or lower, or as shown in FIG. 1 (b). Thus, the base material 22A of the composite material of metal and ceramics is configured by a combination in which a solid dielectric 22B such as a glass material that melts at a high temperature is coated.
[0034]
Of course, the electrode 21 in FIG. 1 (a) may be replaced with the electrode 21 in FIG. 1 (b), and the electrode 22 in FIG. 1 (b) may be replaced with the electrode 22 in FIG. 1 (a).
[0035]
Here, the conductive base materials 21a and 22a such as metal are made of metal such as silver, platinum, stainless steel, and aluminum. The base materials 21A and 22A of the composite material of metal and ceramic are, for example, Kyocera ( The product name Cermet, Inc. is used. The dielectric materials 21b and 22b, which are inorganic materials that are cured at 100 ° C. or lower, are made of, for example, room temperature curable glass, and the solid dielectric materials 21B and 22B such as glass materials that melt at high temperatures are made of various glasses (Pyrex, quartz). Etc.), ceramics, metal oxides (titanium oxide, zirconium oxide, aluminum oxide), etc. are used.
[0036]
Next, in FIG. 2, the pair of electrodes includes a lower electrode 21 and an upper electrode 23. The electrode 21 is the same as in FIG. 1, and the electrode 23 is an electrode not provided with a solid dielectric. The support F is placed on the lower electrode 21 of the pair of electrodes, and discharge treatment is performed on one side of the support.
[0037]
FIG. 3 is a cross-sectional view showing an example of a discharge treatment apparatus using discharge plasma according to the present invention. In FIG. 3, the discharge processing apparatus includes electrodes 21 and 22, a holding unit 60, a gas filling unit 50, a voltage generation unit 40, a discharge processing chamber 30, and the like.
[0038]
In the embodiment, the support F is a photographic material support (also referred to as a film). The electrodes 21 and 22 are shown in FIGS. 1A and 1B, and the gap between the electrodes is, for example, about 10 mm.
[0039]
The holding unit 60 holds the support body F between the electrodes 21 and 22 by a pair of conveying rollers 62 and 63. The support F is transported in the direction of the arrow while being driven by the transport roller pairs 62 and 63.
[0040]
The gas filling means 50 is a means for filling the discharge processing chamber 30 with a mixed gas of an inert gas and a reactive gas, and the mixed gas includes an inert gas of helium (He) and / or argon (Ar) and nitrogen (N), Reaction gases such as oxygen (O), carbon dioxide, hydrogen, and water (H 2 O) are included. It is desirable to discharge with a relatively inexpensive argon gas.
[0041]
The voltage generating means 40 applies a voltage from the power source 41 to the conductive electrode portions 21a, 22a or 21A, 22A. Although the value is determined timely, for example, the voltage is about 3 to 5 kV and the power supply frequency is 1 to 100 kHz.
[0042]
The discharge processing chamber 30 is constituted by a processing container 31 made of Pyrex glass, and the processing container 31 is filled with a mixed gas. In the embodiment, the processing container 31 is made of Pyrex glass, but may be made of metal as long as it is insulated from the electrode.
[0043]
The electrodes 21 and 22 are arranged at predetermined positions in the processing container 31, the mixed gas 54 generated by the gas generator 51 is sent by the pump 55, and is put into the processing container 31 of the discharge processing chamber 30 from the air supply port 52, The processing container 31 is filled with the mixed gas 54 and discharged from the exhaust port 53. Next, a voltage is applied to the electrodes 21 and 22 by the power source 41 to generate discharge plasma. Here, the support body F is supplied from the roll-shaped film 61, and is transported between the electrodes in the discharge processing chamber 30 by the transport roller pairs 62 and 63. The surface of the support F is discharged by discharge plasma during conveyance, and then discharged.
[0044]
In addition, although the example which discharge-processes on both surfaces of the support body F was demonstrated, you may make it mount the support body F in a lower electrode, and discharge-process only the upper side of the support body F. FIG.
[0045]
In FIG. 6, a plurality of cylindrical electrodes 26 are opposed to both sides of a support that goes straight, and both surfaces of a support F that is transported at a constant speed to the discharge treatment chamber 30 via a pair of transport rollers 62 and 63. Is uniformly discharged. A mixed gas 54 similar to that described above enters the processing container 31 of the discharge processing chamber 30 through the air supply port 52, fills the processing container 31 with the mixed gas 54, and discharges it through the exhaust port 53. . As shown in the perspective view of FIG. 5, the cylindrical electrode 26 is a combination in which a conductive base material 26a such as metal is coated with a dielectric 26b made of an inorganic material that cures at 100 ° C. or lower, or a metal and The base material 26A of the composite material with ceramics is configured by a combination in which a solid dielectric 26B such as a glass material that melts at a high temperature is coated.
[0046]
FIG. 7 shows a plurality of cylindrical fixed electrodes 26 opposed to a roll-type electrode 25 that is wound around a support F and is conveyed and rotated. The roll-type electrode 25 is wound around a nip roller 65, 66, the support F is moved in and out of the discharge treatment chamber 30 through the guide rollers 64 and 67 and conveyed at a constant speed. Filling the discharge treatment chamber 30 with the same mixed gas as described above is the same as in the case of FIGS. As a result, the distance between the electrodes becomes extremely stable, and the support F is subjected to a favorable discharge treatment. However, the support is only discharged on one side. As shown in the perspective view of FIG. 4, the cylindrical and roll-shaped electrode 25 is a combination in which a conductive base material 25a such as metal is coated with a dielectric 25b made of an inorganic material that cures at 100 ° C. or lower, or It is composed of a combination of a base material 25A of a composite material of metal and ceramics and a solid dielectric 25B such as a glass material that melts at a high temperature.
[0047]
Details of the gas filling means 50 including the pump 55 and the voltage generating means 40 are the same as those in FIG.
[0048]
Note that an inorganic material that cures at 100 ° C. or lower may be lined for the composite matrix of metal and ceramic instead of lining a dielectric that melts at a high temperature.
[0049]
【Example】
Dielectric coating is performed on the base material by the method shown in Table 1 below, and 20 cylindrical electrodes each having a width of 150 cm are manufactured. As discharge conditions, the gap between the support film F and the support film F is 1 mm, and 10 kHz in Ar gas. The discharge treatment was continued for 1 hour by applying a voltage of 200 W / m, and various performances were compared and summarized in the table. The dielectric thickness was 1 mm.
[0050]
[Table 1]
Figure 0003846065
[0051]
As can be seen from the results in Table 1, a cylindrical electrode in which high-temperature molten glass or room-temperature glass is lined with a conductive ceramic, that is, a composite material of metal and ceramic, or a base material with good conductivity such as metal. In addition, it is recognized that the cylindrical electrode lined with room temperature glass has no cracks, there is almost no deflection, the uniformity in the discharge treatment is stable and the durability is remarkably improved. However, the conventional cylindrical electrode lined with high-temperature molten glass on a base material with good conductivity, such as metal, has considerable cracking and large deflection, and the discharge treatment is uneven with respect to the width of the support. The durability and workability were poor. Moreover, even though the ceramic base sprayed with the metal base material has good cracking and deflection, the durability is poor and the electric discharge treatment is in an arc discharge state and is not practical at all.
[0052]
【The invention's effect】
According to the present invention, an electrode for electric discharge treatment has no distortion such as bending, and a high processing accuracy without cracking can be obtained. And the durability of the electrode was improved, and a stronger discharge treatment could be stably maintained.
[0053]
In addition, the discharge treatment method and discharge treatment apparatus using this electrode increased the adhesion between the surface of the support such as the photosensitive material and the coating solution, and the coating property was greatly improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a flat plate electrode of the present invention and a flat plate electrode of a reference example .
FIG. 2 is a cross-sectional view showing another example of a flat-plate electrode according to the present invention.
FIG. 3 is a cross-sectional view showing an example of a discharge treatment apparatus using discharge plasma according to the present invention.
FIG. 4 is a perspective view showing an example of a cylindrical and roll electrode of the present invention.
FIG. 5 is a perspective view showing an example of a cylindrical and fixed electrode of the present invention.
FIG. 6 is a cross-sectional view showing another example of a discharge treatment apparatus using discharge plasma according to the present invention.
FIG. 7 is a cross-sectional view showing another example of a discharge treatment apparatus using discharge plasma according to the present invention.
[Explanation of symbols]
21, 22, 23, 25, 26 Electrodes 21a, 22a, 25a, 26a Conductive base materials 21A, 22A, 25A, 26A such as metals Base materials 21b, 22b, 25b, 26b of composite materials of metal and ceramics 100 ° C. Inorganic dielectrics that cure below (room temperature curable glass, etc.)
21B, 22B, 25B, 26B Solid dielectrics (such as quartz glass) that melt at high temperatures
30 discharge processing chamber 31 processing vessel 40 voltage generating means 41 power supply 50 gas filling means 51 gas generating device 52 air supply port 53 exhaust port 54 mixed gas 60 holding part 61 roll-shaped films 62, 63 conveying roller pair F base material (photo) Photosensitive material support, film)

Claims (11)

一対の対向する電極間に支持体を位置させ、前記電極間に電圧を印加して前記支持体に放電処理を行う放電処理装置に用いる電極において、一対の対向する前記電極の少なくとも一方の対向面は導電性の母材表面に100℃以下で硬化する無機性質の材料をライニングすることで被覆したものであることを特徴とする放電処理用の電極。  In an electrode used in a discharge treatment apparatus that places a support between a pair of opposed electrodes and applies a voltage between the electrodes to perform a discharge treatment on the support, at least one opposed surface of the pair of opposed electrodes Is an electrode for electric discharge treatment, characterized in that the surface of a conductive base material is coated with an inorganic material that cures at 100 ° C. or less. 前記無機性質材料が常温硬化性のガラスであることを特徴とする請求項1に記載の放電処理用の電極。  2. The electrode for discharge treatment according to claim 1, wherein the inorganic material is a room temperature curable glass. 前記電極は大気圧近傍下での放電処理を行う電極であることを特徴とする請求項1又は2に記載の放電処理用の電極。  The electrode for discharge treatment according to claim 1 or 2, wherein the electrode is an electrode that performs discharge treatment near atmospheric pressure. 前記電極の少なくとも1つは円筒型であることを特徴とする請求項1〜3の何れか1項に記載の放電処理用の電極。  The electrode for discharge treatment according to any one of claims 1 to 3, wherein at least one of the electrodes is cylindrical. 前記円筒型の電極の少なくとも1つは支持体と接しながら回転するロール型であることを特徴とする請求項4に記載の放電処理用の電極。  The electrode for electric discharge treatment according to claim 4, wherein at least one of the cylindrical electrodes is a roll type rotating while being in contact with a support. 一対の対向する電極の少なくとも一方の対向面に、導電性の母材表面が100℃以下で硬化する無機性質の材料を誘電体としてライニングされた電極を設け、前記一対の対向する電極間に支持体を位置させて、放電処理室を構成し、該放電処理室に60圧力%以上のArガスを含む混合ガスを導入して、前記電極に電圧を印加させ、大気圧または大気圧近傍の圧力下で放電プラズマを励起させて放電出力7.5kW/m2以上で連続搬送される支持体表面の放電処理を行うことを特徴とする放電処理方法。An electrode lined with an inorganic material whose dielectric base material is hardened at 100 ° C. or lower is provided on at least one opposing surface of the pair of opposing electrodes, and is supported between the pair of opposing electrodes. A body is positioned to constitute a discharge treatment chamber, a gas mixture containing Ar gas of 60 pressure% or more is introduced into the discharge treatment chamber, a voltage is applied to the electrode, and a pressure at or near atmospheric pressure A discharge treatment method characterized by performing discharge treatment on the surface of a support that is continuously conveyed at a discharge output of 7.5 kW / m 2 or more by exciting a discharge plasma under pressure. 一対の対向する電極の少なくとも一方の対向面に、導電性の母材表面が100℃以下で硬化する無機性質の材料を誘電体としてライニングされた電極と、前記一対の対向する電極間に支持体を位置させて放電処理する放電処理室と、該処理室に60圧力%以上のArガスを含む混合ガスを導入して充填する充填手段と、前記電極間に電圧を印加する電圧発生手段とを有し、大気圧または大気圧近傍の圧力下で、放電プラズマを励起させて放電出力7.5kW/m2以上で連続搬送される支持体表面を放電処理することを特徴とする放電処理装置。An electrode having a conductive base material surface lined as a dielectric on at least one opposing surface of a pair of opposing electrodes with a dielectric as a dielectric, and a support between the pair of opposing electrodes A discharge treatment chamber for performing discharge treatment by positioning, a filling means for introducing and filling a mixed gas containing Ar gas of 60 pressure% or more into the treatment chamber, and a voltage generating means for applying a voltage between the electrodes And a discharge treatment apparatus characterized in that discharge treatment is performed on a support surface continuously excited at a discharge output of 7.5 kW / m 2 or more by exciting discharge plasma under atmospheric pressure or a pressure near atmospheric pressure. 前記支持体はプラスチックフィルムであることを特徴とする請求項6に記載の放電処理方法 The discharge treatment method according to claim 6, wherein the support is a plastic film . 前記プラスチックフィルムは感光性材料用支持体であることを特徴とする請求項8に記載の放電処理方法 The discharge processing method according to claim 8, wherein the plastic film is a support for photosensitive material . 前記支持体はプラスチックフィルムであることを特徴とする請求項7に記載の放電処理装置 The discharge processing apparatus according to claim 7, wherein the support is a plastic film . 前記プラスチックフィルムは感光性材料用支持体であることを特徴とする請求項10に記載の放電処理装置 The discharge processing apparatus according to claim 10, wherein the plastic film is a support for photosensitive material .
JP30098498A 1998-10-22 1998-10-22 Electrode for discharge treatment, discharge treatment method and discharge treatment apparatus using the electrode Expired - Fee Related JP3846065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30098498A JP3846065B2 (en) 1998-10-22 1998-10-22 Electrode for discharge treatment, discharge treatment method and discharge treatment apparatus using the electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30098498A JP3846065B2 (en) 1998-10-22 1998-10-22 Electrode for discharge treatment, discharge treatment method and discharge treatment apparatus using the electrode

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005001255A Division JP3846503B2 (en) 2005-01-06 2005-01-06 Electrode for discharge treatment, discharge treatment method and discharge treatment apparatus using the electrode

Publications (2)

Publication Number Publication Date
JP2000133493A JP2000133493A (en) 2000-05-12
JP3846065B2 true JP3846065B2 (en) 2006-11-15

Family

ID=17891438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30098498A Expired - Fee Related JP3846065B2 (en) 1998-10-22 1998-10-22 Electrode for discharge treatment, discharge treatment method and discharge treatment apparatus using the electrode

Country Status (1)

Country Link
JP (1) JP3846065B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10027247C2 (en) * 2000-05-31 2003-09-25 Iut Inst Fuer Umwelttechnologi Plasma generator with dielectric barrier discharge
KR100460601B1 (en) * 2000-10-27 2004-12-08 재단법인 포항산업과학연구원 Electrode and its manufacturing method of semi-dielectric composit for glow plasma generation
CN1754409B (en) 2002-08-30 2010-07-28 积水化学工业株式会社 Plasma processing system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513839A (en) * 1991-07-01 1993-01-22 Amada Co Ltd Electrode of high frequency excitation type laser oscillator
JP3455611B2 (en) * 1995-06-09 2003-10-14 森 勇蔵 Method and apparatus for modifying porous body
JP3399783B2 (en) * 1996-04-25 2003-04-21 日本バイリーン株式会社 Method and apparatus for treating total surface of non-conductive porous body
JP3622353B2 (en) * 1996-07-12 2005-02-23 東陶機器株式会社 Electrostatic chuck stage and manufacturing method thereof
JPH10130851A (en) * 1996-10-25 1998-05-19 Sekisui Chem Co Ltd Continuous treatment of sheet-like substrate and its apparatus
JPH10270540A (en) * 1997-03-26 1998-10-09 Nippon Cement Co Ltd Electrostatic chuck device and electrostatic chuck base
JP4099264B2 (en) * 1998-06-26 2008-06-11 大日本印刷株式会社 Surface modification equipment for film sheets by plasma treatment
JP3721261B2 (en) * 1998-07-07 2005-11-30 日本バイリーン株式会社 Surface modification method

Also Published As

Publication number Publication date
JP2000133493A (en) 2000-05-12

Similar Documents

Publication Publication Date Title
TW494709B (en) Electrode used for producing plasma body, plasma processing equipment using said electrode and plasma process using said equipment
JP3982153B2 (en) Plasma processing apparatus and plasma processing method
JP3846065B2 (en) Electrode for discharge treatment, discharge treatment method and discharge treatment apparatus using the electrode
WO2012124246A1 (en) Thin-film production method and production device
JPH02101740A (en) Plasma etching device
JP3846503B2 (en) Electrode for discharge treatment, discharge treatment method and discharge treatment apparatus using the electrode
EA028651B1 (en) Pair of electrodes for dielectric barrier discharge (dbd) plasma process
JP4306033B2 (en) Plasma processing apparatus and plasma processing method
JPH11191500A (en) Glow discharge electrode and treatment method by glow discharge plasma
JP3518977B2 (en) Plasma CVD equipment
JP2011225954A (en) Dielectric-coated electrode, plasma discharge device using the electrode, and atmospheric pressure plasma treatment method using the device
JP3519046B2 (en) Plasma CVD equipment
JP2700208B2 (en) Thin film formation method
JP4009458B2 (en) Plasma CVD deposition system
JPH0696718A (en) Electrode for atmospheric pressure glow-discharge plasma
JP3994596B2 (en) Plasma processing apparatus and plasma processing method
JP5262723B2 (en) Atmospheric pressure plasma processing apparatus and atmospheric pressure plasma processing method
JP2005307321A (en) Thin film deposition apparatus and thin film deposition method
JP2001102364A (en) Plasma treatment apparatus and method
JP4244575B2 (en) Thin film deposition equipment
JP2001170991A (en) Apparatus and method for manufacturing polymer sheet, and polymer sheet using the same
JP4288915B2 (en) Manufacturing method of optical film
JP2004002961A (en) Thin film deposition method and thin film deposition system by plasma cvd method
JP4244573B2 (en) Thin film deposition equipment
JP2023016901A (en) Substrate with SiOx layer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees