JP3845436B2 - 手術用顕微鏡装置 - Google Patents

手術用顕微鏡装置 Download PDF

Info

Publication number
JP3845436B2
JP3845436B2 JP2005092635A JP2005092635A JP3845436B2 JP 3845436 B2 JP3845436 B2 JP 3845436B2 JP 2005092635 A JP2005092635 A JP 2005092635A JP 2005092635 A JP2005092635 A JP 2005092635A JP 3845436 B2 JP3845436 B2 JP 3845436B2
Authority
JP
Japan
Prior art keywords
electric drive
grip
axis
mirror body
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005092635A
Other languages
English (en)
Other versions
JP2005211682A (ja
Inventor
卓志 斉藤
洋 小田嶋
健一 竹内
勝 村上
俊一郎 高橋
元樹 高橋
任 小林
稔 花岡
純一 野澤
義亜 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2005092635A priority Critical patent/JP3845436B2/ja
Publication of JP2005211682A publication Critical patent/JP2005211682A/ja
Application granted granted Critical
Publication of JP3845436B2 publication Critical patent/JP3845436B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、医師が微細な手術を行う際に術部を拡大観察するための手術用顕微鏡装置に関する。
脳神経外科等の微細な作業が行われる外科手術に使用される手術用顕微鏡はその鏡体が支持装置のアーム機構の先端にXY移動装置を介して取り付けられている。そして、鏡体部の位置を変更する場合はアームの回転軸に備えられた電磁クラッチを解除してアームを回動操作することにより鏡体部を空間内で自在に移動して所望の位置・角度を選択し、また鏡体部を支持したXY移動装置を電動駆動操作することによって平面内での鏡体部が移動して所望の位置に固定するようになっている。
ところで、アーム機構の電磁クラッチに対する操作入力は、通常、鏡体部に取り付けられた操作ハンドルに備えられた押釦スイッチを操作することによって行うが、特開平3-253810号公報のものでは、電磁クラッチの入力装置の一手段として、操作ハンドルの表面4方向の各側面にそれぞれ貼り付けられたシートスイッチによるものが開示されている。これは術者が鏡体部を移動させたい方向のシートスイッチに触れることにより術者が操作しようとした方向の電磁クラッチが解除されるというものである。
また、XY移動装置の操作入力は、通常フットスイッチ装置に設置されたジョイスティックを操作することにより行うが、特開平6-230289号公報のものにはフットスイッチと鏡体部を保持するXY移動装置との間に存在するアーム機構の回転軸の回転状態を検出した結果によりXY移動装置の駆動方向の補正を行う装置が開示されている。
しかしながら、これら従前の手術用顕微鏡においては、以下のような理由によって術者による鏡体移動操作が必ずしも簡潔かつ容易なものでなく負担の軽いものとは言い難い。
例えば特開平3−253810号公報に開示される操作入力装置においては、術者が操作ハンドルを握って手動で鏡体部を移動させねばならず、この間、手術の中断は避けられないものであった。また、操作入力方向の検出手段がシートスイッチであるために操作ハンドルのシートスイッチの貼ってある部分を触らねば操作入力ができない。さらに操作入力を行う方向はシートスイッチの枚数分に限られ、操作力量等の検出による速度や方向の駆動制御はできないものであった。
特開平6−230289号公報に開示される操作入力装置は、フットスイッチによって電動駆動装置の操作入力を行うため、手術中にフットスイッチの位置・方向を目視あるいは足で確認せねばならず、手術の中断は避けられない。このため、術者が手術に集中しながら容易に操作入力することが可能な操作入力手段が待望される。
また、前述の特開平6−230289号公報に開示される操作入力装置はアームの状態を検出した検出結果に基づいてフットスイッチのジョイスティックの操作入力を補正することが可能であるが、鏡体部の操作入力手段と鏡体部の移動装置の間に存在する関節の回転によって生じる操作入力手段の座標軸と移動装置の駆動軸の変位を補正することはできない。
本発明は前記課題に着目してなされたもので、その目的とするところは、術者による鏡体移動操作が容易で術者による鏡体移動操作の負担が軽い手術用顕微鏡装置を提供することにある。
請求項1に係る発明は、鏡体部の位置および角度の少なくとも一方の変更を手動操作で行う手術用顕微鏡装置において、前記鏡体部の位置および角度の少なくとも一方の変更を電動駆動で行う電動駆動手段と、前記鏡体部に設けられ、前記鏡体部の位置および角度の少なくとも一方を変更する操作を行う操作ハンドルと、前記操作ハンドルに加えられた操作を検出するための検出手段と、前記検出手段が検出した操作力の大きさに基づき、前記操作ハンドルに加えられた術者の操作に対応して前記検出手段が検出した操作力の大きさが、予め定められた第1のしきい値を超え、前記第1のしきい値よりも大きな第2のしきい値を超えない場合は前記電動駆動手段による駆動を行う動作を選択し、前記第2のしきい値よりも大きな場合は前記電動駆動手段による駆動を行う動作を解除して前記操作ハンドルにより鏡体部の位置および角度の少なくとも一方を手動操作により行う動作を選択するように制御する切り替え制御手段と、を具備したことを特徴とする手術用顕微鏡装置である。
請求項2に係る発明は、鏡体部の位置および角度の少なくとも一方の変更を手動操作で行う手術用顕微鏡装置において、前記鏡体部の位置および角度の少なくとも一方の変更を電動駆動で行う電動駆動手段と、前記鏡体部に設けられ、前記鏡体部の位置および角度の少なくとも一方を変更する操作を行う操作ハンドルと、前記操作ハンドルに加えられた操作を検出するための検出手段と、前記操作ハンドルに設けられ、前記電動駆動手段による鏡体部の位置および角度の少なくとも一方の変更を行う電動駆動を解除する電動駆動解除手段と、前記操作ハンドルに操作が加えられた状態で前記検出手段の検出結果に基づいて前記電動駆動手段の駆動制御を行うと共に、前記電動駆動解除手段を操作することにより前記電動駆動手段による電動駆動を解除して前記手動操作を行い得るように制御する制御手段と、を具備したことを特徴とする手術用顕微鏡装置である。
請求項3に係る発明は、請求項2に記載の手術用顕微鏡装置において、前記手術用顕微鏡装置を手動操作するための電磁クラッチの固定を解除する電磁クラッチ操作手段を含み、前記制御手段は、前記電磁クラッチ操作手段の操作により、前記電磁クラッチが固定されている場合は前記電動駆動手段による駆動制御を行い、前記電磁クラッチが解除されている場合は前記電動駆動解除手段により電動駆動手段の電動駆動を停止するように制御することを特徴とする手術用顕微鏡装置である。
以上説明した如く、本発明によれば、操作ハンドルに加えられた操作力を検知して電動駆動装置の操作入力を行うため、ごく軽い力量で操作入力が行え、また、操作ハンドルの部分を触っても操作入力を行えるので、特別に操作スイッチを設けるものに比べてその操作スイッチを探す手間が省け、例えば術者がピンセット等の手術具を持った状態でも容易に操作入力を行うことができる。したがって、手術の効率向上および手術時間の短縮等が可能であり、術者および患者に対しても負担もかなり低減される。
<第1の実施例>
図1ないし図3を参照して、本発明の第1の実施例を説明する。
(目的)
手術用顕微鏡の操作ハンドルのグリップのアームに貼り付けて設置された複数の歪ゲージでグリップに加えられた操作力の方向および大きさを検出することにより電動駆動装置の操作入力を行う。また、手動による操作時に前述の歪ゲージを用いて手動により操作していることを検知して電動駆動装置の駆動をキャンセルすることにより手動操作後の電動駆動装置の作動による視野のずれを防止することにある。
(構成)
図1は俯仰アーム機構1を示しており、この俯仰アーム機構1は図示しない架台に取り付けられた保持アーム機構2に保持されている。保持アーム機構2は前記架台に一端が水平な向きに回動可能に支持された図示しない第1アームと、この第1アームの他端に水平方向に回動可能に支持される第2アームと、前記第2アームに上下方向に回動可能に支持されかつ前記俯仰アーム機構1を保持する第3のアーム3とからなる。なお、第2アームは例えば平行リンク機構からなり、水平および上下方向に変位可能である。また、俯仰アーム機構1を保持する第3アーム3にはその俯仰アーム機構1の第1俯仰アーム5が垂直な軸Odを中心に水平な方向へ回動自在に連結されている。
第1俯仰アーム5には第2俯仰アーム6の一端が第1軸7により回動可能な関係で連結されている。つまり、第1軸7の一端は第1俯仰アーム5の内部に固定的に収納された第1俯仰モータ8の回転軸に接続されている。第1俯仰モータ8は両方向、つまり正逆回転可能なものである。第1軸7の他端は第2俯仰アーム6に固定された軸受9により支持されている。また第1俯仰アーム5と第2俯仰アーム6とはその第1軸7に連結した図示しない重さ出し機構により第1俯仰アーム5に対する第2俯仰アーム6の操作回転重さが規制され、重さ出しハンドル9によりその回転重さが選択調整することができるようになっている。
第2俯仰アーム6はその延出側途中部分がL字型に下方へ屈曲または湾曲して形成されており、この第2俯仰アーム6の延出下端には接眼レンズ11を有した鏡体部12が第2軸14を中心に回動自在なように取り付けられている。この第2軸14の一端には第2俯仰アーム6の内部に固定的に収納された第2俯仰モータ15の回転軸に接続されている。第2俯仰モータ15は両方向、つまり正逆回転可能なものである。第2軸14の他端は鏡体部12に固定された軸受16により支持されている。また、第2俯仰アーム6と鏡体部12とはその第2軸14に連結した図示しない重さ出し機構により第2俯仰アーム6に対する鏡体部12の操作回転重さが規制され、それの重さ出しハンドル17によりその回転重さが選択調整することができるようになっている。
前記鏡体部12の左右側面部分にはそれぞれ操作ハンドル18が取り付けられていて、この操作ハンドル18は鏡体部12の位置や角度を変更する操作を行うようになっている。各操作ハンドル18は前記鏡体部12から導出してその途中部分を下方へ屈曲または湾曲した形状のグリップアーム21とこのグリップアーム21の先端に取着されたグリップ22とにより構成される。図3はその右側の操作ハンドル18を術者が位置する方とは反対側からみた外観を示すものである。操作ハンドル18のグリップアーム21はその一端にグリップ22を支持しその他端が鏡体部12の対応する側面部分にそれぞれ固定されている。
グリップ22を取着する側に位置するグリップアーム21の先端部分は、鏡体部12の前後左右各向きの各側面を平面とした立方状の変形可能な検出部用部材23として構成されている。そして、鏡体部12の前後方向に面した前後方向歪検出面24と鏡体部12の左右方向に面した左右方向歪検出面25にはそれぞれ別の歪ゲージ26,27が、そのグリップアーム21または検出部用部材23の長手方向に歪曲方向が配列して向くように接着されている。各歪ゲージ26,27のゲージ端子28,29にはそれぞれリード線31が接続されている。
これらのリード線31は前述した図示しない架台部に内蔵された装置に接続されている。すなわち、図2で示すように前後側の歪ゲージ26は歪検出器32に接続され、左右側の歪ゲージ27は別の歪検出器33にそれぞれ接続されている。つまり、操作ハンドル18に加えられた操作力を検出するための検出手段を構成している。歪検出器32,33で検出された歪信号はコンパレータを内蔵した制御回路34に入力される。制御回路34はその入力を受けて演算処理する演算手段を構成し、その結果にもとづいて俯仰モータ駆動電源35を操作し、前述した各俯仰モータ8,15に正電圧および負電圧の電圧を供給して駆動する制御手段を構成している。また、これの制御手段はグリップ22に加えられた操作力の方向および大きさを検出することにより鏡体部12の俯仰を行う電動駆動手段の操作入力を行う。
(作用)
術者が鏡体部12の俯仰を微動操作によって行うときは操作ハンドル18に軽く触れることによる電動駆動操作がなされ、また鏡体部12の粗動俯仰を行うときは操作ハンドル18を手に握って動かすことによる手動操作によって対応した各軸7,14を回動させることができる。
まず、操作ハンドル18を用いた鏡体部12の電動駆動操作について具体的に説明する。術者は鏡体部12を俯仰させたい方向のグリップ22の面に力を加えると、この力を加えた方向にグリップアーム21の検出部用部材23が歪曲して歪ゲージ26,27がその歪方向および歪み量に応じた歪信号を出力する。これらの歪信号はそれぞれの歪検出器32,33で検出されるとともに増幅されて制御回路34に出力する。制御回路34ではこれに内蔵されたコンパレータで予め設定されたしきい値と比較して、歪検出器32,33からの出力がそのしきい値よりも大きい場合には操作入力がなされたと判断して俯仰モータ駆動電源35へ駆動信号を出力する。ここでのしきい値は術者がグリップ22に触れた程度の力における歪ゲージ26,27の出力からグリップ22を強く押したときの力まで術者の好みに応じて自在に設定することが可能である。俯仰モータ駆動電源35では入力された駆動信号に従って俯仰モータ8,15への電源供給を行う。
例えば、術者が鏡体部12を自分からみて反時計方向へ俯仰させたいときはグリップ22の左側面を押す。これにより左右方向歪検出面25が図2の左方向へ歪曲し、これに設けた歪ゲージ27もその左右方向歪検出面25と共に歪曲し、その歪曲量に応じた正の歪信号が歪検出器33を介して制御回路34へ入力する。制御回路34においてはあらかじめ設定された第1のしきい値よりも入力された歪信号の値が大きい間、俯仰モータ駆動電源35へ正方向駆動信号を出力する。これにより俯仰モータ駆動電源35は第1俯仰モータ8へ正の電源供給を行う。第1俯仰モータ8は正方向へ回転して第2俯仰アーム6は第1軸7を中心に反時計方向に回転し、鏡体部12は右方向へ俯仰移動する。
鏡体部12の俯仰移動を止めたいときはグリップ22に力を加えている手を離すことにより歪ゲージ27からの歪信号の歪量が低下して制御回路34で定められた第1のしきい値よりも下回ることから、制御回路34からの駆動信号の出力が停止されて俯仰モータ駆動電源35から俯仰モータ8への電源供給が停止される。そして、鏡体部12の俯仰移動が止まる。
次に、手動による鏡体部12の粗動俯仰操作を行う場合について説明する。重さ出しハンドル9,17は通常は強い力を加えれば手動俯仰操作可能な程度の力で軸7,14を固定するように締め付けており、このため、軽い力での手動による俯仰操作はできないようになっている。
そこで、手動によって軽い力で俯仰操作したい場合、例えば鏡体部12を左右方向に俯仰させたいときは重さ出しハンドル9を、前後方向に俯仰させたいときは重さ出しハンドル17を緩めた後、グリップ22を握って俯仰させたい方向へ鏡体部12を動かすことにより鏡体部12は対応する軸7,14を中心に俯仰回転する。
この手動俯仰操作の際、グリップアーム6には比較的大きな力が加わり、歪ゲージ26,27からはそれぞれ歪量に応じた歪信号が歪検出器32,33を介して制御回路34へ出力される。制御回路34では歪信号の歪量が前述の第1のしきい値よりも大きい予め定められた第2のしきい値を超えると、手動俯仰操作がなされているとみなし、俯仰モータ駆動電源35には駆動信号を出力しない俯仰モータ駆動停止時間が設定されている。この俯仰モータ駆動停止時間は歪信号の歪量が第2のしきい値を下回った後、術者の手がグリップ22から完全に離れたと見なされる時間だけ継続される。これにより術者が鏡体部12の手動による粗動俯仰を行っている間は俯仰モータ8,15の電動駆動は行われない。このように検出手段が一定以上の力量を検知したとき、つまり手動操作時には電動俯仰駆動は停止する規制機能を呈する。
本実施例では制御回路34で第1のしきい値を設定して、歪検出面24,25での歪量が第1のしきい値を上回ったときに俯仰モータ8,15に電源を供給するように構成したが、前記歪検出面24,25の歪量に応じて前記俯仰モータ8,15への供給電圧値または供給電圧のデューティ比を変えるなりして、術者がグリップ22に加えた力に応じた速度で俯仰アームが電動駆動されるように構成することもできる。
また、第2のしきい値を定めて手動による鏡体部12の俯仰操作時には俯仰モータ8,15の駆動を停止するように設定したが、術者がグリップ22を握って手動による俯仰操作を行うことを検知する機構、例えばグリップ22の複数の面に貼り付けられたタッチセンサ全てから信号入力があったときに術者がグリップ22を握って手動による鏡体部12の俯仰操作を行っているとみなして俯仰モータ8,15への電源供給を停止する機構を用いることも可能である。
(効果)
本実施例によれば、制御回路34の第1のしきい値を低く設定することにより、グリップ22に軽く触れるだけで、電動駆動装置の操作入力を行うことが可能であり、またグリップ22の、どの部分に触れても構わないため、手術中にピンセットやメス等の手術具を持ったままでも手術を中断させることなく操作入力が可能であり、術者の負担軽減および手術時間の短縮が図れる。
また、手動による俯仰操作時には前述の俯仰モータ8,15の駆動がキャンセルされるように構成したため、鏡体部12の手動俯仰操作の前後に、俯仰モータ8,15が作動してしまうことによる視野ずれが起きずに視野の補正をする煩わしさを回避できる。
なお、本実施例では歪検出部が右側の操作ハンドル18にある場合について説明したが、歪検出部は左側の操作ハンドル18にあっても、また両側の操作ハンドル18にあってもよい。
<第2の実施例>
図4ないし図8を参照して、本発明の第2の実施例を説明する。
(目的)
手術用顕微鏡の操作ハンドルのグリップとグリップアームの結合部に設置された力覚センサによりグリップに加えられた力の方向と大きさを検出して電動駆動手段の操作入力を行う。また、電動駆動手段の移動座標軸と、操作ハンドルの操作入力座標軸の間に生じる座標軸の変位を検出して前記操作入力座標軸と操作入力座標軸が一致する様に操作ハンドルの向きをモータ駆動による補正を行い、術者が鏡体の角度に気を配らずに操作入力をする事を可能とし、術者の負担を軽減することを目的とする。
(構成)
図4は手術用顕微鏡の鏡体部を保持する俯仰アーム機構部41を示す。この俯仰アーム機構部41は前述した第1の実施例の場合と同じように架台および保持アーム機構等からなる支持装置の先端アーム36の先端部分にXY移動装置42を介して吊持的に取り付けられている。XY移動装置42はこれに吊持する俯仰アーム機構部41をXYZ座標系40のXY軸方向へ移動させる移動操作機構である。XY移動装置42には図示しない取付部材により俯仰アーム用取付部43が固定されている。この取付部43には軸Eを回転中心として回動自在な円筒体44が取り付けられている。円筒体44にはリンクアーム45が固定されており、リンクアーム45は他の3つのリンクアーム46,47,48と共に、前記軸Eと垂直な軸Fこの軸Fと平行な軸G,H,Iをそれぞれ回転中心とした平行四辺形リンク機構を形成している。軸Eと軸Fにはそれぞれ従来例と同様の電磁クラッチ49,50が設けられ、それに加えてその軸E,Fの回転角度を検出するアブソリュートタイプのエンコーダー51,52が備えられている。また、鏡体部12は前記リンクアーム48の一端にある軸Iの位置に固定されている。
前述した第1の実施例と同様、鏡体部12の左右側面部分にはそれぞれ操作ハンドル18が取り付けられている。各操作ハンドル18は前記鏡体部12から導出してその途中を下方へ屈曲または湾曲した形状のグリップアーム21と、このグリップアーム21の先端に取着されたグリップ22とにより構成される。グリップアーム21の基端は、鏡体部12の側面に固定された操作ハンドル駆動機構55に支持されている。各グリップ22には、電磁クラッチ49,50を同時に固定/解除するためのグリップスイッチ53がそれぞれ設けられている。
この操作ハンドル18には前記XY移動装置42のためのXYZ座標系40とは別の操作入力座標系54が具備している。XYZ移動座標系40は鉛直方向をZ軸とし、XY移動装置42についての術者56に対する左右と前後の移動方向に一致するZ軸の垂直な方向をそれぞれX軸、Y軸とする。また、操作入力座標系54ではグリップアーム21におけるグリップ22に隣接するその取付部の中心軸方向をZ軸とし、このZ軸がXYZ移動座標系40の場合と同様、鉛直方向にあるとき、前記XY移動装置42のXYZ座標系40におけるX軸とY軸にそれぞれ平行な方向をそれぞれX軸、Y軸とする。XY移動装置42のためのXYZ座標系40と、この操作入力座標系54は平行移動した原点のみが異なる関係にある。図4に示すように、全可動軸およびグリップ22は鏡体部12の観察光軸Oと操作入力座標系54のZ軸が鉛直な方向のときの位置をそれの基準位置とする。
左右の操作ハンドル18は同様に構成されている。図5で示すように操作ハンドル18においてのグリップアーム21とグリップ22との結合部には操作ハンドル18に加えられた操作力の方向およびその強さを検出する検出手段としての静電容量形力覚センサ61が設けられている。この力覚センサ61によって前記グリップアーム21とグリップ22を結合している。この検出手段としての力覚センサ61は図5で示すように平行平板電極である固定電極62と可変電極63で静電コンデンサを構成し、その電極62,63をXY2方向の力検出用に特殊な電極パターンとしなり、各電極パターンの静電容量変化を検出することにより可変電極63に取り付けられた操作軸64に加えられた力の方向および大きさを検出する4軸力覚センサであり、これ自体は一般に公知なものである。
本実施例においてはグリップアーム21の端部に固定電極62が固定されており、グリップ22側に操作軸64を介して可変電極63が固定されている。また、力覚センサ61のX方向の検出軸が術者の左右方向に設定され、Y方向の検出軸が術者の前後方向に一致するように設定されている。
図6で示すように、グリップ22に設けられたグリップスイッチ53は、電磁クラッチ49,50の電源供給を行う電磁クラッチ電源65に対して操作入力信号を送るよう接続される。また、前記力覚センサ61は、制御回路66にX方向およびY方向の操作力量の検出値を力量信号として出力するようにその制御回路66に接続されている。制御回路66は図示しないコンパレータを内蔵した制御回路(演算手段)であり、これには力覚センサ61で検出された力量信号(検知信号)が入力される。また、制御回路66はXY移動電源67に駆動信号を出力する。XY移動電源67は前記XY移動装置42に内蔵されたXモータ68およびYモータ69に正電圧および負電圧の駆動信号を供給するようになっている。
また、前記エンコーダ51,52は鏡体角度検出回路71の入力端子に接続されている。グリップスイッチ53は電磁クラッチ電源65の他、鏡体角度検出回路71および制御回路66にも接続されている。鏡体角度検出回路71から出力された信号がグリップモータ駆動演算回路72に入力するように接続されており、グリップモータ駆動演算回路72からの出力は、モータ74a,74bへ電源を供給する駆動電源を備えたグリップモータ駆動回路73に接続されている。
図7は操作ハンドル駆動機構55を示す。これには操作ハンドル18のグリップアーム21の基端に対して同軸的に連結して支持される第1軸76を有しており、第1軸76は第1ギアケース77に固定された軸受78により回動自在に支持されている。この第1軸76にはギア79が設けられている。また、第1ギアケース77には第1ステップモーター81が固定されている。第1ステップモーター81に接続された第2軸82の他端は第1ギアケース77に固定された軸受83に対して回動自在に支持されている。第2軸82には前記第1軸76のギア79と噛み合うウォームギア84が設けられている。
前記第1ギアケース77はその側面部分に中心線が同一直線上にある第3軸85,86を有している。前記鏡体部12に固定された第2ギアケース87に固定された軸受88,89にそれぞれ第3軸85,86を支持することにより第1ギアケース77は第2ギアケース87に対して回動自在に支持されている。一方の第3軸86にはギア91が設けられている。第2ギアケース87に取付け固定された第2ステップモーター92の第4軸93は前記第3軸86と軸ずれ状態で直角に交差しており、第4軸93の他端は第2ギアケース87に固定された軸受94に支持されている。さらに第4軸93には前記第3軸86のギア91に噛み合うウォームギア95が設けられている。
なお、第1軸76と第3軸85,86とは互いに同一平面内において垂直な位置関係で配置されており、第2ギアケース87に固定された第2ステップモーター92の第4軸93、第3軸86、ギア91、ウォームギア95による第1ギアケース77のための保持構造も、上述したグリップアーム21側の保持構造と同様に構成されている。
(作用)
術者56が鏡体部12の微動移動操作を行う場合は操作ハンドル18での操作によるXY移動装置42の駆動により行う。また、鏡体部12の粗動移動操作および俯仰操作を行う場合はグリップスイッチ53を操作して、各回転軸に内蔵された電磁クラッチ49,50をフリーにすることにより各回転軸を回転させて行う。
まず、操作ハンドル18の操作による鏡体部12の微動移動を行う場合について述べる。操作ハンドル18に力を加えると、力覚センサ61が、これの力を検出し、この信号が入力される制御回路66がその操作を演算処理し、その結果によってXY移動電源67に駆動信号を出力させる。この駆動信号を受けてXY移動装置42はXモータ68およびYモータ69を駆動して行う。つまり、術者56はグリップ22に対して鏡体部12を移動させたい方向へ力を加えると、これにより力覚センサ61には術者が加えた力の方向および大きさに応じて静電容量の変化が起き、この力量の信号を制御回路66へ出力する。制御回路66では前述した第1の実施例と同様、予め設定されたしきい値と力量信号の力量値を比較してその力量値がしきい値よりも大きい場合には、XY移動電源67へ駆動信号を出力する。ここで、しきい値は、第1の実施例と同様に術者56がグリップ22に触れた程度の力量から強く押した力量まで自在に設定することができる。XY移動電源67では入力された駆動信号に従ってXY移動装置42の各モータ68,69へ電源を供給する。
例えば術者56が右側のグリップ22の右側面を右側へ押したときは力覚センサ61からの力量信号の力量値が制御回路66のしきい値を上回っている間、XY移動電源67よりXY移動装置42のXモータ68へ負電圧の電源が供給され、鏡体部12は左方向へ移動する。鏡体部12の移動を止めたいときはグリップ22に力を加えている手を離すことにより、XY移動電源67のXモータ68への電源供給が止まり、鏡体部12の移動が停止する。
次に、鏡体部12の粗動移動操作および俯仰操作を行う場合について説明する。この場合はグリップスイッチ53を操作して各回転軸に内蔵された電磁クラッチ49,50をフリーにすることにより各回転軸を回転させて行う。
グリップスイッチ53の操作による回転軸EおよびFの回転を行う鏡体部12の角度変更の動作について説明する。術者56がグリップスイッチ53をオンにすると、電磁クラッチ49,50は軸E、Fの回転の固定が解除される。これと同時にグリップスイッチ53より歪検出を行う制御回路83へ歪み検出停止信号が出力され、その制御回路83において力覚センサ61や第1の実施例で前述したような歪ゲージからの出力がキャンセルされる。すなわち、術者がグリップスイッチ53を押している間はXY移動装置42の駆動は行われない。この軸E,Fの固定解除により、前記平行四辺形リンク機構を介して固定されていた軸Iの回転が自由になる。従って、この状態で術者56はグリップ22に意図する方向の力をかけることにより、軸E,Iを回転軸として鏡体部12を前後左右に俯仰させることが手動で軽く出来る。鏡体部12の位置を決定したらその位置でグリップスイッチ53をオフにする事により固定解除の場合と同様にして鏡体部12の軸E,Iを軸とする回転位置に再び固定することが出来る。
しかし、鏡体部12の前後左右俯仰操作により、XY移動装置42の移動座標系40の軸とグリップ22の操作入力座標系54の軸の間に変位が生じて、術者56の操作入力方向とXY移動装置42の移動方向が一致しなくなる。前記変位とは軸Eをa度回転させると、操作入力座標系54のY軸とZ軸が、XY移動装置42のY軸とZ軸に対し、a度変位する。軸Fをb度回転させると、操作入力座標系54のY軸とZ軸が、XY移動装置42のY軸とZ軸に対し、b度変位することを意味する。ここで、軸Fと軸Iは平行四辺形リンクにより連結されているので常に位置が一致している。
以下に、図8のフローチャートを用いてその変位を補正する手段を説明する。
[#1]グリップスイッチ53をオンにし、電磁クラッチ49,50を解除すると同時にグリップスイッチ53からオン信号が鏡体角度検出回路71に出力される変位補正動作がスタートする。
[#2]鏡体角度検出回路71はエンコーダ51,52から送られた信号を入力し、基準位置を基準とする軸E、Fの前記オン信号入力時の初期角度α1 、β1 を検出及びメモリーする。ここで、鏡体角度検出回路71は軸Eが鏡体部12を術者56側から見て基準位置より時計まわり方向に位置する場合を、軸Fが基準位置より矢印97方向に位置する場合をそれぞれ正として検出する。
[#3]鏡体部12の俯仰操作を終了し、グリップスイッチ53をオフにして鏡体部12を固定する。
[#4]鏡体角度検出回路71はグリップスイッチ53からオフ信号を入力し、#2と同様にして前記信号を入力した時の軸E、Fの終了角度α2 、β2 を検出する。
[#5]グリップモータ駆動演算回路72は前記初期角度α1 、β1 及び終了角度α2 、β2 を鏡体角度検出回路71から入力し、以下の演算を行いグリップ駆動角度α、βを算出する。
α=α1 −α2 β=β1 −β2
[#6]グリップモータ駆動演算回路72は、鏡体角度検出回路71からグリップ駆動角度α、βの信号を入力し、第4軸93、ウォームギア95、ギア91を介して第3軸86を矢印98の方向へ角度α、第2軸82、ウォームギア84、ギア79を介してグリップアーム21を矢印99の方向へ角度βそれぞれ回転するようにステップモーター81,92に電源を供給する。ステップモーター81,92が駆動され、前記の駆動伝達系を介してグリップ22が回転し、操作入力座標系54の軸はXY移動装置42の移動座標系40の軸に一致する。
(効果)
上述の如く、本実施例によれば、力覚センサ61でグリップ22に加えられた力の方向と大きさを検出して操作入力を行うため、術者56がグリップ22に軽く触れるだけでよく操作することができる。したがって、手術具を持ちながらでも鏡体部12の移動が可能である。また、グリップ22のどの部分を触ってもよいため、例えば操作スイッチを探す必要がなく、迅速な操作入力が可能であり、また術部に対するグリップ22の位置が不変となるため、操作性も向上し、手術の効率向上と手術時間の短縮化が図れる。
前述した第1の実施例の歪ゲージをグリップアームに接着する方法に比べるとその構成が簡略化できるとともにその組立てが容易である。
さらに、XY移動装置42の移動座標系40の軸と、グリップ22の操作入力座標系の軸が常に一致するので、術者にとって直感的に入力し易くなる。鏡体部12の角度に気を配らずに操作入力する事が可能なため、術者の負担を軽減する事ができる。
さらに、電磁クラッチ49,50をフリーにすることにより行うアームの手動操作時には前記操作入力装置の動作がオフになるため、手動操作の後に前記操作入力装置の作動による視野ずれが起こらないので、手動操作後の視野の補正をせずに済む。
<第3の実施例>
図9ないし図12を参照して、本発明の第3の実施例を説明する。
(目的)
この実施例は手術用顕微鏡装置の駆動系直交座標系と、グリップの直交座標系の角度差を検出し、その角度差を補正手段で補正し、術者が鏡体部の角度に気を配らずに操作入力することを可能とし、術者の負担を軽減することを目的とする。また、グリップをマニュアル操作部と電動駆動操作部に分けることによりモータの誤動作を防ぐことが可能で、歪量の検出の容易な操作ハンドルを提供することを目的とする。
(構成)
図9は顕微鏡の重さをカウンターウェイトにより平衡を保つ6軸可動の手術用顕微鏡装置の外観全体を示す。この架台101はベース102に支柱103を立設してなり、支柱103はその途中に回転軸D104と回転軸E105を有しており、回転軸D104と回転軸E105の回りに回動させることにより支柱103の回転軸F106を傾斜させ得るようになっている。
支柱103の上端部には回転軸L107を有した第1アーム部115が軸部116を介して上下に傾動自在に枢着されている。また、第1アーム部115は回転軸F106の回りに回動できる。さらに第1アーム部115は連結アーム117を有する平行リンク機構118を介してカウンタウェイト119と連動するように連結されている。第1アーム部115にもカウンタウェイト120が取り付けられている。
第1アーム部115はエンコーダL121を備えた駆動モータL122によって回転軸L107を中心に回動するように設けられている。四辺形の平行リンク機構118はエンコーダM123を備えた駆動モータM124によって前記回転軸L107に直交する回転軸M108を中心に回動するように連結されている。さらに平行リンク機構118の先端には回転軸N109を中心に回動自在に顕微鏡125を保持する保持部126が取付けられており、この保持部126にはその回転軸N109を中心とする回転を検出するエンコーダN127が設けられている。
また、この顕微鏡125の部分には前述した第1の実施例と同じように、鏡体部128の傾斜を操作する操作ハンドル129が設けられている。操作ハンドル129はグリップ131とグリップアーム132によって構成され、グリップアーム132には術者がグリップ131に力を加えた操作力およびその操作方向を検出する検出手段のための歪ゲージ133a,133bが設けられている(図10および図12を参照)。
また、顕微鏡の架台101には制御装置134が備えられている。図10で示すように、歪ゲージ130a,130b、エンコーダL121、エンコーダM123、エンコーダN127、駆動モータL122、駆動モータM124、歪ゲージ133a,133bに接続される歪検出器135a,135bは、その制御装置134内の歪検出回路136、グリップ傾き検出回路137、モータ駆動回路138およびCPU(演算および制御を行う手段)139に接続される。モータ駆動回路138は、駆動モータL122、駆動モータM124の電源を有し、各駆動モータ122,124に電源を供給するよう接続される。各エンコーダ121,123,127はこれの取付けられた回転軸の基準状態との角度差を検出し、その結果をグリップ傾き検出回路137に送るように接続される。
図9に図示する直交座標系B140は駆動モータL122、駆動モータM124の駆動方向を示す駆動系直交座標系であり、直交座標系E141は操作入力方向を示すためのグリップ47の直交座標系を示す。これらの直交座標系はいずれもこれに対応した回転軸が回転すると、共にその直交座標系の向きが変わる変動直交座標系である。
直交座標系B140は、回転軸L107をXb 軸、回転軸L107と直交する回転軸M108をYb 軸とする。
直交座標系E141は、鏡体部128の左右方向をXe 軸、回転軸N109と平行な鏡体部128の観察光軸をZe 軸とする。また、グリップ131がなす平面はXe 軸とZe 軸がなす平面と平行である。また、基準状態においては直交座標系B140のZb 軸は鉛直方向と一致し、図9で示すように平行四辺形リンク機構118の各アームは直角な状態にあり、回転軸L107と鏡体部128の左右方向、回転軸M108と鏡体部128の前後方向が一致するように設定する。すなわち直交座標系B140と直交座標系E141の向きは一致する。
図11は顕微鏡125の一部分を示し、回転軸L107、回転軸M108、回転軸N109を回転させてグリップ131を傾斜させた状態にある。
また、この図11に示す5つの直交座標系は図9と同様の駆動系直交座標系B140とグリップ131の直交座標系E141の他、グリップ131の座標系から駆動系直交座標系に変換する際に必要な補助直交座標系を示している。すなわち、直交座標系A142は回転軸L107をXa 軸、回転軸M108をYa 軸、特に鉛直方向をZa 軸としたものである。
直交座標系B140は、回転軸L107をXb 軸、回転軸L107と直交する回転軸M108をYb 軸としたもので、直交座標系A142のXa 軸を中心にYa 軸、Za 軸を回転したものである。
直交座標系C143は、回転軸N109をZc 軸とし、直交座標系B140のYb 軸を中心として、Xb 軸、Zb 軸を回転させた直交座標系である。
直交座標系D144は鏡体部128の向きを示す直交座標系で、鏡体部128の左右方向をXd 軸、鏡体部128の前後方向をYd 軸、回転軸N109と平行な鏡体部128の観察光軸をZd 軸とする。
直交座標系E141はグリップ131の直交座標系で、直交座標系D144のXd 軸を中心としてYd 軸、Zd 軸をδ回転させたものである。
また、図11に示す顕微鏡の状態では図9と比べて回転軸L107、回転軸M108、回転軸N109がそれぞれα、β、γ回転している。つまり、
Xa Za 平面とXb Zb 平面がなす角がα
Yb Zb 平面とYc Zc 平面がなす角がβ
Yc Zc 平面とYd Zd 平面がなす角がγ
Xe Ze 平面とYd Zd 平面がなす角がδである。
図12は術者の手前側から見たグリップ131の部分の断面図である。グリップ131はマニュアル操作部151を備え、さらに不図示のグリップスイッチ、検出手段としての歪ゲージ133a,133bが取り付いている電動駆動操作部152を有する。電動駆動操作部152は円筒形状のマニュアル操作部151内に一端側部分が嵌挿されるとともに、グリップアーム132に連結されており、その接続部近傍に前記歪ゲージ133a,133bが配設されている。電動駆動操作部152の他端側部分は円筒形のマニュアル操作部151の反対側の開口部より突き出している。前記歪ゲージ133a,133bが配設される部分は第1の実施例で説明した前後方向歪検出面24および左右方向歪検出面25と同様の方形をなしており、直交座標系E141のXe 軸に正対する検出面には歪ゲージ133aが、直交座標系E141のYe 軸に正対する検出面には歪ゲージ133bが接着されている。また、マニュアル操作部151の端部より突出した電動駆動操作部152の端縁152aの外径はマニュアル操作部151の外径よりもわずかに大きくなっている。マニュアル操作部151は、通常の手動操作による鏡体移動操作時に術者が握ったときに電動駆動操作部152に触れないだけの把持長さを有する。
(作用)
このような手術用顕微鏡装置において、回転軸L107、回転軸M108、回転軸N109に備えられたエンコーダL121、エンコーダM123、エンコーダN127はそれぞれ基準状態との角度差を検出し、その結果をグリップ傾き検出回路135に送る。また、グリップアーム132に備えられた歪ゲージ133aおよび歪ゲージ133bでは、直交座標系E141における、鏡体操作力のXe 軸方向分力、Ye 軸方向力に相当する歪量εe=(εex、εey)を検出して、これらを制御装置134の歪量検出回路136に送る。
これにより制御装置134のCPU139では鏡体操作力により生じたεeのXe 軸方向歪量と、Ye 軸方向歪量を直交座標系B140の上の歪量に変換して回転軸L107と回転軸M108の回転方向および回転速度を決定し、鏡体部128を任意の方向に傾斜させる。この動きを止める時は、鏡体操作力をゆるめる。歪ゲージ133aおよび歪ゲージ133bからの出力があらかじめ設定されたしきい値以下になると、制御装置134のモータ駆動回路138は駆動モータL122及び駆動モータM124への電源供給を停止し、回転軸L107、回転軸M108の動きを止める。
回転軸L107、回転軸M108の動きと鏡体操作力との関連を説明すると、図9に示すように鏡体部128と平行四辺形リンク機構118の位置関係が基準状態にあるとき、術者が鏡体部128を術者側に傾斜させるため、操作ハンドル129の電動駆動操作部152の端面に術者の反対側から力を加えると、歪ゲージ133bは直交座標系E141上のYe 成分のマイナス値を検出する。この検出値の絶対値により制御装置134のCPU139では回転軸L107の回転速度を決定し、また検出値の正負により駆動モータL122の回転方向を決定し、その駆動モータL122を駆動させる。これにより回転軸L107は正回転し、鏡体部128は術者側に傾斜する。
また、図9に示すように鏡体部128と平行四辺形リンク機構118の位置関係が基準状態にあるとき、術者が鏡体部128を左に傾斜させるためには電動駆動操作部152に左方向に力を加える。すると、歪ゲージ133aは直交座標系E141上のXe 成分のマイナス値を検出する。この歪量の大きさにより制御装置134のCPU139では回転軸M108の回転速度を決定し、その検出値の正負により駆動モータM123の回転方向を決定し、その駆動モータM123を駆動させる。これにより回転軸M108は反回転し、鏡体部128は術者に対し左に傾斜する。
図9に示す顕微鏡において回転軸N109の角度が、−90゜<γ<90゜の範囲内にあるとする。そこで、術者が鏡体部128を任意の方向に傾斜させるために操作ハンドル129におけるグリップ131の電動駆動操作部152に力を加えると、歪ゲージ133aおよび歪ゲージ133bは直交座標系E141におけるXe 軸方向とYe 軸方向の歪量εex、εeyを検出する。これにより制御装置134のCPU139では直交座標系B140における歪量に変換し、歪量εeyが駆動モータL122の回転速度を決定し、また歪量εexが駆動モータM124の回転速度を決定し、それらの回転方向はεexにマイナスを乗じた値の符号εeyにプラスを乗じた値の符号により決定する。
但し、γ=90゜のときは、歪量εexが駆動モータL122の回転速度を決定し、歪量εeyが駆動モータM124の回転速度を決定し、それらの回転方向はεexにプラスを乗じた値の符号εeyにプラスを乗じた値の符号により決定する。
また、90゜<γ<180゜のときは、歪量εeyが駆動モータL122の回転速度を決定し、歪量εexが駆動モータM124の回転速度を決定し、それらの回転方向はεexにプラスを乗じた値の符号εeyにプラスを乗じた値の符号により決定する。
次に、図11を参照して、回転軸L107、回転軸M108、回転軸N109が回転している場合について説明する。
術者が鏡体部128を任意の方向に動かすため、その鏡体部128を動かしたい方向に電動駆動操作部152を押したり引いたりすると、歪ゲージ133a,133bは直交座標系E141における歪量εe=(εex、εey)を検出する。
直交座標系E141と直交座標系D144はXe軸とZd軸が平行で、Xe −Ze 平面とXd −Zd 平面が角δをなしているので、直交座標系D144における歪量εdはεd=(εex、εey・cosδ)と変換される。
直交座標系D144と直交座標系C143はZd 軸とZc 軸が平行で、Xd −Zd 平面とXc −Zc 平面が角γをなしているので、直交座標系C143における歪量εcはεc=(εex・cosγ、εey・cosδ・cosγ)と変換される。
直交座標系C143と直交座標系B140はYc 軸とYb 軸が平行で、Yc −Zc 平面とYb −Zb 平面が角βをなしているので、直交座標系B140における歪εbはεb=(εbx,εby)
=(εex・cosγ・cosβ,εey・cosδ・cosγ)となる。
ここで、直交座標系B140は駆動系直交座標系であるから、εbのy成分により回転軸L107の、x成分により回転軸M108の回転速度ωL 、ωM を制御装置134のCPU139が決定する。よって、回転軸L107、回転軸M108は
ωL :ωM =εby:εbx
但し、γ=90゜のときは、
ωL :ωM =εbx:εby
の回転速度比で鏡体部128を傾斜させる。
この動きを止めるときは、鏡体操作力をゆるめてあらかじめ設定されたしきい値以下の歪量を歪ゲージ133aおよび歪ゲージ133bが検出すると、制御装置134のモータ駆動回路138は回転軸L107、回転軸M108の動きを止める。
これらの一連の変換作業は、歪量の変換のみでなく直交座標系E141上の歪量をグリップ操作力量の分力として算出した後でも同じ事が言える。つまり、直交座標系E141上の歪量εe=(εex、εey)は
直交座標系E141の操作力のfe =(fex,fey)と制御装置134のCPU139で算出し、直交座標系D144における操作力fd として
fd =(fex,fey・cosδ)と変換し、
直交座標系C143における操作力fc として
fc =(fex・cosγ,fey・cosδ・cosγ)と変換し、
直交座標系B140における操作力fb は
fb =(fbx,fby)
=(fex・cosγ・cosβ,fey・cosδ・cosγ)となる。よって、回転軸L107、直交座標系B140は、ωL :ωM =fby:fbx=εby:εbxの回転速度比で鏡体部128を傾斜させる。
この動きを止めるときは、鏡体操作力をゆるめてあらかじめ設定されたしきい値以下の歪量を歪ゲージ133aおよび歪ゲージ133bが検出すると、制御装置134のモータ駆動回路138は回転軸L107、回転軸M108の動きを止める。
なお、ここでは説明を簡単にするため、Za 軸を鉛直としたが、Za 軸の方向を任意つまり、回転軸D104、回転軸E105が回転し、回転軸F107が傾斜していても構わない。
図11を使用してその具体的な一例を示す。回転軸L107、回転軸M108、回転軸N109がそれぞれ−20゜、−20゜、45゜回転し、グリップ131がなすXe Ze 平面と直交座標系C143のXc −Zc 平面との角度は30゜とする。
鏡体部128と正対する術者からみてその鏡体部128を右斜め前方に傾斜させようと電動駆動操作部152に操作力を加え、歪ゲージ133aが直交座標系E141上の歪量εe=(εex、εey)を検出し、制御装置134のCPU139が直交座標系E141の操作力fe を
fe (fex,fey)=(1[N],2[N])と算出したとする。
すると、直交座標系B140における操作力fb は
fb =(fex,fey)
=(fex・cosγ・cosβ,fey・cosδ・cosγ)
と変換されるので、
fb =(1・cos45゜・cos20゜,2・cos30゜・cos45゜) =(0.66[N],1.2[N])
よって、回転軸L107、回転軸M108は、ωL :ωM =1.2:0.66の回転速度比で鏡体部128を傾斜させる。
(効果)
制御装置134が手術用顕微鏡の回転軸L107、回転軸M108、回転軸N109の基準位置との角度差を管理して、術者が所望する鏡体部128の傾斜方向に対応する駆動モータ122,124の回転方向、回転速度を決定して、それを駆動するので、術者が鏡体部128の角度に気を配らずに電動駆動操作部152に鏡体部128を傾斜させたい方向に力を加えれば良い。このため、鏡体部128の傾斜が容易にでき、術者の負担が大幅に軽減される。
また、マニュアル操作部151と電動駆動操作部152が分かれているので、電動駆動操作部152は術者の手動操作に耐え得るだけの強度を持つ必要がない。
このため、電動駆動操作部152を前述した第1の実施例における場合よりも細くすることが可能であり、歪の検出が容易になり、歪量の検出の精度が向上し、より精密なモータ駆動による鏡体部128の角度変更が可能となる。また、手動操作においてマニュアル操作部151を握って操作することにより、手動操作の前後でモータL122およびモータM124の作動による視野ずれがない。さらに、歪ゲージ133aおよび歪ゲージ133bが外部に露出していないので、カバー等による歪ゲージ133a,133bの保護が不要である。
<第4の実施例>
図13ないし図18を参照して、本発明の第4の実施例を説明する。
(目的)
この実施例は術者が鏡体部を移動させようとした方向をグリップにて検出し、アームの回転軸に備えられたモータを駆動させることにより鏡体部の移動の初期操作力量の低減を図り、術者の負担を低減させることを目的とする。
(構成)
図13は手術顕微鏡支持用スタンド装置を示す。このスタンド装置はアーム部161、鏡体部162、支柱部163および架台部164から成り、アーム部161はさらに第1アーム161a、第2アーム161b、第3アーム161cの3つのアーム部分を連結して構成されている。また、第1アーム161aと一体に構成されている回転軸165aは図示しないベアリングを介して第2アーム161bに保持されており、これにより第1アーム161aが同図13での矢印Yで示す様に上下方向に回動可能になっている。
また、第2アーム161bと一体に構成されている回転軸165bはベアリング166を介してアーム部161cに水平な方向へ回転自在に支持されている。支柱部163と一体に構成されている回転軸165cは第3アーム161cに保持されたベアリング167に支持され、支柱部163に対して第3アーム161cを水平な方向へ回転自在な状態に支持している。また、第1アーム161aの先端にはベアリング167を設け、このベアリング167によって鏡体部162と一体的に構成されている回転軸165dを支持し、鏡体部162を水平な方向へ回転自在な状態に支持している。すなわち、第2アーム161bと第3アーム161cおよび鏡体部162はそれぞれの回転軸165b,165c,165dを回転軸中心として水平面内で回動可能となっている。鏡体部162には術者が鏡体部162を移動させるときに手で保持して使用する鏡体移動操作手段としての鏡体操作ハンドル171が設置されている。
また、支柱部163には後で述べる鏡体操作力量検知手段と動力装置とを制御するための制御装置172が内蔵されている。
図14は回転軸165bの周辺の構成を具体的に示したものである。第3アーム161cの内部には回転軸165bの近傍に位置して動力装置であるモータ173bが設置されており、このモータ173bの回転駆動力はベルト174bを介して回転軸165bに伝達されるようになっている。これと同様に他の3つの回転軸165a、165c、165dの近傍にも図示しないモータおよびベルトが設置されており、それらの回転駆動力を対応する各回転軸165b、165c、165dに対して伝達するようになっている。
図15は前記鏡体移動用操作ハンドル171の詳細を示したものである。すなわち、グリップアーム176とグリップ177とからなり、グリップアーム176の末端は図示するように立方体形状に構成されており、この立方体178の6つの面には検知手段として圧電素子178a〜178fが設置されている。これらの圧電素子178a〜178fはその基幹部を導線又は半導体で構成され、外部からの圧力で発生する導線又は半導体のひずみによりそれの電気的抵抗値が変化することを利用して圧力を検知するものであり、これ自体は一般的に知られたものが用いられている。そして、図16で示すようにそれぞれの圧電素子178a〜178fが術者が保持する部分であるグリップ99の内部に内接して立方体178の各面との間に介挿されるように設けられている。
(作用)
以上のような構成を持つ手術顕微鏡支持用スタンド装置においての各構成要素の作用を図16と図17を用いて説明する。
図16は鏡体移動方向の検知方法についてのものである。グリップ177に力が加わっていない通常の状態では図16(a)のように各圧電素子178a〜178fには力が加わらないため、6つの圧電素子178a〜178fを流れる電流は一定となる。しかし,術者がグリップ177を持って図16(b)のように下方向への力Fを加えた場合、すなわち、鏡体部162を下に向けて移動させようとした場合は圧電素子178fがグリップアーム176とグリップ177との間に挟まれて術者により力Fに相当する力F1 を受ける。このF1 の大きさは圧電素子178fの抵抗変化量、すなわち電流変化量として得ることができる。同様に図16(c)の様に術者が水平方向に力Fを加えた場合、すなわち鏡体部162を水平方向に移動させようとした場合にはその方向に対応した圧電素子178cが力F2 を受け、力F2 の大きさは圧電素子178cの抵抗変化量、すなわち電流変化量として得ることができる。また、水平方向に対してある角度を持った方向に力Fを加えた場合には複数の圧電素子に図示しない力Fの分力F3 が加わり、各圧電素子178a〜178fに加わる分力F3 の差、すなわち各圧電素子178a〜178fを流れる電流の差を比較することによって力Fが加えられた方向を検知することができる。
以上のような手段によって鏡体移動方向およびその力量が検知され、信号として支柱部163の中の制御装置172に入力される。制御装置172ではその入力された信号により、鏡体移動方向に加えられた力Fが小さくなるように各回転軸165a、165b、165c、165dの回転方向、時間、速度を算出し、動力装置に伝えることにより各回転軸165a〜165dを回動させる。
各回転軸165a〜165dの制御方法についての詳細を図17を用いて説明する。図17は手術用顕微鏡のスタンド装置を上から見た図である。図17(a)の状態において術者が鏡体移動用操作ハンドル171を保持し、図示のようにFなる力を与えた場合、操作ハンドル171の内部の検知手段により力Fの与えられた方向および力量が検知され、制御装置172により各回転軸165a〜165dは図示の矢印方向に回転力が与えられる。この回転力は鏡体部162が一定の速度になるまで、すなわち、力Fがゼロになるまで与え続けられる。
次に、所望の位置で静止させるときには図17(b)に示すように鏡体部162の移動方向と逆方向F′なる力が与えられることになるため、各回転軸165a〜165dに対し、図示の矢印方向すなわち回転方向に対し逆方向に回転力が与えられる。この回転力はF′が与え続けられる間、継続して与えられ、鏡体部162が静止したとき、すなわちF′がゼロになったときに停止される。同様に図17(c)に示すように鏡体部162に対し横方向の力F″が与えられる場合には各回転軸165b、165c、155dは図示の方向に回転力が与えられ、静止させる場合には図17(d)の様に各回転軸165b、165c、165dに対し逆方向に回転力が与えられる。鏡体移動および停止時に与えられる回転力は急激な回転力が与えられて鏡体部162に衝撃が加わらないように回転の速度、時間を制御装置172にて制御されているため、スムーズに移動し停止することができる。
なお、上記の実施例ではモータ173と回転軸165がベルト174で連絡されているため、鏡体部162が定速で移動しているとき、モータ173に回転力が伝わることによる負荷の影響が考えられるが、例えば回転軸と軸と垂直になる面で2分割し、それぞれを電磁クラッチにて結合する構造にし、鏡体部が定速で移動している場合には電磁クラッチを切り離してモータへ回転軸の回転力が伝わらないようにすれば定速移動時のモータへの影響は排除できる。
また、本実施例では動力装置から回転軸への回転力伝達手段としてベルトを使用しているがこれに限るものではない。例えばモータの回転軸およびアームの回転軸にそれぞれ歯車を構成し、これを噛み合せることによって回転力を伝達する方法やモータの回転軸に例えばゴムのような弾性体からなるローラーを構成して回転軸の外周にこれを圧接する事によって回転力を伝達する方法や、また定速回転で高トルクが得られ回転角度の制御できるモータ、例えばサーボモータかステッピングモータ又は超音波モータを使用すればアームの回転軸の回転中心とモータの回転軸が一体になるように構成し、モータの回転力を直接回転軸に伝達するようにしてもよい。
さらに本実施例においてはグリップの圧電素子からの信号入力があったときにモータを起動させているが、図18に示すようなモータ受181に設置された常時回転しているモータ182をロータリーソレノイド183の駆動によりベルト184に圧接させる構成をとることにより、信号入力と同時にモータの回転を回転軸に伝えることが可能になるため、モータ駆動時のトルク不足を解消することができる。
(効果)
以上のような第4の実施例によれば、鏡体移動操作の初期および移動停止時に発生する慣性力を相殺し、鏡体部をよりスムーズに所望の位置に移動させることができる。
[付記]
(1)鏡体部の位置および角度の少なくとも一方の変更を行う電動駆動手段を有する手術用顕微鏡装置において、鏡体部の位置および角度の少なくとも一方の変更する操作を行う操作ハンドルと、前記操作ハンドルに加えられた操作力を検出するための検出手段と、前記検出手段の検出結果をもとに操作方向を演算する演算手段と、前記演算手段からの出力値に基づいて前記鏡体部の位置および角度の少なくとも一方の変更を意図した前記操作ハンドルの操作に従い前記電動駆動手段の駆動制御を行って前記鏡体部の位置および角度の変更を行う制御手段とを具備したことを特徴とする手術用顕微鏡装置。
(2)鏡体部の位置および角度の少なくとも一方の変更を行う電動駆動手段を有する手術用顕微鏡装置において、鏡体部の位置および角度の少なくとも一方の変更する操作を行う操作ハンドルと、前記操作ハンドルに加えられた操作力を検出するための第1の検出手段と、前記第1の検出手段の検出結果をもとに操作方向を演算する演算手段と、前記演算手段からの出力値に基づいて前記鏡体部の位置および角度の少なくとも一方の変更を意図した前記操作ハンドルの操作に従い前記電動駆動手段の駆動制御を行って前記鏡体部の位置および角度の変更を行う制御手段と、前記電動駆動手段により鏡体部が動いた角度や距離を検出する第2の検出手段と、前記第2の検出手段からの出力値に基づいて前記操作ハンドルを駆動する駆動手段とを具備したことを特徴とする手術用顕微鏡装置。
(3)前記検出手段は複数の検出部を設けてなることを特徴とする付記第1、2項に記載の手術用顕微鏡装置。
(4)前記検出手段の検出部が、操作ハンドルのアームの複数の面に貼り付けられた歪ゲージであることを特徴とする付記第1〜3項に記載の手術用顕微鏡装置(第1、3の実施例に対応)。
(5)前記検出手段の検出部が、前記操作ハンドルのアームの軸に設置された力覚センサであることを特徴とする付記第1〜3項に記載の手術用顕微鏡装置(第2の実施例に対応)。
(6)前記検出手段の検出部が、前記操作ハンドルのアームとグリップの結合部の面に設置された圧電素子であることを特徴とする付記第1〜3項に記載の手術用顕微鏡装置(第4の実施例に対応)。
(7)前記操作ハンドルが、手動操作部と電動操作部に分かれていることを特徴とする付記第1項に記載の手術用顕微鏡装置(第3の実施例に対応)。これは操作ハンドルを手動操作部と電動操作部に分かれるように構成したため、手動操作時に電動駆動装置が作動して観察視野ずれが防止され、そのための視野の補正を行う必要がない。
(8)前記検出手段の検出部が、一定以上の力量を検知したときはその操作入力装置の動作を停止する手段を設けたことを特徴とする付記第1項に記載の手術用顕微鏡装置(第1、2の実施例に対応)。
(9)前記検出手段の検出部が、手動操作部の操作入力が行われたときは停止することを特徴とする付記第1項に記載の手術用顕微鏡(第2の実施例に対応)。
(10)前記検出手段の検出部が、検出座標軸と駆動手段の駆動座標軸との間に存在する座標軸方向の変位を検出して該変位を自動的に補正する手段を有することを特徴とする付記第1項に記載の手術用顕微鏡(第2、3の実施例に対応)。これによれば、視野ずれが起こることがなく、視野の補正を行う必要がない。
(11)前記変位を補正する手段が、操作ハンドルを上下左右方向に回転駆動する電動駆動装置であることを特徴とする付記第10項に記載の手術用顕微鏡(第2の実施例に対応)。
(12)前記変位を補正する手段が、操作ハンドルの検出座標を電動駆動装置の駆動座標に変換する補正回路であることを特徴とする付記第10項に記載の手術用顕微鏡(第3の実施例に対応)。
本発明の第1の実施例に係る手術用顕微鏡装置の俯仰アーム機構の部分を示す斜視図。 同じくその手術用顕微鏡装置の回路部のブロック図。 同じくその手術用顕微鏡装置の操作ハンドル部の斜視図。 本発明の第2の実施例に係る手術用顕微鏡装置の鏡体部保持用俯仰アーム機構部の部分を示す斜視図。 同じくその手術用顕微鏡装置の操作ハンドル部の力覚センサの説明図。 同じくその手術用顕微鏡装置の回路部のブロック図。 同じくその手術用顕微鏡装置の操作ハンドル駆動機構の斜視図。 同じくその手術用顕微鏡装置の変位補正手段のフローチャート。 本発明の第3の実施例に係る手術用顕微鏡装置の全体を概略的に示す側面図。 同じくその手術用顕微鏡装置の回路部のブロック図。 同じくその手術用顕微鏡装置の顕微鏡の部分の斜視図。 同じくその手術用顕微鏡装置の操作ハンドルの部分の断面図。 本発明の第4の実施例に係る手術用顕微鏡装置の全体を概略的に示す側面図。 同じくその手術用顕微鏡装置の回転軸の周辺の構成を示す説明図。 同じくその手術用顕微鏡装置の操作ハンドルの部分の斜視図。 (a)(b)(c)は同じくその手術用顕微鏡装置の操作ハンドルの部分の作用を示す断面図。 (a)(b)(c)(d)は同じくその手術用顕微鏡装置のアーム部の回転制御方法の説明図。 (a)(b)は同じくその手術用顕微鏡装置のモータ支持部の説明図。
符号の説明
1…俯仰アーム機構、2…保持アーム機構、8…第1俯仰モータ、12…鏡体部、15…第2俯仰モータ、18…操作ハンドル、21…グリップアーム、22…グリップ、23…検出部用部材、24…前後方向歪検出面、25…左右方向歪検出面、26,27…歪ゲージ、32…歪検出器、33…歪検出器、34…制御回路、35…俯仰モータ駆動電源。

Claims (3)

  1. 鏡体部の位置および角度の少なくとも一方の変更を手動操作で行う手術用顕微鏡装置において、
    前記鏡体部の位置および角度の少なくとも一方の変更を電動駆動で行う電動駆動手段と、
    前記鏡体部に設けられ、前記鏡体部の位置および角度の少なくとも一方を変更する操作を行う操作ハンドルと、
    前記操作ハンドルに加えられた操作を検出するための検出手段と、
    前記検出手段が検出した操作力の大きさに基づき、前記操作ハンドルに加えられた術者の操作に対応して前記検出手段が検出した操作力の大きさが、予め定められた第1のしきい値を超え、前記第1のしきい値よりも大きな第2のしきい値を超えない場合は前記電動駆動手段による駆動を行う動作を選択し、前記第2のしきい値よりも大きな場合は前記電動駆動手段による駆動を行う動作を解除して前記操作ハンドルにより鏡体部の位置および角度の少なくとも一方を手動操作により行う動作を選択するように制御する切り替え制御手段と、
    を具備したことを特徴とする手術用顕微鏡装置。
  2. 鏡体部の位置および角度の少なくとも一方の変更を手動操作で行う手術用顕微鏡装置において、
    前記鏡体部の位置および角度の少なくとも一方の変更を電動駆動で行う電動駆動手段と、
    前記鏡体部に設けられ、前記鏡体部の位置および角度の少なくとも一方を変更する操作を行う操作ハンドルと、
    前記操作ハンドルに加えられた操作を検出するための検出手段と、
    前記操作ハンドルに設けられ、前記電動駆動手段による鏡体部の位置および角度の少なくとも一方の変更を行う電動駆動を解除する電動駆動解除手段と、
    前記操作ハンドルに操作が加えられた状態で前記検出手段の検出結果に基づいて前記電動駆動手段の駆動制御を行うと共に、前記電動駆動解除手段を操作することにより前記電動駆動手段による電動駆動を解除して前記手動操作を行い得るように制御する制御手段と、
    を具備したことを特徴とする手術用顕微鏡装置。
  3. 請求項2に記載の手術用顕微鏡装置において、
    前記手術用顕微鏡装置を手動操作するための電磁クラッチの固定を解除する電磁クラッチ操作手段を含み、
    前記制御手段は、前記電磁クラッチ操作手段の操作により、前記電磁クラッチが固定されている場合は前記電動駆動手段による駆動制御を行い、前記電磁クラッチが解除されている場合は前記電動駆動解除手段により電動駆動手段の電動駆動を停止するように制御することを特徴とする手術用顕微鏡装置。
JP2005092635A 2005-03-28 2005-03-28 手術用顕微鏡装置 Expired - Fee Related JP3845436B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005092635A JP3845436B2 (ja) 2005-03-28 2005-03-28 手術用顕微鏡装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005092635A JP3845436B2 (ja) 2005-03-28 2005-03-28 手術用顕微鏡装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6320097A Division JPH08173450A (ja) 1994-12-22 1994-12-22 手術用顕微鏡装置

Publications (2)

Publication Number Publication Date
JP2005211682A JP2005211682A (ja) 2005-08-11
JP3845436B2 true JP3845436B2 (ja) 2006-11-15

Family

ID=34909771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005092635A Expired - Fee Related JP3845436B2 (ja) 2005-03-28 2005-03-28 手術用顕微鏡装置

Country Status (1)

Country Link
JP (1) JP3845436B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5723745B2 (ja) * 2011-10-28 2015-05-27 株式会社モリタ製作所 医療用顕微鏡装置及びこれを備える医療用診療装置
CN104955620B (zh) * 2013-02-08 2016-10-05 奥林巴斯株式会社 操纵器

Also Published As

Publication number Publication date
JP2005211682A (ja) 2005-08-11

Similar Documents

Publication Publication Date Title
US11484379B2 (en) Microsurgery-specific haptic hand controller
EP0849053B1 (en) Method of controlling force assisting device and control apparatus using the same
JP6666249B2 (ja) 医療用観察装置
EP0364947B1 (en) Master slave manipulator system
JP4377827B2 (ja) マニピュレータ装置
JP6203249B2 (ja) マスタスレーブシステム
JP2001309928A (ja) 外科用顕微鏡
JP2004209096A (ja) 医療用器具保持装置
JP2007130485A (ja) マニピュレータ装置
CN108024837B (zh) 医疗支撑臂设备和医疗系统
JP3377740B2 (ja) 力補助装置の制御方法及びこの方法を利用した制御装置
JP6546361B1 (ja) 手術支援装置
JP3272286B2 (ja) 力補助装置の操作装置
JP3845436B2 (ja) 手術用顕微鏡装置
CN114288025A (zh) 骨科机器人
KR102190298B1 (ko) 수술 로봇 장치와 수술 로봇 장치의 구동 방법
JP3845423B2 (ja) 手術用顕微鏡装置
JP2001112777A (ja) 手術用顕微鏡
JP4036867B2 (ja) 手術用顕微鏡
KR20180130028A (ko) 다관절 로봇암의 동작을 조종하기 위한 햅틱형 로봇 조종장치
CN113194870A (zh) 使用者界面装置、手术机器人装置的主控制台及其操作方法
JPH08173450A (ja) 手術用顕微鏡装置
JP6603345B2 (ja) 介助ロボット
WO2017221323A1 (ja) 医療システム
EP4066774B1 (en) Medical robot

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees