JP3844867B2 - Bearing parts and manufacturing method thereof - Google Patents

Bearing parts and manufacturing method thereof Download PDF

Info

Publication number
JP3844867B2
JP3844867B2 JP36685797A JP36685797A JP3844867B2 JP 3844867 B2 JP3844867 B2 JP 3844867B2 JP 36685797 A JP36685797 A JP 36685797A JP 36685797 A JP36685797 A JP 36685797A JP 3844867 B2 JP3844867 B2 JP 3844867B2
Authority
JP
Japan
Prior art keywords
hardness
steel
casting
aluminum alloy
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36685797A
Other languages
Japanese (ja)
Other versions
JPH11193454A (en
Inventor
正稔 秋山
勇 笹
利治 有島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
THK Co Ltd
Original Assignee
Neturen Co Ltd
THK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd, THK Co Ltd filed Critical Neturen Co Ltd
Priority to JP36685797A priority Critical patent/JP3844867B2/en
Publication of JPH11193454A publication Critical patent/JPH11193454A/en
Application granted granted Critical
Publication of JP3844867B2 publication Critical patent/JP3844867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ボールねじナットの鋼球転動路やスライドレールのスライダなどのように耐摩耗面を焼入硬化させた複雑な形状の軸受部品の製造方法に関するものである。
【0002】
【従来の技術】
機械部品としては、ベアリングの軌道面やスライドテーブルの摺動面などを焼入硬化して耐摩耗性を向上した部品が多く使用されている。その製造方法としては、鋼材から機械加工により削りだしたり、熱間、温間あるいは冷間加工した部材から機械加工する方法が多く採られている。このような耐摩耗部品の焼入面の硬さは高いほど望ましく、少なくもHRC55以上の硬さが要求される。かかる用途には従来から軸受鋼が多く使用されている。
【発明が解決しようとする課題】
【0003】
しかしながら、これらの部品が単純な形状の場合には、容易に一体の材料から切削加工などにより成形して製造されるが、複雑な形状、例えばボールねじナットのような部品は、内径の軌道面は耐摩耗性を要するために高い硬さを必要とする一方、外周部には鋼球の循環路を設けるため複雑な形状になる。これを製造するために丸棒の棒鋼から切削加工により成形し熱処理することは大変な工数がかかりコストが高くなる。また全体を鋼材で作ると重量も大きくなり、動体部品などの場合は慣性が大きくなって動きのレスポンスに欠けるという問題点もある。そこで本発明では、所定硬さに焼入れした部材の外周をアルミニュームダイカストで肉付けして複雑な形状を形成させることにより、機械加工を減じて軽量で安価な耐摩耗部品の製造を図った。
【0004】
一方、前記従来から広く使用されている軸受鋼は、通常200℃以下の温度で焼戻しして使用され、焼戻し温度が200℃を超えると急激に硬さが下がる。従って、このような温度で焼入・焼戻した軸受鋼をアルミニュームダイカストで肉付けすると、もとの焼戻温度より高いダイカスト鋳造時の温度で焼戻しされて硬さが低下し所要硬さを得ることができなかった。これに対し、高合金鋼、例えばJIS.SKD11などの高炭素高クロム工具鋼などを使用すればダイカスト鋳造時の温度による硬さの低下は防止できるが、かかる鋼材は高価であるためコストが増し、また入手が容易でないという問題点がある。
【0005】
そこで本発明は、安価なマルテンサイト系クロムステンレス鋼をプラズマ浸炭焼入れすると浸炭層に通常のガス浸炭などで得られない高い炭素量が得られて、プラズマ浸炭焼入れした後430℃〜570℃で焼戻しすると2次硬化することに着目し、安価な耐摩耗部品及びその製造法を提供することを目的としたものである。また、前記処理したステンレス鋼はアルミニュームダイカスト時の鋳造温度でも軟化しないことに着目し、これをアルミニュームダイカストで肉付けして複雑な形状を形成させ、焼入れ面にHRC58以上の硬さを有する軽量で安価な耐摩耗部品及びその製造法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の軸受部品及びその製造方法は、少なくもC:0.4〜0.6wt%,Cr:9.5〜13.0wt%,Mo:0.3〜1.0wt%を含むマルテンサイト系クロムステンレス鋼の鋼管の鋼球転動路を加工後、転動面をプラズマ浸炭焼入れによりHRC55以上の硬さに焼入れした後430℃〜570℃で焼戻しして2次硬化させ、該鋼管の外周をアルミニウム合金鋳造で鋳ぐるんで形成し、転動面の硬さをHRC58以上にしたことを特徴とするものである。
【0007】
従来、耐摩耗部品に広く使用されている焼入・焼戻しされた軸受鋼(JIS.SUJ)では200℃以上に加熱されると硬さが低下するために高温での使用ができないという問題点がある。これに対して、上記マルテンサイト系クロムステンレス鋼をプラズマ浸炭焼入れした浸炭焼入層は430〜570℃の焼戻しにより2次硬化して硬さが上昇する。従って本発明の処理を行った耐摩耗部品は高温で使用される耐摩耗部材にも硬さの低下がなく使用できる。この焼入層の焼戻硬化は焼入時に残留する残留オーステナイトの相変化と固溶合金の析出によるものである。また、プラズマ浸炭焼入れよれば、浸炭層にガス浸炭で得られない2%以上の高い炭素量が得られ、短時間で浸炭が終了するので熱処理変形が少なく研削などの取代が減じて加工工数を低減できるという利点がある。
【0008】
従来、本発明のようにステンレス鋼をプラズマ浸炭して使用する例はない。ここで、前記マルテンサイト系クロムステンレス鋼の成分をC:0.4〜0.6wt%とするのは、Cがこれより低すぎるとプラズマ浸炭の時間がかかり過ぎることと、かつ母材の強度が低くなり浸炭層の亀裂や剥離が生じやすいからである。また、Cがこれより高すぎると浸炭層のみでなく内部まで硬さが増して全体の対衝撃性が低下することと、材料が高価になりコストがアップするからである。
【0009】
前記成分をCr:9.5〜13.0wt%,Mo:0.3〜1.0wt%とするのは、焼戻しによる2次硬化のために必要な合金量として広く知られているところであり、2次硬化の焼戻し硬さを得易くするためである。上記の本発明のマルテンサイト系クロムステンレス鋼は、AISI440Cなどのさらに高炭素・高合金のステンレス鋼に比し機械加工が容易で安価に入手できる。
【0010】
プラズマ浸炭層の炭素濃度は2%前後の高い炭素量が得られるので、焼入れの際には残留オーステナイトにより硬さがあまり高くならない場合がある。ここで最初の焼入硬さをHRC55以上とするのは、この化学成分でプラズマ浸炭したものは最初の焼入硬さがHRC55以上あれば、430〜570℃の焼戻しにより残留オーステナイトが相変化してマルテンサイト化し、析出硬化とともに焼戻し後にHRC58以上の所用硬さが確実に得られるからである。
【0012】
上記、プラズマ浸炭焼入れする鋼管の所定面とは、例えばボールねじナットにおいて、鋼球循環路や転動面や鋼管内周の表面などをいう。即ち、本発明によれば耐摩耗を要する部分は焼入硬化させた単純な形状の鋼材を使用して形成させ、複雑な形状で耐摩耗性を要しない部分はアルミニューム合金鋳造により肉付けして形成することで、軽量で安価な軸受部材を提供しようとするものである。
【0013】
この様に耐摩耗性を要しない部分をアルミニューム合金鋳造により肉付けして形成すれば、一体むくの鋼材から削り出して成型するのに比し容易に複雑な形状が得られて加工工数を大幅に低減できる。また、少量生産の場合にも近似の型を使用してアルミニューム合金によりニヤネットシェイプに成形してアルミニューム合金の部分を機械加工すれば鋼材の加工より容易で加工工数が少なくて済む。なお、アルミニューム合金鋳造としてはダイカスト鋳造やグラビティ鋳造など種々の鋳造方法が利用できる。
【0014】
しかし、従来の焼入・焼戻しした軸受鋼では、アルミニューム合金鋳造により肉付けする際に鋳造時の温度で軸受鋼が軟化するために所定のHRC58以上の硬さが得られなかった。そこで、本発明は前記ステンレス鋼のプラズマ浸炭した浸炭層が430〜570℃の加熱により2次硬化して硬さが上昇することに着目した。即ち、このような温度で焼戻ししておけば、鋳造時の温度では軟化することなく所定のHRC58以上の硬さが得られるので、上記アルミニューム合金の肉付けによる軽量化とコスト低減が容易にできる。なお、アルミニューム合金の鋳造温度は通常570℃の焼戻温度よりも高いが、溶湯の凝固時間は短時間であるので430〜570℃で焼戻しした前記ステンレスが鋳造時に軟化することはない。また、この用途に焼戻し軟化の少ないダイス鋼の使用も可能であるが、高価で管材などの入手が困難である。これに対し、本ステンレス鋼は安価に入手できる利点がある。
【0016】
例えばボールねじナットのような軸受部品は、内径に螺旋溝の転動面を有する円筒の外周部に鋼球循環路などの複雑な形状を備えている。本発明は、この鋼球転動面の耐摩耗性が要求される内径部を前記マルテンサイト系クロムステンレス鋼の鋼管で製作することにより丸棒鋼から削り出す従来方法に比して内径の孔明け加工が省略でき、その外周をアルミニューム合金鋳造で鋳ぐるんで形成することにより複雑な形状が安価容易に形成できる。また、このような構成にすることにより軽量化されるので、移動体などに使用する場合に慣性を小さくし動きのレスポンスが早くなる利点がある。従来の軸受鋼ではこのような鋳ぐるむことは硬さが低下してできなかった。
【0017】
上記アルミニューム合金鋳造後の焼入れ面の硬さは、対摩耗性のためには高いほど望ましく、転がり軸受などに使用される場合少なくもHRC58以上の硬さに保持されることが望ましいが、本発明の耐摩耗部品はこの要請に十分応えられるものである。
【0018】
【発明の実施の形態】
以下、本発明の1実施形態についてを具体的に説明する。図1は耐摩耗部材の一つとして軸受部材の本発明の製造工程と従来工程とを対比した図、図2は本発明の1実施形態の成品形状の概略を示す断面図である。
【0019】
図2に示す成品のボールねじナットは、ねじ軸1の螺旋溝を転動する鋼球2が外筒3及び4の一端の鋼球循環孔6及び7を通って他端の鋼球循環孔6´から螺旋溝に帰るようになっている。鋼球循環孔7の外側ははカバー材5でカバーされている。
【0020】
従来は、図2の内筒3及び外筒4は一体の鋼材から切削加工により成形された。即ち、図1の従来の製造工程に示すように、まず素材の棒鋼を所定長さに切断した後孔明けして管状に加工し外周部の形状を機械加工により成型した。その後、所要部をガス浸炭焼入れし内径研削して成品とされた。しかし、外周部は鋼球循環孔などがあり形状が複雑で機械加工が困難であった。かつ、全体を鋼材で製作することにより重量が増し、さらに軽量化の要請があった。
【0021】
これに対し、本発明の方法は、図1の本発明の製造工程に示すように、図2の内筒3及び外筒4を分離し、鋼球2が転動する耐摩耗性を要する内筒3を鋼管で製作し、耐摩耗性を要しない複雑な形状の外筒4をアルミニュームダイカストにより肉付けして成形したものである。即ち、本実施形態ではアルミニューム合金鋳造の方法としてダイカストにより、図1の製造工程に示すように、素材の鋼管の外径を旋削加工した後、内筒3の内面溝や鋼球循環路6などを加工し、所要部をプラズマ浸炭焼入・焼戻しした後、その外周をアルミニュームダイカストにより鋳ぐるんで成形した。その後内径研削して軸受部品成品とされた。これにより、内筒は加工が簡単で高い耐摩耗性が得られ、外筒部は機械加工部分が大幅に減ると共に、アルミニューム合金は鋼より加工が容易で軽いため大幅に加工工数を減してコストを低減するとともに大幅な軽量化が達成できた。
【0022】
本実施形態の内筒3の材料の1例として表1に示すマルテンサイト系ステンレス鋼のプラズマ浸炭焼入れした焼入層の熱処理特性を図3に示す。
【0023】
【表1】

Figure 0003844867
【0024】
図に示すように、上記ステンレス鋼をプラズマ浸炭しないで真空焼入れした場合の焼入層の硬さは、焼入れのままでHv700〜750(HRC60〜62)であるが、焼戻温度が増すと軟化して250℃を超えるとHv680(HRC54)まで低下する。500℃近傍でやや硬さが上昇してようやくHv600(HRC55)が得られるが、500℃を超えると急激に硬さは低下して不安定であり所用硬さのHRC58以上の硬さを得ることはできない。
【0025】
これに対し、本発明のプラズマ浸炭焼入れを行った焼入層の硬さは、焼入れのままでHv760(HRC62.5)程度になる。焼戻温度が増すとHv620(HRC56)に軟化するが、430℃を超えると析出硬化してHv730〜740(HRC61.5程度)の高い硬さが得られる。焼戻温度が570℃を超えると再び硬さが低下するので、430℃〜570℃の焼戻しが望ましい。即ち、プラズマ浸炭焼入後にこの温度で焼戻しすれば、430℃以上の高い温度でも長時間使用に耐える耐摩耗部品が得られる。また、ダイカスト用アルミニューム合金のダイカスト鋳造温度は通常570℃より高いが、凝固時間が短時間であるので上記温度で焼戻ししたステンレス部材はアルミニュームダイカストの鋳ぐるみの際に軟化することがない。したがって、本発明のマルテンサイト系ステンレス鋼をプラズマ浸炭焼入れしてアルミニュームダイカストにより肉付けすれば、内筒には転がり軸受として使用される所要硬さのHv650(HRC58)以上の硬さが得られることが分かった。
【0026】
なお、図4には省略したが、プラズマ浸炭焼入時の硬さが残留オーステナイトのために低くてなってもHv600(HRC55)以上あれば焼戻しにより残留オーステナイトが相変化してHRC58以上の2次硬化硬さが得られることが判った。
【0027】
【実施例】
実際の部品について下記の試験条件で試験した結果を以下に示す。
Figure 0003844867
【0028】
上記条件で試験した結果ダイカスト後に下記のように非常に高い硬さの結果が得られた。
試験結果:
表面硬さ: Hv730(約HRC61.5)
Hv650(HRC58)以上の焼入層深さ: 0.7mm
【0029】
以上説明したように本発明の耐摩耗部品の製造方法によれば、少なくもC:0.4〜0.6wt%,Cr:9.5〜13.0wt%,Mo:0.3〜1.0wt%を含むマルテンサイト系クロムステンレス鋼をプラズマ浸炭焼入れした後430℃〜570℃で焼戻しすると2次硬化して所要のHRC58以上の硬さが得られるので、かかる熱処理をすることにより従来の軸受鋼では使用できなかった高温で使用できる耐摩耗部材が安価に得られる。また、熱処理変形が少なく研削などの取代が減じて加工工数を低減できる。
【0030】
また、上記組成のマルテンサイト系クロムステンレス鋼を使用してプラズマ浸炭焼入・焼戻を行い、その部材をアルミニュームダイカストなどのアルミニューム合金鋳造で肉付け成形することにより、部材の硬さがHRC58以上を満足しながら複雑な形状で容積の大きい部分がアルミニューム合金で成品近似形状に成型されて機械加工工数が減じコストが低減されて軽量化できる。
【0031】
上記本実施例ではボールねじナットについて試験したが、本発明の製造方法はローラが転動したり平面で摺動する耐摩耗部材にも適用でき、円筒形状の場合はステンレス鋼管を使用することにより一層コスト低減できるが、棒鋼材、平鋼材から削り出すことを排除するものではない。また、軸受部品としたが軸受部品に限るものではなく、広く対摩耗部品に使用される。
【0032】
【発明の効果】
以上説明したように、本発明の軸受部品及びその製造方法によれば、所定成分のマルテンサイ系ステンレス鋼をプラズマ浸炭焼入・焼戻してアルミニューム合金鋳造で肉付けすることにより、所要部に高い硬さが得られて軽量化でき、かつボールねじナットのような複雑な形状の部品でも機械工数が低減できてコストの削減ができる。
【図面の簡単な説明】
【図1】 本発明の軸受部品の製造工程と従来の製造工程を比較した図である。
【図2】 本発明実施形態の軸受部品の形状を示す断面図である。
【図3】 本発明の軸受部品のプラズマ浸炭焼入・焼戻し条件を示す図である。
【図4】 本発明のマルテンサイト系ステンレス鋼をプラズマ浸炭焼入れした焼入層の熱処理特性を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a bearing component having a complicated shape in which a wear-resistant surface is hardened and hardened, such as a steel ball rolling path of a ball screw nut and a slider of a slide rail.
[0002]
[Prior art]
As machine parts, parts having improved wear resistance by quenching and hardening bearing raceways and sliding surfaces of slide tables are often used. As the manufacturing method, there are many methods of machining from steel material by machining or machining from a hot, warm or cold worked member. The hardness of the hardened surface of such wear-resistant parts is preferably as high as possible, and at least a hardness of HRC 55 or higher is required. Conventionally, many bearing steels have been used for such applications.
[Problems to be solved by the invention]
[0003]
However, when these parts have a simple shape, they are easily molded from a single material by cutting or the like. However, a complicated shape such as a ball screw nut has an inner raceway surface. On the other hand, it requires a high hardness because of its wear resistance, while it has a complicated shape because a circulation path for steel balls is provided on the outer periphery. In order to manufacture this, forming from a round bar steel by cutting and heat-treating it takes a great number of steps and costs. Moreover, when the whole is made of steel, the weight increases, and in the case of moving parts, there is a problem that the inertia becomes large and the response of the movement is lacking. Therefore, in the present invention, the outer periphery of a member quenched to a predetermined hardness is formed with an aluminum die casting to form a complicated shape, thereby reducing machining and manufacturing a lightweight and inexpensive wear-resistant part.
[0004]
On the other hand, the conventionally widely used bearing steel is usually tempered at a temperature of 200 ° C. or lower, and when the tempering temperature exceeds 200 ° C., the hardness rapidly decreases. Therefore, when bearing steel that has been quenched and tempered at such a temperature is filled with aluminum die casting, it is tempered at a temperature during die casting that is higher than the original tempering temperature, resulting in reduced hardness and the required hardness. I could not. In contrast, high alloy steel such as JIS. If high-carbon high-chromium tool steel such as SKD11 is used, it is possible to prevent a decrease in hardness due to temperature during die-casting, but this steel material is expensive, so there is a problem that the cost increases and it is not easy to obtain. .
[0005]
Therefore, in the present invention, when an inexpensive martensitic chromium stainless steel is plasma carburized and quenched, a high carbon amount that cannot be obtained by ordinary gas carburizing or the like is obtained in the carburized layer, and after tempering at 430 ° C. to 570 ° C. after plasma carburizing and quenching. Then, paying attention to the secondary curing, an object is to provide an inexpensive wear-resistant part and a manufacturing method thereof. In addition, paying attention to the fact that the treated stainless steel is not softened even at the casting temperature at the time of aluminum die casting, this is lightened with aluminum die casting to form a complicated shape, and the hardened surface has a hardness of HRC 58 or higher. It is an object of the present invention to provide a wear-resistant part that is inexpensive and inexpensive and a method for manufacturing the same.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the bearing component and the manufacturing method thereof according to the present invention are at least C: 0.4 to 0.6 wt%, Cr: 9.5 to 13.0 wt%, Mo: 0.3 to 1 After rolling the ball raceway of a martensitic chromium stainless steel pipe containing 0.0 wt%, the rolling surface was quenched to a hardness of HRC 55 or higher by plasma carburizing and quenching and then tempered at 430 ° C. to 570 ° C. 2 The steel tube is then hardened, and the outer periphery of the steel pipe is formed by casting an aluminum alloy, and the rolling surface has a hardness of HRC58 or higher .
[0007]
Conventionally, hardened and tempered bearing steel (JIS.SUJ) widely used for wear-resistant parts has a problem that it cannot be used at high temperature because its hardness decreases when heated above 200 ° C. is there. On the other hand, the carburized hardened layer obtained by plasma carburizing and quenching the martensitic chromium stainless steel is secondarily hardened by tempering at 430 to 570 ° C. and the hardness is increased. Therefore, the wear-resistant parts subjected to the treatment of the present invention can be used for wear-resistant members used at high temperatures without any decrease in hardness. The temper hardening of the hardened layer is due to the phase change of residual austenite remaining during quenching and the precipitation of a solid solution alloy. In addition, plasma carburizing and quenching provides a high carbon content of 2% or more that cannot be obtained by gas carburizing in the carburized layer, and since carburizing is completed in a short time, heat treatment deformation is small, and machining allowances are reduced with less machining allowance such as grinding. There is an advantage that it can be reduced.
[0008]
Conventionally, there is no example of using stainless steel by plasma carburizing as in the present invention. Here, the component of the martensitic chrome stainless steel is C: 0.4 to 0.6 wt% because if C is too lower, it takes too much time for plasma carburizing and the strength of the base material. It is because it becomes low and it is easy to produce the crack and peeling of a carburized layer. On the other hand, if C is too high, not only the carburized layer but also the hardness increases not only to the inside, but the overall impact resistance decreases, and the material becomes expensive and the cost increases.
[0009]
The reason why the components are Cr: 9.5 to 13.0 wt% and Mo: 0.3 to 1.0 wt% is widely known as an alloy amount necessary for secondary hardening by tempering, This is to make it easy to obtain the tempering hardness of the secondary curing. The martensitic chromium stainless steel of the present invention is easy to machine and can be obtained at a low cost as compared with higher carbon / high alloy stainless steel such as AISI 440C.
[0010]
Since the carbon concentration of the plasma carburized layer can be as high as 2%, the hardness may not be so high due to residual austenite during quenching. Here, the initial quenching hardness is set to HRC 55 or more. If the initial quenching hardness is HRC 55 or more in the case of plasma carburized with this chemical component, the retained austenite undergoes phase change by tempering at 430 to 570 ° C. This is because the required hardness of HRC58 or higher is reliably obtained after tempering with precipitation hardening.
[0012]
The predetermined surface of the steel pipe to be plasma carburized and quenched is, for example, a ball screw nut, a steel ball circulation path, a rolling surface, a surface of the inner periphery of the steel pipe, and the like. That is, according to the present invention, a portion requiring wear resistance is formed using a hardened and hardened steel material, and a portion having a complicated shape and not requiring wear resistance is fleshed by aluminum alloy casting. By forming, it aims to provide a lightweight and inexpensive bearing member.
[0013]
In this way, if parts that do not require wear resistance are formed by fleshing by aluminum alloy casting, complex shapes can be obtained easily and machining man-hours can be greatly increased compared to cutting and molding from solid steel. Can be reduced. Also, in the case of small-volume production, if an approximate mold is used to form a near-net shape with an aluminum alloy and the aluminum alloy part is machined, machining of the steel material is easier and requires fewer man-hours. As the aluminum alloy casting, various casting methods such as die casting and gravity casting can be used.
[0014]
However, with conventional hardened and tempered bearing steel, the bearing steel softens at the casting temperature at the time of fleshing by aluminum alloy casting, so that a hardness higher than a predetermined HRC58 cannot be obtained. Therefore, the present invention focused on the fact that the plasma carburized carburized layer of the stainless steel is secondarily cured by heating at 430 to 570 ° C. and the hardness is increased. That is, if tempering is performed at such a temperature, hardness equal to or higher than a predetermined HRC58 can be obtained without being softened at the temperature at the time of casting. Therefore, weight reduction and cost reduction can be easily achieved by fleshing the aluminum alloy. . Although the casting temperature of the aluminum alloy is usually higher than the tempering temperature of 570 ° C., the solidification time of the molten metal is short, so the stainless steel tempered at 430 to 570 ° C. does not soften during casting. In addition, it is possible to use die steel with little temper softening for this purpose, but it is expensive and it is difficult to obtain pipes and the like. On the other hand, this stainless steel has an advantage that it can be obtained at low cost.
[0016]
For example, a bearing component such as a ball screw nut has a complicated shape such as a steel ball circulation path on the outer periphery of a cylinder having a rolling surface of a spiral groove on its inner diameter. In the present invention, the inner diameter portion where the wear resistance of the rolling surface of the steel ball is required is made of the martensitic chrome stainless steel pipe, and the inner diameter is drilled as compared with the conventional method of cutting from a round bar steel. Machining can be omitted, and a complicated shape can be easily formed at low cost by forming the outer periphery of the aluminum alloy by casting. In addition, since the weight is reduced by using such a configuration, there is an advantage that the inertia is reduced and the response of the movement is quick when used for a moving body or the like. In conventional bearing steel, such cast-in cannot be achieved due to reduced hardness.
[0017]
The hardness of the hardened surface after casting the aluminum alloy is preferably as high as possible for wear resistance, and when used for a rolling bearing or the like, it is desirable to maintain the hardness at least HRC58 or higher. The wear-resistant parts of the invention can fully meet this demand.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be specifically described. FIG. 1 is a diagram comparing the manufacturing process of the present invention and a conventional process of a bearing member as one of wear-resistant members, and FIG. 2 is a cross-sectional view schematically showing the product shape of one embodiment of the present invention.
[0019]
In the product ball screw nut shown in FIG. 2, the steel ball 2 rolling in the spiral groove of the screw shaft 1 passes through the steel ball circulation holes 6 and 7 at one end of the outer cylinders 3 and 4, and the steel ball circulation hole at the other end. 6 'comes back to the spiral groove. The outside of the steel ball circulation hole 7 is covered with a cover material 5.
[0020]
Conventionally, the inner cylinder 3 and the outer cylinder 4 in FIG. 2 are formed by cutting from an integral steel material. That is, as shown in the conventional manufacturing process of FIG. 1, first, a steel bar as a raw material was cut into a predetermined length, then drilled and processed into a tubular shape, and the shape of the outer peripheral portion was formed by machining. Then, the required part was gas-carburized and quenched, and the inner diameter was ground into a finished product. However, the outer peripheral part has a steel ball circulation hole and the like has a complicated shape and is difficult to machine. In addition, since the whole was made of steel, the weight increased, and further weight reduction was required.
[0021]
On the other hand, the method of the present invention requires an abrasion resistance that separates the inner cylinder 3 and the outer cylinder 4 of FIG. 2 and rolls the steel ball 2 as shown in the manufacturing process of the present invention of FIG. The cylinder 3 is made of a steel pipe, and the outer cylinder 4 having a complicated shape that does not require wear resistance is formed by fleshing with aluminum die casting. That is, in this embodiment, as shown in the manufacturing process of FIG. 1, by die casting as a method of casting an aluminum alloy, after turning the outer diameter of the steel pipe of the raw material, the inner surface groove of the inner cylinder 3 and the steel ball circulation path 6 After the required parts were plasma carburized and quenched and tempered, the outer periphery was cast by aluminum die casting and molded. Thereafter, the inner diameter was ground to obtain a bearing component product. As a result, the inner cylinder is easy to machine and high wear resistance is achieved, and the outer cylinder is greatly reduced in machined parts, while aluminum alloy is easier and lighter than steel to significantly reduce the number of machining steps. As a result, costs were reduced and significant weight reduction was achieved.
[0022]
FIG. 3 shows the heat treatment characteristics of a hardened layer obtained by plasma carburizing and quenching martensitic stainless steel shown in Table 1 as an example of the material of the inner cylinder 3 of the present embodiment.
[0023]
[Table 1]
Figure 0003844867
[0024]
As shown in the figure, the hardness of the hardened layer when the above stainless steel is vacuum-quenched without plasma carburizing is Hv 700 to 750 (HRC 60 to 62) as it is quenched, but it softens as the tempering temperature increases. If it exceeds 250 ° C., it decreases to Hv680 (HRC54). Hv600 (HRC55) is finally obtained with a slight increase in the vicinity of 500 ° C, but when it exceeds 500 ° C, the hardness is suddenly lowered and unstable, and a hardness of HRC58 or higher is obtained. I can't.
[0025]
On the other hand, the hardness of the hardened layer subjected to the plasma carburizing and quenching of the present invention is about Hv760 (HRC62.5) as it is quenched. When the tempering temperature is increased, it softens to Hv620 (HRC56), but when it exceeds 430 ° C., it is precipitated and hardened to obtain a high hardness of Hv730 to 740 (about HRC61.5). When the tempering temperature exceeds 570 ° C., the hardness decreases again, so tempering at 430 ° C. to 570 ° C. is desirable. That is, if tempering is performed at this temperature after plasma carburizing and quenching, a wear-resistant component that can withstand long-term use can be obtained even at a high temperature of 430 ° C. or higher. The die casting temperature of the aluminum alloy for die casting is usually higher than 570 ° C. However, since the solidification time is short, the stainless member tempered at the above temperature does not soften during casting of the aluminum die casting. Therefore, if the martensitic stainless steel of the present invention is plasma carburized and hardened by aluminum die casting, the inner cylinder can have a hardness of Hv650 (HRC58) or higher, which is the required hardness used as a rolling bearing. I understood.
[0026]
Although not shown in FIG. 4, even if the hardness at the time of plasma carburizing and quenching is lowered due to residual austenite, if the Hv600 (HRC55) or higher, the residual austenite undergoes phase change due to tempering, resulting in a secondary higher than HRC58. It was found that cured hardness was obtained.
[0027]
【Example】
The results of testing actual parts under the following test conditions are shown below.
Figure 0003844867
[0028]
As a result of testing under the above conditions, a result of very high hardness was obtained as described below after die casting.
Test results:
Surface hardness: Hv730 (about HRC61.5)
Hardened layer depth of Hv650 (HRC58) or more: 0.7mm
[0029]
As described above, according to the method for manufacturing a wear-resistant part of the present invention, at least C: 0.4 to 0.6 wt%, Cr: 9.5 to 13.0 wt%, Mo: 0.3 to 1. When martensitic chromium stainless steel containing 0 wt% is plasma carburized and quenched and then tempered at 430 ° C. to 570 ° C., secondary hardening is achieved and the required hardness of HRC 58 or higher is obtained. A wear-resistant member that can be used at high temperatures that could not be used with steel can be obtained at low cost. In addition, there are few heat treatment deformations, and the machining allowance such as grinding can be reduced to reduce the number of processing steps.
[0030]
Also, plasma carburizing and tempering is performed using martensitic chromium stainless steel having the above composition, and the member is formed by fleshing by aluminum alloy casting such as aluminum die casting, so that the hardness of the member is HRC58. While satisfying the above, a complex shape and a large volume portion are formed of an aluminum alloy into an approximate product shape, reducing the number of machining steps and reducing the cost and weight.
[0031]
In the present embodiment, the ball screw nut was tested. However, the manufacturing method of the present invention can be applied to a wear-resistant member in which a roller rolls or slides on a flat surface. In the case of a cylindrical shape, a stainless steel pipe is used. Although the cost can be further reduced, it does not exclude cutting out from bar steel or flat steel. Moreover, although it was set as a bearing component, it is not restricted to a bearing component, and is widely used for a wear-resistant component.
[0032]
【The invention's effect】
As described above, according to the bearing component and the manufacturing method thereof of the present invention, high hardness is obtained in a required part by plasma carburizing and tempering martensitic stainless steel of a predetermined component and fleshing it by aluminum alloy casting. Thus, the weight can be reduced, and even a complicatedly shaped part such as a ball screw nut can reduce the number of man-hours and the cost.
[Brief description of the drawings]
FIG. 1 is a diagram comparing a manufacturing process of a bearing component of the present invention and a conventional manufacturing process.
FIG. 2 is a cross-sectional view showing the shape of a bearing component according to an embodiment of the present invention.
FIG. 3 is a view showing plasma carburizing and tempering conditions of the bearing component of the present invention.
FIG. 4 is a view showing heat treatment characteristics of a hardened layer obtained by plasma carburizing and quenching the martensitic stainless steel of the present invention.

Claims (2)

少なくもC:0.4〜0.6wt%,Cr:9.5〜13.0wt%,Mo:0.3〜1.0wt%を含むマルテンサイト系クロムステンレス鋼の鋼管の鋼球転動路を加工後、転動面をプラズマ浸炭焼入れによりHRC55以上の硬さに焼入れした後430℃〜570℃で焼戻しして2次硬化させ、該鋼管の外周をアルミニウム合金鋳造で鋳ぐるんで形成し、転動面の硬さをHRC58以上にしたことを特徴とする軸受部品。Steel ball rolling path of steel tube of martensitic chromium stainless steel containing at least C: 0.4 to 0.6 wt%, Cr: 9.5 to 13.0 wt%, Mo: 0.3 to 1.0 wt% After the rolling , the rolling surface is quenched to a hardness of HRC 55 or higher by plasma carburizing and quenching, then tempered at 430 ° C. to 570 ° C. and secondarily cured, and the outer periphery of the steel pipe is formed by casting with an aluminum alloy casting, A bearing component characterized in that the hardness of the rolling surface is HRC58 or higher . 少なくもC:0.4〜0.6wt%,Cr:9.5〜13.0wt%,Mo:0.3〜1.0wt%を含むマルテンサイト系クロムステンレス鋼の鋼管の鋼球転動路を加工後、所定面をプラズマ浸炭焼入れによりHRC55以上の硬さに焼入れした後430℃〜570℃で焼戻しして2次硬化させ、該鋼管の外周をアルミニウム合金鋳造で鋳ぐるんで形成し、転動面の硬さをHRC58以上にしたことを特徴とする軸受部品の製造方法。 Steel ball rolling path of steel tube of martensitic chromium stainless steel containing at least C: 0.4 to 0.6 wt%, Cr: 9.5 to 13.0 wt%, Mo: 0.3 to 1.0 wt% After machining, the predetermined surface is quenched by plasma carburizing and quenching to a hardness of HRC 55 or higher, tempered at 430 ° C. to 570 ° C. and secondarily cured, and the outer periphery of the steel pipe is formed by casting an aluminum alloy and rolling. A method of manufacturing a bearing component, wherein the hardness of the moving surface is HRC58 or higher .
JP36685797A 1997-12-26 1997-12-26 Bearing parts and manufacturing method thereof Expired - Fee Related JP3844867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36685797A JP3844867B2 (en) 1997-12-26 1997-12-26 Bearing parts and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36685797A JP3844867B2 (en) 1997-12-26 1997-12-26 Bearing parts and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11193454A JPH11193454A (en) 1999-07-21
JP3844867B2 true JP3844867B2 (en) 2006-11-15

Family

ID=18487858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36685797A Expired - Fee Related JP3844867B2 (en) 1997-12-26 1997-12-26 Bearing parts and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3844867B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010105644A1 (en) * 2009-03-19 2010-09-23 Ab Skf Method of manufacturing a bearing ring
US10087512B2 (en) 2012-08-15 2018-10-02 The Timken Company Steel article having improved contact fatigue resistance and a method of making
CN114231701A (en) * 2021-12-10 2022-03-25 吉林省齐智科技有限公司 Non-standard hardness heat treatment method for XW-42 die steel

Also Published As

Publication number Publication date
JPH11193454A (en) 1999-07-21

Similar Documents

Publication Publication Date Title
US6620262B1 (en) Method of manufacturing inner and outer races of deep groove ball bearing in continuous annealing furnace
KR100738849B1 (en) Rolling bearing component
JP3249345B2 (en) Bevel gear manufacturing method
JP4632931B2 (en) Induction hardening steel excellent in cold workability and its manufacturing method
JPH09176740A (en) Production of bearing ring for ball bearing
JP2001519853A (en) Steel and bearing parts manufacturing method
JPH11343520A (en) Bevel gear and production of gear having many gear teeth
US7083688B2 (en) High-strength race and method of producing the same
JP3844867B2 (en) Bearing parts and manufacturing method thereof
JP3372219B2 (en) Manufacturing method of steel parts
JPH0255487B2 (en)
KR20100091973A (en) A process for forming steel
JP2006328465A (en) Method for manufacturing bearing ring for rolling bearing, bearing ring for rolling bearing, and rolling bearing
JP3424035B2 (en) Outer ring of constant velocity ball joint
JP2007239837A (en) Tripod type constant velocity universal joint and its manufacturing method
KR100232268B1 (en) The heat treatment method of steel for die
US4973368A (en) Method of manufacturing steel elements designed to withstand high stress, such as roller bearing elements
KR102312107B1 (en) Molded body manufacturing method
JP2006291239A (en) Method for producing high-carbon chromium bearing steel-forged rough-shaped material for inner and outer rings of general purpose small type bearing
JP4712603B2 (en) Rolling part manufacturing method, race ring and bearing
JPH10226817A (en) Production of steel for soft-nitriding and soft-nitrided parts using this steel
JP4533613B2 (en) Nut manufacturing method for roll barrel screw drive
JPH01283430A (en) Bearing excellent in rolling fatigue life characteristic
JP2827592B2 (en) Manufacturing method of steel parts
JP4855369B2 (en) Outer joint member for constant velocity universal joint and fixed constant velocity universal joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees