JP3844861B2 - Cable reinforcement structure of structure - Google Patents

Cable reinforcement structure of structure Download PDF

Info

Publication number
JP3844861B2
JP3844861B2 JP32299797A JP32299797A JP3844861B2 JP 3844861 B2 JP3844861 B2 JP 3844861B2 JP 32299797 A JP32299797 A JP 32299797A JP 32299797 A JP32299797 A JP 32299797A JP 3844861 B2 JP3844861 B2 JP 3844861B2
Authority
JP
Japan
Prior art keywords
cable
fixing bracket
upper structure
shaft plate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32299797A
Other languages
Japanese (ja)
Other versions
JPH11158819A (en
Inventor
俊男 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Wire Co Ltd
Original Assignee
Shinko Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Wire Co Ltd filed Critical Shinko Wire Co Ltd
Priority to JP32299797A priority Critical patent/JP3844861B2/en
Publication of JPH11158819A publication Critical patent/JPH11158819A/en
Application granted granted Critical
Publication of JP3844861B2 publication Critical patent/JP3844861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)
  • Bridges Or Land Bridges (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、橋脚等の下部構造物とその上に横設される橋桁等の上部構造物と、この上部構造物の下面側に長手方向に延在して付設され張力が導入されてなるケーブルを備える引張材とを含む構築物に対する耐荷重性能を高めるケーブル補強構造に関し、更に詳しくは、上部構造物に上方に反らせる内部圧縮力を発生させ、かつ、この圧縮力に基づいて定着領域に生じる集中応力をスムーズに分散させて、該定着領域での補強部材を軽減しながら設計荷重に対する耐久性を向上することができる構築物のケーブル補強構造に関する。
【0002】
【従来の技術】
従来のこの種構築物の典型的な先行技術が図9に図示される。この図に示される構築物1は、高架道路であって、地盤18上に間隔をとって立設される橋脚で実現される複数の下部構造物2と、それら下部構造物2の上に単純に分割支持されて水平に配設されてなる橋桁で実現される複数の上部構造物3とからなり、上部構造物3は設計荷重である水平・垂直外力によって撓み変位することが知られている。この設計荷重は、図10に示されるように供用期間中において例えば20ton 車両が限界であったものが、25ton 車両にまで範囲を広げる等の変更を余儀なくされて増加することがあり、また、上部構造物3が劣化・損傷したりして、その結果、設計荷重が上部構造物3の耐力許容値を超えてしまうことがあった。
【0003】
このように、増加した設計荷重に対して現実に対応させようとすると、上部構造物3をこの増加に見合った新しいものに架け替えればよいが、これでは改良のためのコストが非常に高くつく問題があるところから、図11において左側の図面に示されるように、現状の上部構造物3の耐久性を向上させるためとして、上部構造物3の損傷補強用部材に引張材4を配設することによって、上部構造物3に上方に反らせる内部圧縮力を発生させて撓み変位を低減させるようにした改良工法がとられていた。
【0004】
【発明が解決しようとする課題】
ところがこのような引張材4を配設した場合、図11乃至図13を参照して、上部構造物3における定着金具8を中心としたその前後に隣接する区域である定着金具領域S(図11参照)では、ケーブル張力導入に伴い生じる応力の流れA(図12(イ)参照)が、上部構造物3の桁部材と定着金具8との間で上下方向に急角度に変化することになって、前記桁部材の定着部と定着金具8前後端部には高い応力が集中するために新たな補強構造を必要とし、従来は図12に示されるように複数のボルトが溶接固着されてなる補強板20の数枚を桁部材に添設させており、従って、この補強板20を取付けるための時間と工数の増大や、また上部構造物3の重量増加の問題があった。
【0005】
更に、図12(ロ)に示されるように、定着金具8の断面斜線を付して示す軸板と前記桁部材の同じく断面斜線を付して示す軸板とは、面がずれていて不一致であることが殆どであるために、応力の流れB(図12(ロ)参照)が左右幅方向にも急変することになり、これに対応する分の補強構造を必要として、補強板20を更に増加する必要が生じる結果、具体的には、図13を参照して歪曲、座屈等が起こらないようにするために、補強板20をヒ字形状に添設させており、補強コストの増加、上部構造物3の重量増加がより問題となっていた。
【0006】
一方、図14、15を参照して、上部構造物3の下面側に付設した引張材4は、上部構造物3における重心を結ぶ長手方向の線との間の距離、即ち、偏心距離が、撓み変形前ではe0 であったものが、設計荷重Wが加わった際は、上部構造物3の撓み変形により、前記偏心距離がe1 (<e0 )となり、その結果、上部構造物3の撓み耐久性が低減する問題もあった。
【0007】
本発明は、このような従来の問題点を解消するべく成されたものであり、従って本発明の目的は、特に引張材に関係する定着金具領域における追加補強部材の省略を含んだ軽減化を図り、また、上部構造物の変形に対しても引張材の偏心距離の一定化を図って、低改善コストの下で上部構造物の撓み耐久性を確立し、かつ向上させることができる構築物のケーブル補強構造を提供することである。
【0008】
【課題を解決するための手段】
本発明は、上記の目的を達成するため以下に述べる構成としたものである。即ち、本発明における請求項1の発明に関しては、立設される下部構造物と、その上に横設される上部構造物と、この上部構造物の下面側に定着金具を介して長手方向に延在して付設され張力が導入されてなるケーブルを備える引張材とを含む構築物において、前記定着金具が鋼板製の取付け基板と鋼管製の筒体と鋼板製の軸板を備え、この定着金具がその軸板を前記上部構造物の桁部材の軸板を包含する垂直面に合致させた配置で前記上部構造物の下面に取り付けられ、前記ケーブルの両端部を支持する前記定着金具の前後両端部に、前記ケーブルに対する張力導入に伴って生じる応力を上部構造物の桁部材と定着金具の軸板との間においてスムーズなベクトル変化で転移可能とするための緩衝部が一体に設けられてなることを特徴とする構築物のケーブル補強構造である。
【0010】
また、本発明における請求項の発明は、上記請求項1の発明に関して、前記緩衝部が、前記定着金具の軸板を包含する垂直面に合致させて該軸板に一体に設けられた金属板から成り、前記軸板との境界部分を底辺とし、前記上部構造物の桁部材の下面部に当接させる辺縁部を直交辺とする不等辺台形状に形成されることを特徴とする。
【0011】
また、本発明における請求項の発明は、上記請求項1又は2の発明に関して、前記引張材が、前記定着金具間の中間位置において前記ケーブルの中間部を支持するために前記上部構造物の下面に取付けられる中間支持金具を備え、この中間支持金具により支持されるケーブルが上部構造物の桁の重心に対する垂直方向の偏心距離を所要値に確保し得るように形成されることを特徴とする。
【0012】
このような本発明によれば、引張材を設けて上部構造物に上方に反らせる内部圧縮力を発生させるようにしているために、上部構造物の撓み耐久性を向上させて、損傷補強や変位低減のために有効に作用する。
【0013】
請求項1の発明は、引張材の定着金具に緩衝部を設けたことにより、引張材に関係する定着金具領域における集中外力が緩衝部を介してスムーズに分散され、従って、定着金具領域の集中応力を緩和することができる。また、上記定着金具の軸板と上部構造物の軸板とを共通の垂直面に合致させることにより、集中外力が上部構造物の桁部材と定着金具の軸板との間でスムーズに流れるようになって、定着金具領域の集中応力をより一層緩和する作用を成す。
【0015】
請求項の発明は、緩衝部を略不等辺台形状の金属板により形成したことにより、簡単な構造の定着金具をベースとして単純構造になる緩衝部を付加するだけの簡易な手段で効果的な集中応力緩和作用を発揮することができ、上部構造物の軽重量を維持しながら改善工事を短期間で迅速に施工することが可能である。
【0016】
請求項の発明は、上部構造物が荷重の負荷によって撓み変形したとしても中間支持金具が偏心距離を一定に保持するので、撓み耐久性を常時安定的に確保する作用が成される。
【0017】
【発明の実施の形態】
以下、本発明の好ましい実施形態について、添付図面を参照しながら具体的に説明する。図1、図2及び図3には、本発明の実施形態に係る構築物における定着金具取付け部の概要構造、ケーブルの構造及び定着金具の構造がそれぞれ示される。
【0018】
図1を参照して、図示しない地盤上に適宜間隔を存して直立に設けられる各橋脚で実現される複数の下部構造物2と、それらの上に水平に亘らせて直列に配設される各橋桁で実現される複数の上部構造物3とからなる構築物としての高架道路1において、橋桁3に対しその耐久性能向上のための損傷補強用部材として引張材4が付設される。この引張材4は、橋桁3の長手方向両端部において橋脚2により支承される個所に近い橋桁下面部にそれぞれ固定された定着金具8と、この両定着金具8に両端部分が支持されて橋桁3の下面側にその長手方向に延在して張設されたケーブル5とを要素部材に備える。
【0019】
ケーブル5は、例えばPC鋼より線の複数本を集束して形成される線束の両端に、キャップ6がそれぞれ固着一体化されてなる構造であって、引張荷重が大きいケーブルが形成されており、通常、PC(Prestressed Concrete)緊張材として使用されるケーブルに類似した構造を有する。前記キャップ6は外周にねじが螺刻されていて、該ねじにアンカーヘッド7を螺合させるようになっている。
【0020】
定着金具8は、取付け座部としての長方形を成す鋼板製の取付基板10と、この取付基板10の長手中心線に沿って直角方向に溶接等により一体に固着してT字状に突設させた同じく鋼板製の軸板9と、この軸板9の取付基板10とは反対側の端縁部に接して溶接等により一体に固着させた鋼管製の筒体11と、軸板9及び筒体11の同じ側の一端部に固着させた端板12と、詳細は後述するが軸板9の長手側両端部に一体的に張出させてそれぞれ設けた鋼板製の緩衝部13とにより形成される。
【0021】
上記定着金具8は、前述のとおり橋桁3の長手方向両端寄り部の下面側にそれぞれ固定されるが、ケーブル5の両端のキャップ6を筒体11に挿通して、図1に示されるようにこのキャップ6にアンカーヘッド7を螺合し締め込ませることによって、ケーブル5は橋桁3の下面側においてその長手方向に延在し、かつ、張力が付与されて緊張する。この場合、複数本のケーブル5を橋桁3幅方向に適宜間隔を存する並列に配置して緊張状態下に張設することによって、橋桁3を全幅に亘り均等に上方へ僅かに反らせることが可能であり、このように各ケーブル5に張力が導入されることによって橋桁3には内部圧縮力が発生して、自重や活荷重の垂直方向外力に対する撓み変形を小さくさせる橋桁を構成することができる。
【0022】
定着金具8に一体に設けてなる前記緩衝部13は、本発明に関して特徴を成す要素部材であり、図1及び図3を参照して明らかな通り、定着金具8の長手方向両端部において軸板9に連接して前・後方に延ばされて設けられる。この緩衝部13は、軸板9の成形時に同一鋼板によって一体に成形加工することが好ましく、即ち、軸板9を包含する垂直面に合致して前後方に耳状に延びる配置形態をとらせるものであって、定着金具8を橋桁3の下面側にボルト締め等の固着手段によって取付けた状態では、緩衝部13は軸板9と橋桁3の下面とに当接して垂下する配置をとって、丁度ブラケットの筋交いに似た形態となって配設されることになる。なお、この緩衝部13の具体的な形態としては、軸板9との境界部分を底辺とし、橋桁3の下面に当接させる辺縁部を前記底辺に対し直交辺とする略不等辺台形状を成している。
【0023】
次に図1に基づき、本発明に係る上記実施形態の作用について以下説明する。先ず、定着金具8を橋桁3に取付けるに際して、図1(ロ)に示すように前記軸板9が橋桁3の軸板19を包含する垂直面に合致した配置をとるように設けるものである。このようにして定着金具8を取付けるとともに、これに支持されるケーブル5に所定の張力を加えると、橋桁3にはこれを上方に僅かに反らせる内部圧縮力が働き、自重や活荷重の垂直方向外力に対する撓み変形を小さくさせる橋桁が形成される。この張力導入に伴って、橋桁3の定着金具領域Sには応力が発生することは前述の通りである。この応力は、軸板19内をケーブル5の緊張方向に平行に流れた後、方向を転じて定着金具8の軸板9内に流れ、次いで軸板9内をケーブル5の緊張方向に平行に流れて、再び方向を転じて軸板19内に流れるようになる。
【0024】
この応力の流れの動態に対して本発明の実施形態では、橋桁3と定着金具8の端部とに亘って前記緩衝部13が配設されているため、軸板19内をケーブル5の緊張方向に平行に流れる応力が下方向に急角度に転向することなく、筋交い状の緩衝部13を通って変化角度が小さいスムーズなベクトル変化で軸板9内に流れ、また、軸板9内をケーブル5の緊張方向に平行に流れる応力も筋交い状の緩衝部13を経て変化角度が小さいスムーズなベクトル変化で流れて軸板19内に転向する(図1のC参照)。その結果、定着金具領域Sでの応力集中が緩衝されて、軸板19に局部的な歪曲や座屈が発生するのを防止でき、追加補強部材が不要又は最小限のもので済むことになる。なお、図1を参照して、略不等辺台形状を成す前記緩衝部13における斜辺部と橋桁3取付け面とが成す角度θは、45°以下の鋭角であることが好ましく、最適条件としては30°前後である。
【0025】
更にこの実施形態では、橋桁3の軸板19と定着金具8の軸板9とが同じ垂直面に合致するように配置されることから、応力の流れD(図1(ロ)参照)は一平面内での二次元的なしかも変化角度が小さいスムーズなベクトル変化で、軸板19→軸板9、軸板9→軸板19に転移するようになり、かくして定着金具領域Sでの応力集中がより一層緩衝され、追加補強部材が殆ど不要となる。
【0026】
次に図4に基づき本発明の今一つの実施形態を説明する。この実施形態に係る引張材4には、橋桁3の長手方向両端部に取付けられた定着金具8に加えて中間支持金具14が備えられている。この中間支持金具14は両定着金具8間の中間に、好ましくは等分する中央に位置して橋桁3の下面に取付けられて、ケーブル5の中間部を支持するように設けられる。中間支持金具14は、図15についての前述説明によって理解されるところであるが、橋桁3が設計荷重Wの負荷によって下向きに湾曲した場合、両定着金具8の間で緊張しているケーブル5と橋桁3の下面との間隔が橋桁3中央部で著しく狭くなり、その結果、内部圧縮力の作用が減殺され撓み耐久性能が低下するという問題があることに対処して設けられたものである。
【0027】
図7及び図8に本発明の各実施形態に係る中間支持金具14の構造が示されるが、この中間支持金具14は、厚鋼板製の軸板15と、この軸板15に直交して一体に設けられる厚鋼板製のリブ板16と、軸板15の下端縁部に接して一体に設けられる鋼製の支持部17とにより形成されて、前記支持部17によりケーブル5の中間部分を支承するようになっている。なお、図7図示のものは、支持部17が緩やかな湾曲面の半円溝状を成すケーブル受け部を持つ鞍座状に形成されて、例えば支持するケーブル5に対する曲げ角度が10°程度になるように支持金具の実効高さを設定しており、また、図8図示のものは、支持部17が鋼管製で管内にケーブル5が挿通されるようになっていて、例えば支持するケーブル5に対する曲げ角度が0.5°程度になるように支持金具の実効高さを設定している。
【0028】
このように構成される実施形態では、図4に示されるように橋桁3に設計荷重Wが作用して下向きに撓んでも、橋桁3の中間部に取付けられた中間支持金具14がケーブル5を下方に押し下げて、橋桁3の重心を結ぶ長手方向の重心線Lとケーブル5との偏心距離e2 を、常時e2 =e0 の一定に確保することが可能であり、従って、橋桁3の撓みには関係なく撓み耐久性能を安定的に維持させることができる。
【0029】
【実施例】
以下、本発明の実施例について添付図面に基づき説明する。図5及び図6には、本発明に係る他の実施形態の構築物が立面図及び断面図で示される。両図を参照して、上部構造物としての橋桁3は、橋長35mで、全幅員9mである。従来の設計荷重20ton 車両を限界としていたものが、新しく25ton 車両にまで増加することに基づいて、橋桁3には桁下方に設計張力100ton を導入した引張材4を幅方向に中心と両端の3列で張設している。この引張材4の導入によって、桁を下から上方に押上げて撓み耐久性能面で補強している。この場合、中間支持金具14の実効高さを適当値に選定するとともに、これに合わせて定着金具8におけるケーブル支持角度を適宜設定することによって、ケーブル5を橋桁3に対して任意の角度、方向に張設することができ、しかもケーブル5に無理な曲げを与えないようにすることができる。
【0030】
なお、ケーブル5は、安全率ν=3として、引張荷重Pu =322tfで、降伏荷重276tfである。ケーブル5の構成は、PC鋼より線19.3mmの7本束である。その断面積は、1706mm2 で、単重が15.8kg/mで、弾性係数が19000kg/mm2である。このケーブル5は、厚さ5mmのポリエチレン樹脂で被覆されており、内部にグリース系防錆材を封入している。また、ケーブル両端のキャップ6としては、圧着グリップが取付けられている。
【0031】
一方、定着金具8は、材質SS400で厚み28mmの一般構造用圧延鋼板と190mmの鋼管とにより形成し、その端部に水平方向長さ190mmの緩衝部13を設けている。また、定着金具8の軸板9は橋桁3の軸板と共通面で合致するように中央部に取付けている。
【0032】
以上のような補強構造を設けてなることによって、設計荷重5ton 増加に対して補強板の軽量化が図れて、充分な撓み耐久性能を確保することができた。即ち、本実施例の場合は、取付け寸法が1300mm×200mm×12mmの垂直補強材を4枚使用するだけで良くて、重量増分100kgであるのに対して、図13に示される従来例では、取付け寸法が1300mm×200mm×12mmの補強材を4枚と同じく1200mm×300mm×12mmの補強材を6枚と10枚(重量増分300kg)を必要としていて、この両者の比較から明らかなように本実施例では、補強部材に関し取付け寸法で0.5まで縮小し、重量で0.3まで軽量化が果たされる利点があることを表している。
【0033】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に記載されるような効果を奏する。即ち、引張材の定着金具領域の集中応力が緩衝部によって分散され緩和されるので、新たに設けられる緩和用の補強部材を軽減し得る効果がある。さらに、定着金具の軸板を前記上部構造物の桁部材の軸板が包含される垂直面に合致させるように設けることによって、定着金具の集中応力が軸板の軸心上で伝達されることから、緩和用の補強部材をより一層軽減することができる。また、中間支持金具を設けてなることによって、桁部材が設計荷重の負荷によって湾曲するようなことがあっても、それに影響されることなく桁部材の重心に対する偏心距離を常時一定に保たせることができて、上部構造物の対荷重抵抗耐力を安定的に確保し得る効果が奏される。
【図面の簡単な説明】
【図1】本発明の実施形態に係る構築物の定着金具取付け部の概要構造を示し、(イ)は立面図、(ロ)は側面図である。
【図2】本発明の実施形態に用いられるケーブルの平面図である。
【図3】図1図示の実施形態に係る定着金具の構造図で、(イ)は正面図、(ロ)は左側面図、(ハ)は右側面図である。
【図4】本発明の実施形態に係る構築物の撓み状態における立面図である。
【図5】本発明の他の実施形態に係る構築物の立面図である。
【図6】図5図示の構築物のE−E矢視線に沿う断面図である。
【図7】図4図示の実施形態に係る中間支持金具の構造図で、(イ)は正面図、(ロ)は右側面図である。
【図8】本発明の他の実施形態に係る中間支持金具の構造図で、(イ)は正面図、(ロ)は右側面図である。
【図9】高架道路の略示立面図である。
【図10】高架道路の撓み現象の説明図である。
【図11】従来の高架道路における上部構造物の立面図である。
【図12】従来の構築物における定着金具取付け部の概要構造を示し、(イ)は立面図、(ロ)は側面図である。
【図13】図11図示の上部構造物に用いられる補強部材の取付け態様を示す立面図である。
【図14】従来の高架道路における上部構造物の非荷重負荷時の立面図である。
【図15】従来の高架道路における上部構造物の荷重負荷時の立面図である。
【符号の説明】
1…構築物 2…下部構造物 3…上部構造物
4…引張材 5…ケーブル 6…キャップ
7…アンカーヘッド 8…定着金具 9…軸板
10…取付基板 11…筒体 12…端板
13…緩衝部 14…中間支持金具 15…軸板
16…リブ板 17…支持部 18…地盤
19…軸板 20…補強板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lower structure such as a bridge pier and an upper structure such as a bridge girder that is installed on the lower structure, and a cable that is attached to the lower surface side of the upper structure so as to extend in the longitudinal direction and to which tension is introduced. In particular, a cable reinforcing structure that enhances load bearing performance for a structure including a tension member having a tension member, and more particularly, an internal compressive force that causes the upper structure to warp upward is generated, and a concentration that occurs in a fixing region based on the compressive force is generated. The present invention relates to a cable reinforcing structure for a structure capable of improving durability against a design load while smoothly distributing stress and reducing a reinforcing member in the fixing region.
[0002]
[Prior art]
A typical prior art of this type of conventional construction is illustrated in FIG. The structure 1 shown in this figure is an elevated road, and a plurality of lower structures 2 realized by bridge piers standing on the ground 18 at intervals, and simply on the lower structures 2. It is known that the upper structure 3 is composed of a plurality of upper structures 3 realized by bridge girders that are divided and supported horizontally. The upper structure 3 is known to be deflected and displaced by a horizontal / vertical external force that is a design load. As shown in FIG. 10, the design load may increase due to a change such as a range that is limited to a 25-ton vehicle, for example, when the 20-ton vehicle is the limit during the service period. The structure 3 may be deteriorated or damaged, and as a result, the design load may exceed the allowable yield strength of the upper structure 3.
[0003]
In this way, if it is attempted to actually cope with the increased design load, the superstructure 3 may be replaced with a new one corresponding to this increase. However, this increases the cost for improvement. Since there is a problem, as shown in the drawing on the left side in FIG. 11, in order to improve the durability of the current upper structure 3, the tensile material 4 is disposed on the damage reinforcing member of the upper structure 3. Thus, an improved construction method has been adopted in which an internal compressive force that causes the upper structure 3 to warp upward is generated to reduce the flexural displacement.
[0004]
[Problems to be solved by the invention]
However, when such a tension member 4 is disposed, referring to FIGS. 11 to 13, the fixing bracket region S (FIG. 11) which is an area adjacent to the front and rear of the fixing bracket 8 in the upper structure 3. (See FIG. 12), the stress flow A (see FIG. 12 (a)) caused by the introduction of the cable tension changes suddenly in the vertical direction between the girder member of the upper structure 3 and the fixing bracket 8. Since a high stress concentrates on the fixing portion of the girder member and the front and rear end portions of the fixing bracket 8, a new reinforcing structure is required. Conventionally, a plurality of bolts are welded and fixed as shown in FIG. Several reinforcing plates 20 are attached to the girder member. Therefore, there are problems of increasing time and man-hours for attaching the reinforcing plates 20 and increasing the weight of the upper structure 3.
[0005]
Further, as shown in FIG. 12 (b), the shaft plate shown with the oblique cross section of the fixing bracket 8 and the shaft plate shown with the oblique cross section of the girder member are misaligned due to the surface being shifted. Therefore, the stress flow B (see FIG. 12B) suddenly changes in the left-right width direction, and a reinforcing structure corresponding to this is required. As a result of the necessity for further increase, specifically, with reference to FIG. 13, in order to prevent distortion, buckling and the like from occurring, the reinforcing plate 20 is attached in a square shape, which reduces the reinforcing cost. The increase and the weight increase of the upper structure 3 were more problematic.
[0006]
On the other hand, referring to FIGS. 14 and 15, the tensile material 4 attached to the lower surface side of the upper structure 3 has a distance between the longitudinal line connecting the centers of gravity of the upper structure 3, that is, an eccentric distance, Although it was e 0 before the bending deformation, when the design load W is applied, the eccentric distance becomes e 1 (<e 0 ) due to the bending deformation of the upper structure 3, and as a result, the upper structure 3 There was also a problem that the bending durability was reduced.
[0007]
The present invention has been made to solve such conventional problems, and therefore the object of the present invention is to reduce the weight of the fixing member including the omission of an additional reinforcing member, particularly in connection with a tension member. In addition, it is possible to establish a structure that can establish and improve the bending durability of the upper structure at a low cost by making the eccentric distance of the tensile material constant even when the upper structure is deformed. It is to provide a cable reinforcement structure.
[0008]
[Means for Solving the Problems]
The present invention has the following configuration in order to achieve the above object. That is, regarding the invention of claim 1 in the present invention, the lower structure that is erected, the upper structure that is laid horizontally on the lower structure, and the lower surface side of the upper structure in the longitudinal direction via the fixing bracket. In a structure including a tension member provided with a cable that is extended and provided with tension, the fixing bracket includes a steel plate mounting substrate, a steel pipe cylinder, and a steel plate shaft. Is attached to the lower surface of the upper structure in such a manner that the shaft plate is aligned with the vertical surface including the shaft plate of the girder member of the upper structure , and both front and rear ends of the fixing bracket that supports both ends of the cable. A buffer portion for integrally transferring stress generated by introducing tension to the cable between the girder member of the upper structure and the shaft plate of the fixing bracket is provided integrally with the cable portion. It is characterized by It is a cable reinforcing structure of Tsukibutsu.
[0010]
The invention according to claim 2 of the present invention relates to the metal according to claim 1 , wherein the buffer portion is provided integrally with the shaft plate so as to match a vertical surface including the shaft plate of the fixing bracket. It is formed of a plate, and is formed in an unequal side trapezoidal shape having a boundary portion with the shaft plate as a bottom side and a side edge portion to be brought into contact with the lower surface portion of the girder member of the upper structure as an orthogonal side. .
[0011]
According to a third aspect of the present invention, there is provided the invention according to the first or second aspect , wherein the tension member is provided for supporting the intermediate portion of the cable at an intermediate position between the fixing brackets. An intermediate support fitting attached to the lower surface is provided, and the cable supported by the intermediate support fitting is formed so as to be able to secure the eccentric distance in the vertical direction with respect to the center of gravity of the girder of the superstructure at a required value. .
[0012]
According to the present invention, the tension material is provided to generate the internal compressive force that warps the upper structure upward, so that the bending durability of the upper structure is improved and the damage reinforcement and displacement are improved. It works effectively for reduction.
[0013]
According to the first aspect of the present invention, the buffer member is provided in the fixing member of the tensile material, so that the concentrated external force in the fixing member region related to the tensile material is smoothly dispersed through the buffer member. Stress can be relaxed. In addition, by aligning the shaft plate of the fixing bracket and the shaft plate of the upper structure with a common vertical plane, the concentrated external force flows smoothly between the girder member of the upper structure and the shaft plate of the fixing bracket. Thus, the concentrated stress in the fixing bracket region is further relaxed.
[0015]
The invention according to claim 2 is effective by simple means of adding a buffer portion having a simple structure based on a fixing bracket having a simple structure, since the buffer portion is formed of a substantially uneven trapezoidal metal plate. Therefore, it is possible to perform improvement work quickly in a short period of time while maintaining the light weight of the superstructure.
[0016]
According to the third aspect of the present invention, even if the upper structure is bent and deformed by the load, the intermediate support metal keeps the eccentric distance constant, so that the bending durability is always ensured stably.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the accompanying drawings. 1, 2, and 3 show a schematic structure of a fixing bracket mounting portion, a cable structure, and a fixing bracket structure in a structure according to an embodiment of the present invention.
[0018]
Referring to FIG. 1, a plurality of substructures 2 realized by respective piers provided upright on a ground (not shown) at appropriate intervals, and horizontally arranged on them in series In the elevated road 1 as a structure composed of a plurality of superstructures 3 realized by each bridge girder, a tension member 4 is attached to the bridge girder 3 as a damage reinforcing member for improving the durability performance. The tension member 4 includes a fixing bracket 8 fixed to the bottom surface of the bridge girder near the portion supported by the bridge pier 2 at both ends in the longitudinal direction of the bridge girder 3, and both ends supported by both fixing brackets 8 so that the bridge girder 3 is supported. The element member is provided with a cable 5 extending in the longitudinal direction on the lower surface side of the cable.
[0019]
The cable 5 has a structure in which caps 6 are fixed and integrated at both ends of a bundle of wires formed by converging a plurality of strands of PC steel, for example, and a cable having a large tensile load is formed. Usually, it has a structure similar to a cable used as a PC (Prestressed Concrete) tendon. The cap 6 is screwed on the outer periphery, and the anchor head 7 is screwed onto the screw.
[0020]
The fixing bracket 8 is integrally fixed by welding or the like in the direction perpendicular to the longitudinal center line of the steel plate, which is a rectangular steel plate as a mounting seat, and protrudes in a T shape. Also, a shaft plate 9 made of a steel plate, a tubular body 11 made of a steel pipe which is in contact with an end edge of the shaft plate 9 opposite to the mounting substrate 10 and fixed integrally by welding, the shaft plate 9 and the tube Formed by an end plate 12 fixed to one end portion on the same side of the body 11, and a buffer portion 13 made of a steel plate, which will be described in detail later, and is integrally extended to both end portions on the long side of the shaft plate 9 Is done.
[0021]
As described above, the fixing bracket 8 is fixed to the lower surface side of the bridge girder 3 at both ends in the longitudinal direction, but the caps 6 at both ends of the cable 5 are inserted into the cylindrical body 11 as shown in FIG. When the anchor head 7 is screwed into the cap 6 and tightened, the cable 5 extends in the longitudinal direction on the lower surface side of the bridge girder 3 and is tensioned by applying tension. In this case, it is possible to slightly warp the bridge girder 3 evenly over the entire width by arranging a plurality of cables 5 in parallel at appropriate intervals in the width direction of the bridge girder and stretching them under tension. Thus, by introducing tension into each cable 5 in this way, an internal compressive force is generated in the bridge girder 3, and a bridge girder can be configured to reduce the bending deformation of the own weight or live load with respect to the vertical external force.
[0022]
The buffer portion 13 provided integrally with the fixing bracket 8 is an element member that characterizes the present invention. As is apparent with reference to FIGS. 1 and 3, the shaft plate is disposed at both longitudinal ends of the fixing bracket 8. 9 is connected to 9 and extended to the front and rear. The buffer portion 13 is preferably formed integrally with the same steel plate when the shaft plate 9 is formed. That is, the buffer portion 13 conforms to a vertical surface including the shaft plate 9 and extends in an ear shape in the front-rear direction. In the state where the fixing bracket 8 is attached to the lower surface side of the bridge girder 3 by fixing means such as bolting, the buffer portion 13 is arranged to abut against the shaft plate 9 and the lower surface of the bridge girder 3 and hang down. It will be arranged in a form just like the brace brace. In addition, as a specific form of the buffer portion 13, a substantially unequal trapezoidal shape in which a boundary portion with the shaft plate 9 is a bottom side and an edge portion to be brought into contact with the lower surface of the bridge girder 3 is an orthogonal side to the bottom side. Is made.
[0023]
Next, the operation of the above embodiment according to the present invention will be described with reference to FIG. First, when the fixing bracket 8 is attached to the bridge girder 3, the shaft plate 9 is provided so as to be aligned with the vertical plane including the shaft plate 19 of the bridge girder 3 as shown in FIG. When the fixing bracket 8 is attached in this way and a predetermined tension is applied to the cable 5 supported by the fixing bracket 8, an internal compressive force that slightly warps the bridge girder 3 upwards acts on the bridge girder 3 in the vertical direction of its own weight and live load. A bridge girder is formed to reduce the bending deformation with respect to the external force. As described above, stress is generated in the fixing bracket region S of the bridge girder 3 as the tension is introduced. This stress flows in the shaft plate 19 in parallel with the tension direction of the cable 5, then turns and flows in the shaft plate 9 of the fixing bracket 8, and then in the shaft plate 9 in parallel with the tension direction of the cable 5. It flows and turns around again to flow into the shaft 19.
[0024]
In the embodiment of the present invention, the buffer portion 13 is disposed across the bridge girder 3 and the end portion of the fixing bracket 8 with respect to the dynamic state of the stress flow. The stress flowing parallel to the direction flows into the shaft plate 9 with a smooth vector change with a small change angle through the bracing buffer portion 13 without turning downward at a steep angle, and in the shaft plate 9 The stress flowing parallel to the tension direction of the cable 5 also flows through the bracing section 13 with a smooth vector change with a small change angle and turns into the shaft 19 (see C in FIG. 1). As a result, the stress concentration in the fixing bracket region S is buffered, so that local distortion and buckling can be prevented from occurring in the shaft plate 19, and an additional reinforcing member is unnecessary or minimal. . In addition, with reference to FIG. 1, it is preferable that the angle (theta) which the hypotenuse part and bridge girder 3 attachment surface in the said buffer part 13 which comprises a substantially unequal side trapezoid form is an acute angle of 45 degrees or less, and as optimal conditions It is around 30 °.
[0025]
Further, in this embodiment, since the shaft plate 19 of the bridge girder 3 and the shaft plate 9 of the fixing bracket 8 are arranged so as to coincide with the same vertical plane, the stress flow D (see FIG. 1 (B)) is one. A smooth vector change in a two-dimensional plane with a small change angle causes a transition from the shaft plate 19 to the shaft plate 9 and the shaft plate 9 to the shaft plate 19, and thus stress concentration in the fixing bracket region S. Is further buffered, and an additional reinforcing member is almost unnecessary.
[0026]
Next, another embodiment of the present invention will be described with reference to FIG. The tension member 4 according to this embodiment is provided with intermediate support fittings 14 in addition to the fixing fittings 8 attached to both ends of the bridge girder 3 in the longitudinal direction. The intermediate support metal fitting 14 is located in the middle between the fixing metal fittings 8, preferably at an equally divided center, and is attached to the lower surface of the bridge girder 3 so as to support the intermediate portion of the cable 5. The intermediate support bracket 14 is understood as described above with reference to FIG. 15, but when the bridge girder 3 is bent downward due to the design load W, the cable 5 and the bridge girder that are tensioned between the fixing brackets 8. 3 is provided to cope with the problem that the distance from the lower surface of 3 is significantly narrowed at the center portion of the bridge girder 3 and as a result, the action of the internal compressive force is reduced and the bending durability performance is lowered.
[0027]
7 and 8 show the structure of the intermediate support bracket 14 according to each embodiment of the present invention. The intermediate support bracket 14 is integrally formed with a thick steel plate 15 and a shaft 15 that is orthogonal to the shaft 15. Are formed by a thick steel plate rib plate 16 and a steel support portion 17 integrally provided in contact with the lower end edge of the shaft plate 15, and an intermediate portion of the cable 5 is supported by the support portion 17. It is supposed to be. In the example shown in FIG. 7, the support portion 17 is formed in a saddle shape having a cable receiving portion having a gently curved semicircular groove shape, and the bending angle with respect to the supporting cable 5 is about 10 °, for example. The effective height of the support bracket is set so that the support portion 17 is made of a steel pipe and the cable 5 is inserted into the pipe. The effective height of the support bracket is set so that the bending angle with respect to the angle is about 0.5 °.
[0028]
In the embodiment configured as described above, even if the design load W acts on the bridge girder 3 and bends downward as shown in FIG. 4, the intermediate support fitting 14 attached to the intermediate part of the bridge girder 3 It is possible to keep the eccentric distance e 2 between the longitudinal center of gravity line L connecting the center of gravity of the bridge girder 3 and the cable 5 constant at a constant e 2 = e 0 . The bending durability performance can be stably maintained regardless of the bending.
[0029]
【Example】
Embodiments of the present invention will be described below with reference to the accompanying drawings. 5 and 6 show a construction of another embodiment according to the present invention in an elevation view and a sectional view. With reference to both figures, the bridge girder 3 as the superstructure has a bridge length of 35 m and a total width of 9 m. Based on the fact that the conventional design load of 20 ton vehicles was the limit, but it was newly increased to 25 ton vehicles, the bridge girder 3 has a tension member 4 introduced with a design tension of 100 ton below the girder in the width direction. It is stretched in a row. With the introduction of the tension member 4, the girder is pushed up from below to bend and reinforce in terms of durability. In this case, the effective height of the intermediate support bracket 14 is selected to an appropriate value, and the cable support angle in the fixing bracket 8 is appropriately set in accordance with this, thereby allowing the cable 5 to be at an arbitrary angle and direction with respect to the bridge girder 3. In addition, the cable 5 can be prevented from being excessively bent.
[0030]
The cable 5 has a safety factor ν = 3, a tensile load Pu = 322 tf, and a yield load 276 tf. The configuration of the cable 5 is seven bundles of 19.3 mm strands of PC steel. A cross-sectional area, in 1706Mm 2, unit weight is at 15.8 kg / m, an elastic modulus is 19000kg / mm 2. This cable 5 is covered with a polyethylene resin having a thickness of 5 mm, and a grease-based anticorrosive material is sealed inside. Further, as the caps 6 at both ends of the cable, crimp grips are attached.
[0031]
On the other hand, the fixing bracket 8 is formed of a general structural rolled steel plate having a thickness of 28 mm and a 190 mm steel pipe made of the material SS400, and a buffer portion 13 having a horizontal length of 190 mm is provided at an end thereof. Further, the shaft plate 9 of the fixing bracket 8 is attached to the central portion so as to coincide with the shaft plate of the bridge girder 3 on a common surface.
[0032]
By providing the reinforcing structure as described above, the weight of the reinforcing plate can be reduced with respect to an increase in the design load of 5 tons, and sufficient bending durability performance can be secured. That is, in the case of the present embodiment, it is only necessary to use four vertical reinforcing members having a mounting size of 1300 mm × 200 mm × 12 mm, and the weight increment is 100 kg, whereas in the conventional example shown in FIG. 6 and 10 reinforcements with a mounting size of 1300mm x 200mm x 12mm are required, as well as 4 reinforcements of 1200mm x 300mm x 12mm (weight increment 300kg). As is clear from the comparison between the two, this book In the embodiment, it is shown that there is an advantage that the reinforcing member is reduced to 0.5 in the mounting dimension and reduced in weight to 0.3.
[0033]
【The invention's effect】
The present invention is implemented in the form as described above, and has the following effects. That is, since the concentrated stress in the fixing bracket region of the tensile material is dispersed and relaxed by the buffer portion, there is an effect that the newly provided relief member for relaxation can be reduced. Furthermore, the concentrated stress of the fixing bracket is transmitted on the axis of the shaft plate by providing the shaft plate of the fixing bracket so as to coincide with the vertical plane in which the shaft plate of the girder member of the superstructure is included. Therefore, the reinforcing member for relaxation can be further reduced. In addition, by providing an intermediate support bracket, the eccentric distance from the center of gravity of the girder member can be kept constant at all times without being affected by the bending of the girder member due to the design load. Thus, the effect of stably securing the load resistance resistance of the upper structure can be obtained.
[Brief description of the drawings]
FIG. 1 shows a schematic structure of a fixing bracket mounting portion of a structure according to an embodiment of the present invention, where (A) is an elevation view and (B) is a side view.
FIG. 2 is a plan view of a cable used in the embodiment of the present invention.
3 is a structural diagram of the fixing bracket according to the embodiment shown in FIG. 1. FIG. 3A is a front view, FIG. 3B is a left side view, and FIG. 3C is a right side view.
FIG. 4 is an elevation view of a structure according to an embodiment of the present invention in a bent state.
FIG. 5 is an elevational view of a construct according to another embodiment of the present invention.
6 is a cross-sectional view of the structure shown in FIG. 5 along the line EE.
7 is a structural diagram of an intermediate support metal fitting according to the embodiment shown in FIG. 4, in which (a) is a front view and (b) is a right side view.
FIGS. 8A and 8B are structural views of an intermediate support metal fitting according to another embodiment of the present invention, where FIG. 8A is a front view and FIG. 8B is a right side view.
FIG. 9 is a schematic elevation view of an elevated road.
FIG. 10 is an explanatory diagram of a bending phenomenon of an elevated road.
FIG. 11 is an elevation view of a superstructure on a conventional elevated road.
FIGS. 12A and 12B show a schematic structure of a fixing bracket mounting portion in a conventional structure, where FIG. 12A is an elevation view and FIG. 12B is a side view.
13 is an elevational view showing a mounting mode of a reinforcing member used in the superstructure shown in FIG. 11. FIG.
FIG. 14 is an elevational view of the conventional superstructure on an elevated road when no load is applied.
FIG. 15 is an elevational view of a conventional elevated road when a superstructure is loaded.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Structure 2 ... Lower structure 3 ... Upper structure 4 ... Tensile material 5 ... Cable 6 ... Cap 7 ... Anchor head 8 ... Fixing bracket 9 ... Shaft plate 10 ... Mounting board 11 ... Cylindrical body 12 ... End plate 13 ... Buffer Part 14: Intermediate support bracket 15 ... Shaft plate 16 ... Rib plate 17 ... Support part 18 ... Ground 19 ... Shaft plate 20 ... Reinforcement plate

Claims (3)

立設される下部構造物と、その上に横設される上部構造物と、この上部構造物の下面側に定着金具を介して長手方向に延在して付設され張力が導入されてなるケーブルを備える引張材とを含む構築物において、前記定着金具が鋼板製の取付け基板と鋼管製の筒体と鋼板製の軸板を備え、この定着金具がその軸板を前記上部構造物の桁部材の軸板を包含する垂直面に合致させた配置で前記上部構造物の下面に取り付けられ、前記ケーブルの両端部を支持する前記定着金具の前後両端部に、前記ケーブルに対する張力導入に伴って生じる応力を上部構造物の桁部材と定着金具の軸板との間においてスムーズなベクトル変化で転移可能とするための緩衝部が一体に設けられてなることを特徴とする構築物のケーブル補強構造。A lower structure that is erected, an upper structure that is laid horizontally on the lower structure, and a cable that is attached to the lower surface side of the upper structure, extending in the longitudinal direction via a fixing bracket, and in which tension is introduced. The fixing bracket includes a steel plate mounting substrate, a steel pipe cylinder, and a steel plate shaft, and the fixing bracket is used as a girder member of the upper structure. Stress caused by introduction of tension to the cable at the front and rear ends of the fixing bracket attached to the lower surface of the upper structure in an arrangement matching the vertical plane including the shaft plate and supporting both ends of the cable A structure for reinforcing a cable of a structure, wherein a buffer portion is provided integrally so as to be able to be transferred with a smooth vector change between a girder member of an upper structure and a shaft plate of a fixing bracket. 前記緩衝部が、前記定着金具の軸板を包含する垂直面に合致させて該軸板に一体に設けられた金属板から成り、前記軸板との境界部分を底辺とし、前記上部構造物の桁部材の下面部に当接させる辺縁部を直交辺とする不等辺台形状に形成される請求項1に記載の構築物のケーブル補強構造。The buffer portion is made of a metal plate integrally provided on the shaft plate so as to match a vertical plane including the shaft plate of the fixing bracket, and a boundary portion with the shaft plate is a bottom, and the upper structure The cable reinforcement structure for a structure according to claim 1, wherein the structure is formed in an unequal side trapezoidal shape in which a side edge abutted on a lower surface of the girder member is an orthogonal side. 前記引張材が、前記定着金具間の中間位置において前記ケーブルの中間部を支持するために前記上部構造物の下面に取付けられる中間支持金具を備え、この中間支持金具により支持されるケーブルが上部構造物の桁の重心に対する垂直方向の偏心距離を所要値に確保し得るように形成される請求項1又は2に記載の構築物のケーブル補強構造。The tension member includes an intermediate support bracket that is attached to the lower surface of the upper structure to support an intermediate portion of the cable at an intermediate position between the fixing brackets, and the cable supported by the intermediate support bracket has an upper structure. The cable reinforcement structure for a structure according to claim 1 or 2 , wherein the structure is formed so as to ensure an eccentric distance in a vertical direction with respect to a center of gravity of an object girder at a required value.
JP32299797A 1997-11-25 1997-11-25 Cable reinforcement structure of structure Expired - Fee Related JP3844861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32299797A JP3844861B2 (en) 1997-11-25 1997-11-25 Cable reinforcement structure of structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32299797A JP3844861B2 (en) 1997-11-25 1997-11-25 Cable reinforcement structure of structure

Publications (2)

Publication Number Publication Date
JPH11158819A JPH11158819A (en) 1999-06-15
JP3844861B2 true JP3844861B2 (en) 2006-11-15

Family

ID=18149993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32299797A Expired - Fee Related JP3844861B2 (en) 1997-11-25 1997-11-25 Cable reinforcement structure of structure

Country Status (1)

Country Link
JP (1) JP3844861B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010044745A (en) * 2001-03-21 2001-06-05 강창구 A Steel Beam Adapted Prestress in Web Width of Steel Beam Using H-beam or I-beam and Method of Fabricating the same
US20080092481A1 (en) 2004-07-21 2008-04-24 Murray Ellen Building Methods
WO2006007659A1 (en) * 2004-07-21 2006-01-26 S2 Holdings Pty Limited Building methods
KR101059900B1 (en) 2009-04-16 2011-08-29 주식회사 씨에스구조엔지니어링 Tensioning Air Beam System
KR101034610B1 (en) * 2009-04-16 2011-05-12 주식회사 씨에스구조엔지니어링 Tensioning Air Beam System With A Long Span
JP5160529B2 (en) * 2009-12-14 2013-03-13 黒沢建設株式会社 Prestressed hybrid floor slab manufacturing method and floor slab by the method
KR101886062B1 (en) * 2017-04-18 2018-08-07 김재은 Cross section stiffnesses increasing method of structure using cross section stiffnesses
KR102016791B1 (en) * 2017-08-16 2019-08-30 주식회사 포스코건설 Long span cable beam for bidirectional load resistance in space structure
CN107700357A (en) * 2017-09-06 2018-02-16 昂徕博智能科技(昆山)有限公司 It is a kind of can damping multispan freely-supported bridge and construction method
KR102159429B1 (en) * 2018-07-31 2020-09-23 최희욱 Cross section stiffnesses enhanced saddle sttached temporary bridge and method of structure using the same
CN112442948B (en) * 2020-10-30 2022-09-06 重庆交通大学 Bridge shock attenuation reinforcing apparatus

Also Published As

Publication number Publication date
JPH11158819A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
JP3844861B2 (en) Cable reinforcement structure of structure
JP3867037B2 (en) Reinforcement structure and reinforcement method for existing structures
KR102024209B1 (en) Bridges and retaining walls expanded footbridge
KR101970950B1 (en) Cantilever installation structure for extension roads
JP5388318B2 (en) Bridge reinforcement structure and bridge reinforcement method
RU2213187C2 (en) Prestressed reinforced concrete beam with adjustable straining force
KR100862103B1 (en) A lightweight and long span deck plates for prestress with the largest eccentricity
KR100357332B1 (en) Method and its devices to strengthen a girder of bridge by external prestressing method using multiple anchorage system
CN210140764U (en) Double-fold-line-shaped bridge span assembly stiffened through inhaul cable
JP2744955B2 (en) Reinforcement structure and reinforcement method of hinge part of gel bar bridge
KR100985495B1 (en) Girder for bridge
KR20200013911A (en) Cross section stiffnesses enhanced saddle sttached temporary bridge and method of structure using the same
JP6082932B1 (en) Bridge reinforcement structure and method
KR102137126B1 (en) aluminium truss bridge
KR102132338B1 (en) Steel Composite PSC Girder Including Arched Reinforcement
US6712393B2 (en) Tubular crossmember
JPH0931920A (en) Reinforcing structure for structural body
KR101492077B1 (en) Construction method for cable bridge using transverse prestressed girder
JP4453857B2 (en) Outside cable truss PC outside cable tensioning device
KR20060053030A (en) Net type external prestress strengthening apparatus and method for slab bridges
KR200348999Y1 (en) Dubel for composite structure
KR101898724B1 (en) Traffic barrier reinforced by cable and the method of introducing stress into cable by turnbuckle
JPH10266133A (en) Reinforcing structure of highway bridge
KR100682629B1 (en) Steel girder
KR100373522B1 (en) Strand reinforcing method to reinforce steel plate girder bridge depend on composition fixative reinforcing part and there of apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140825

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees