JP3844049B2 - Production method of biodegradable cushioning material - Google Patents

Production method of biodegradable cushioning material Download PDF

Info

Publication number
JP3844049B2
JP3844049B2 JP2001177763A JP2001177763A JP3844049B2 JP 3844049 B2 JP3844049 B2 JP 3844049B2 JP 2001177763 A JP2001177763 A JP 2001177763A JP 2001177763 A JP2001177763 A JP 2001177763A JP 3844049 B2 JP3844049 B2 JP 3844049B2
Authority
JP
Japan
Prior art keywords
biodegradable
weight
raw material
cell structure
polyvinyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001177763A
Other languages
Japanese (ja)
Other versions
JP2002337949A (en
Inventor
哲男 林
今朝男 小松
勉 光永
Original Assignee
小倉貿易株式会社
株式会社ジェイコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小倉貿易株式会社, 株式会社ジェイコーポレーション filed Critical 小倉貿易株式会社
Priority to JP2001177763A priority Critical patent/JP3844049B2/en
Publication of JP2002337949A publication Critical patent/JP2002337949A/en
Application granted granted Critical
Publication of JP3844049B2 publication Critical patent/JP3844049B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Wrappers (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Buffer Packaging (AREA)

Description

【0001】
【産業上の利用分野】
本発明は精密機器類を初め、ガラスや陶磁器製品或いは家具調度品等包装輸送物の輸送や取扱い時に、外包装体との間に充填せしめて外部衝撃付加時や落下時にも破損や損傷を防止し、且使用後の廃棄に際しても完全に分解消去せしめて廃棄公害を防止しえる生分解性緩衝材及びその製造方法に関するものである。
【0002】
【従来技術】
精密機器類はその輸送や取扱い時における外部衝撃による損傷を防止するうえから、従来多量に生産されるものにおいては予め精密機器類を包着できる形状で且高発泡スチロール素材を用いた包装型材を形成し、該包装型材に包着のうえダンボール素材からなる外包装箱に収納包装させて流通に供していたが、今日の如く多品種少量生産化しつつある状況下においては、多種に亘る精密機器を共通して収納包装できる外包装箱内にそれぞれの精密機器を防塵フィルム等で包装のうえ該外包装箱内に収納させるとともに、該外包装箱との間隙部分に高発泡スチロール素材からなる球状物や棒状物或いは板状物等の細片を緩衝材として充填させて流通に供している。更にガラスや陶磁器製品或いは家具調度品等では輸送や取扱い時の外部衝撃を吸収緩和して破損や損傷を防止するうえから、ポリウレタンやポリエチレン素材等粘弾性を保持した素材による発泡シート状物或いはポリエチレンフィルム相互間に空気層を封入形成させた所謂エアーキャップフィルム等で包装し流通に供している。
【0003】
然るにこれら包装型材や緩衝材或いは発泡シート状物、エアーキャップフィルム等は短期の流通に供された後は廃棄されるもので、これらは合成樹脂素材が使用されてなるばかりか極めて嵩高なため、今後の重要課題とされる環境保護の見地からも廃棄物の減容化や減量化に逆行するばかりか、これら廃棄物は焼却処分しかなく、且焼却に際しても特にポリスチロール素材は媒煙、臭気はもとよりダイオキシンの発生に対する防止対策も緊急課題として提起されている。
【0004】
かかる状況に対して近年ポリ乳酸樹脂やアセテート樹脂素材の如く、自然条件下で微生物の関与により分解消去を図る所謂生分解性素材を用いた製品開発が積極的に試みられているが、現状においてはコスト的割高感に加えて実用性能を保持せしめると他方における生分解性が損われ、更に生分解性を十分に発揮させると反面において実用性能が具備しえぬ問題を抱えており、これがため特に包装材や緩衝材の如く短期における実用性能の保持と且廃棄による早期の分解消去を図るものの開発には多くの課題を抱えている。
【0005】
発明者はかかる実情に鑑み鋭意研究を重ねた結果、生分解性は水、温度、栄養源を繁殖条件として繁殖する微生物の繁殖度合に伴って促進されることを初め、澱粉を原料とするコンスターチは微生物の格好の栄養源であること、並びに澱粉やコンスターチは古くから食品工業界においてエクストルージョンクッキングで知られるように、押出機で剪断力を付加して均質混練を図ることにより、塑性加工が容易になしえること、及び水分が略5乃至10%程度の存在下にポリビニルアルコールを配合し加熱加圧混練することにより該ポリビニルアルコールが均質に分散され塑性加工物に粘弾性や強靭性が付与せしめられること、或いは廃棄に際して早期に生分解消去を図るためには、微生物の付着面積所謂比表面積を大きく形成させることが望ましく、これがためには連続気泡構造が好適であることを究明し、更にはその製造方法においても吸水性や吸湿性が高く且微粉状のコンスターチ粉体及びポリビニルアルコール粉体のみを原料として使用すると、押出成形に際しての原料供給をなすホッパー部でブロッキング現象が発生して供給阻害が招来されるため、これら原料に略20乃至25%重量程度の割合で粒度の大きなペレットを分散配合させてやることにより、ブロッキング防止が図れること、及び化学発泡剤によらずとも水を注水のうえ加熱加圧混練のうえ吐出させることで、加熱加圧水蒸気の噴散に伴い連続気泡構造体が形成しえることを究明し本発明に至った。
【0006】
【発明が解決しようとする課題】
即ち本発明は、その組成成分がコンスターチ、ポリビニルアルコール及び残留水分からなり、輸送や取扱い時における外包装体との間隙に充填せしめて外部衝撃における衝撃の吸収緩和により輸送物を保護しえ、且使用後は自然条件下で早期に分解消去できる生分解性緩衝材及びその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上述の課題を解決するために本発明が用いた技術的手段は、本発明においては使用後の廃棄に際して自然条件下で生分解消去せしむるものであるから、使用する原料素材としてコンスターチ粉体70乃至75%重量とポリビニルアルコール粉体25乃至30%重量割合で配合された生分解性粉体原料に、押出成形機への安定した供給を図るうえから粒度分布を広げること、及びポリビニルアルコール粉体に加水せしめ押出成形機内で均質な混練を図ること、並びに粒度分布を広げることにより粉体原料に空隙を創出せしめて、連続気泡形成に係る加圧加熱水蒸気を創出させるための注水を浸透させるうえから、コンスターチ粉体65乃至75%重量、ポリビニルアルコール粉体15乃至25%重量及び水10乃至20%重量割合で配合のうえ比較的低温度で加熱混練のうえ形成した粒径の大きな生分解性ペレットを更に20乃至25%重量割合で分散配合させた生分解性原料を用いる。
【0008】
そしてかかる生分解性原料を一軸若しくは二軸のスクリューを有し、その供給部、圧縮部、計量部、及びダイス部に亘って常温から200℃までの温度勾配が保持せしめられる押出成形機のホッパーより供給し、且低温度で供給された生分解性原料が未熔融で而も内部圧力も僅かなスクリュー供給部において、供給された生分解性原料に対し1.0乃至5.0%重量割合の注水をなしたるうえ、その圧縮部や計量部において十分な加熱加圧混練させ、且注入され分散混練された水を加熱加圧水蒸気として分散内包させつつ、ダイス部より所要の分径で吐出させることにより、分散内包された加熱加圧水蒸気を噴散させることによりその発泡倍率が35乃至70倍程度の連続気泡構造体を吐出形成させる押出成形機と、この吐出形成された連続気泡構造体より所要の緩衝材を形成するため、ダイス直近に冷却遊動ケージを設けるとともに、吐出形成される連続気泡構造体を所要の長さに切断させるカッターが配設されてなり、且切断された連続気泡構造体が変形せぬよう冷却させるとともに切断された相互が融着せぬよう遊動させるうえから、該冷却遊動ケージの少なくとも2方向より送風ファンにより送風させるとともに、吸引ダクトにより吸引収集を図るカット冷却部とにより構成される生分解性緩衝材の製造方法に存するものであり、更には実質的にその組成成分がコンスターチ65乃至75%重量、ポリビニルアルコール25乃至30%重量及び残留水分が2.5乃至5.0%重量割合であり、且連続気泡構造で35乃至70倍の発泡倍率で而も所要の分径及び長さに切断されてなる生分解性緩衝材の構成に存する。
【0009】
【作用】
本発明緩衝材は上述の如き構成からなるため以下のような作用を有する。即ちその組成成分がコンスターチ65乃至75%重量、ポリビニルアルコール25乃至30%重量及び残留水分2.5乃至5.0%重量割合で、且連続気泡により35乃至70倍の発泡倍率に発泡されてなるから、コンスターチの固化性にポリビニルアルコールの粘弾性や復元性が付与され、而も35乃至70倍に発泡されてなるため十分に嵩高であり、外部衝撃が付加されても包装輸送物の損傷防止がなされるばかりか、衝撃力の吸収緩和作用とともに復元性も発揮され包装輸送物が保護される。そして使用後の廃棄に際しては自然条件下で直ちに吸湿吸水をなし溶解脆弱化が促進されるとともに、コンスターチが細菌や黴菌等分解菌の恰好の栄養源となり、且比表面積が極めて大きな連続気泡構造のため該分解菌が外表面や内部にまで亘って繁殖し、短期に分解消去される。
更に本発明製造方法においても、使用する生分解性原料がコンスターチ粉体とポリビニルアルコール粉体で配合された生分解性粉体全体量に対して、更に粒径の大きな生分解性ペレットを20乃至25%重量割合で分散配合させ、粒度分布を大きく形成させたものを使用するため、押出成形機のホッパーにおけるブロッキングが解消されるとともに、生分解性原料に空隙が創出されるため、連続発泡構造の形成のために注水される水が容易に浸透される。
そして吐出形成に際しては供給部に注水された水が加熱加圧混練により、加熱加圧水蒸気として分散内包されてなるため、吐出に伴う減圧で瞬時に噴散することで連続気泡構造が形成される。而もこの吐出形成された連続気泡構造体はダイス部直近に設けられた冷却遊動ケージ内で所要の長さにカットされるとともに、少なくとも二方向からの送風ファンで送風されるため瞬時に冷却がなされ且該冷却遊動ケージ内で遊動されることによりカットされた相互の融着が阻止されて、所要の長さの緩衝材が形成される。
【0010】
【実施例】
以下に本発明実施例を図とともに詳細に説明すれば、図1は本発明緩衝材1の説明図、図2は緩衝材1の使用態様図であって、緩衝材1は一方において流通に付される包装輸送物2Aを輸送や取扱い時における外部衝撃より損傷せぬように保護するために十分な嵩高性と、且外部衝撃を吸収緩和し破損や故障の防止並びに復元性等の実用性能を具備させるとともに、他方においては使用後の廃棄に際して自然条件下でも容易に生分解消去せしめて廃棄公害を防止しえる生分解性を保持することが要件となる。
そこで本発明緩衝材1はその組成成分における主たる成分として物理的な固化性や発泡形成性を保持し且細菌や黴菌等の分解菌の繁殖のための恰好の栄養源となるコンスターチが選ばれるもので、該コンスターチの組成割合としては65乃至75%重量割合で用いられることが望まれる。即ち該コンスターチの割合が65%重量以下となると、嵩高性を付与させるための所望の発泡倍率まで発泡させることが難しくなり、且75%重量割合を超えると形成される連続気泡構造が脆弱となることによる。更にコンスターチは多種の粒径のものが上市されているが本発明の場合には一般上市されてなる粒径数μm乃至拾数μmのもので十分に使用に供しえる。
【0011】
更に緩衝材1にはポリビニルアルコールが25乃至30%重量割合用いられてなるが、該ポリビニルアルコールは該緩衝材1に粘弾性や復元性を付与せしめ且耐久性所謂強靭性も付与せしむるとともに、廃棄に際しはその吸湿性や吸水性により溶解脆化を促進させるためのものであり、且残余は残留水分として2.5乃至5.0%重量割合で構成される。
かかる場合のポリビニルアルコールとしては一般的に使用されてなる粒径が略数拾乃至は数百μmのものを使用できるが、留意すべきはポリビニルアルコール成分が少なくとも94%以上のものが望まれ、且酢酸メチル等の成分が最大でも0.1%重量割合以下のものが、成形機の腐蝕防止のうえから望まれる。
【0012】
加えて実用使用のうえからは十分な嵩高性が要請されることから、その発泡倍率としては、少なくとも35倍以上望ましくは40倍以上が好都合であるが、あまり高発泡倍率とすることは粘弾性や復元性が阻害され且脆弱化も招来されるため、最大でも70倍程度に留めるべきである。更に重要なことは、発泡構造の形成においては廃棄に際し細菌や黴菌等の分解菌が、その外表面はもとより内部にまで付着繁殖して生分解消去を促進させるものであるから、発泡構造に係る気孔1Bが連続した所謂連続気泡で形成されることにある。
当然のことながら、該緩衝材1は廃棄に際して無公害であることが本発明の重要な目的でもあることから、発泡構造の形成の際しては化学ガスや化学発泡剤は一切不使用で、本発明においては加圧加熱水蒸気の噴散手段が採用されている。
【0013】
かくしてなる緩衝材1の具体的分径や長さは包装輸送物2の重量等により適宣に決定されるが、包装輸送物2の重量が略10乃至20kg程度の場合では、その分径が16乃至20mm、長さが60乃至80mm程度のものが、更に包装輸送物2の重量が5kg以下の場合では分径3乃至6mm長さが60乃至80mm程度が好適である。
そして実用使用に際しては図2に示すように、流通される包装輸送物2と適宣の外包装体2Aとの間に生ずる包装間隙2Bに適宣量を充填させれば良い。
【0014】
図3は緩衝材1の製造に使用する生分解性原料3の説明図、図4は緩衝材1を製造する押出成形機4の断面説明図であって、当然に生分解性原料3の主たる素材としてはコンスターチ粉体3Aが用いらるもので、該コンスターチ粉体3Aは一般に上市されている粒径数μm乃至拾数μmのもので十分使用できるとともに、該コンスターチ粉体3Aを70乃至75%重量割合で用い且ポリビニルアルコール粉体3Bを25乃至30%重量割合で配合する。かかる場合におけるポリビニルアルコール粉体3Bも、一般的に上市されてなる粒径数拾乃至数百μm程度のものが使用できるが、留意すべきはポリビニルアルコール成分が少なくとも94%以上のもので、特には酢酸メチル成分が最大でも0.1%重量以下のものを選択すべきである。
【0015】
而してかかる如く配合がなされた状態では、コンスターチ粉体3A及びポリビニルアルコール粉体3Bが微粉状であり、且これら素材は吸湿性や吸水性が高いため、押出成形機4による成形に際しての供給口所謂ホッパー4Aにおいてブロッキングを発生し供給むらや供給不能が招来される危険がある。
そこでかかる問題の解決手段としては粒度分布を広く構成することが提案される。これがためには形成される緩衝材1の組成成分に影響を与えぬように予めコンスターチ粉体3Aを65乃至75%重量、ポリビニルアルコール粉体3Bを15乃至20%重量、及び水を10乃至20%重量割合で配合のうえ比較的低温度、望ましくはダイス部の温度を160℃程度で加熱混練させたうえ、その粒径が略1乃至3mm程度の生分解性ペレット3Cを形成したうえ、該生分解性ペレット3Cを更に20乃至25%重量割合で配合させ、以って生分解性原料3となすものである。
【0016】
かくしてなる生分解性原料3は図4に示すような押出成形機4をを用いて成形がなされるものであるが本発明においては該押出成形機4に特別な改良と且特有の製造手段が講ぜられる。
即ち押出成形機4の基本的構造としては食品加工やプラスチック成形加工等において使用されている一軸若しくは二軸のスクリュー4Bを有ずるものが用いられる。かかる場合にスクリュー4Bとしては一般的に供給部40B、圧縮部41B、計量部42Bの構成よりなり、使用素材により緩圧縮タイプ、急圧縮タイプ、無計量部タイプ、ダルメージトーピードタイプ、及びベントタイプ等が適宣に選択使用されるが、本発明においては緩圧縮タイプや急圧縮タイプ或いは無計量タイプが好適である。
そしてかかるスクリュー4Bが装着されるシリンダー4Cの該スクリュー4Bの供給部40Bに対応する位置には生分解性原料3を供給するためのホッパー4Aが設けられている。
【0017】
そして本発明における押出形機4には発泡構造の形成に際して注水された水を加熱加圧水蒸気として加熱加圧混練される生分解性原料3内に分散内包させたうえ吐出時に噴散6Aせしめる手段を採用するものである。そこでホッパー4Aより供給された生分解性原料3Aに加熱並びに内部圧力が付加されぬスクリュー4Bの供給部位に所要の注水4Dをなすための注水管40Dが設けられ、且適宣の注水ポンプ41Dにより注水されるように配慮されている。かかる場合に供給される生分解性原料3Aに対する注水量はスクリュー4Bの回転数や加熱温度に係る内部圧力や所望する発泡倍率によっても異るが、35乃至70倍発泡を期待する場合では1.0乃至3.0%重量割合が目安となる。
当然にスクリュー4Bの先端には内部圧力を保持させるためのブレーカープレート4Eが介されたうえ所要分径の吐出孔を有するダイス部4Fが装着されている。
【0018】
而してスクリュー4Bの供給部に供給された生分解性原料3には、更にその供給部において供給される生分解性原料3の重量に対し1.0乃至3.0%重量割合の注水4Dがなされたうえ、スクリュー4Bの回転に伴う圧縮部や計量部への移送力とブレーカープレート4Eの背圧とにより混練をなすための熔融化を図ること、及び注水4Dされた水を加熱加圧蒸気化させ且分散内包させるうえから、供給部より計量部若しくはダイス部4Fに亘って最高200℃以下の温度を以って温度勾配が保持されるよう適宣の加熱ヒーターが付帯されている。
かかる場合に加熱温度を最高200℃に制限するのは、該制限温度を超えるとポリビニルアルコールの分解劣化が促進され、更には酢酸ガス等の発生により押出成形器の腐蝕が促進される危険があることと、今一つは高温度で過剰熔融がなされ吐出形成物の保形性が損われることによる。
【0019】
かくして押出成形機4のダイス部4Fに設けられた吐出口より吐出させることにより、急激な減圧化に伴い分散内包されてなる加熱加圧水蒸気が瞬時にその外表面より噴散され通孔1Bが連続された所謂連続気泡構造体として吐出形成される。
更に吐出形成される連続気泡構造体は実用使用に供するために所要の長さに切断する必要があるが、該吐出形成された連続気泡構造体は高温で軟弱なうえ、吸湿性や吸水性が極めて大きく、従って該連続気泡構造体を所要の長さに切断するためには、機械的外力の付加や冷却効果の高い水による冷却も採用できない。
【0020】
そこで本発明においては図5に示す如く該連続気泡構造体が吐出形成されるダイス部4Fの直近に所要の長さに切断された連続気泡構造体が漏出しえぬ程度の網目合で形成されるケージ体5Aが設けられるとともに、ダイス部4により吐出された連続気泡構造体をカッター5Bにより所要の長さにカットするとともに該ケージ体5Aの少なくとも二方向の送風ファン5Cから該カットされた連続気泡構造体に送風させて冷却するとともに、十分な冷却がなしえる間切断された連続気泡構造体をケージ内で遊動させて融着の防止を図り、而して冷却のなされた連続気泡構造体を該ケージ体5Aの下方に設けた吸引ダクト5Dより吸引収集を図る冷却遊動ケージ5とによって生分解性緩衝材が製造される。
【0021】
【発明の効果】
本発明は以上述べたように緩衝材においてはその組成成分がコンスターチ65乃至75%重量、ポリビニルアルコール25乃至30%重量及び残留水分2.5乃至5.0%重量割合からなり、且連続気泡構造で35乃至70倍の発泡倍率で発泡され所要の分径と長さに形成されたものであるから、包装輸送物の大きさ、形状、重量に係りなく外包装体との間隙に充填させ若しくは包装輸送物相互の間隙に充填させるのみで簡便に使用でき、且単一規格のものを用意することで広範囲の包装輸送物に対処しえる。
そして組成成分のコンスターチの固化性により形状全体に保形力が保持されるとともに、ポリビニルアルコールにより粘弾性と復元性が付与され而も35乃至70倍の発泡倍率よりなるため十分な嵩高性も保持され、輸送や取扱時の外部衝撃が付加された場合にも、包装輸送物の損傷防止はもとより衝撃が吸収緩和され破損や故障も防止される。
加えて使用後の廃棄に際しても自然条件下では吸湿や吸水が促進されることにより容易に形状崩壊がなされ、且コンスターチが分解菌の繁殖栄養源となることにより分解菌が急速に繁殖するとともに、連続気泡構造のため該分解菌が外表面から内面にまで亘って付着繁殖するため、早期に生分解され消去されるため廃棄公害も全く発生しない。
更に本発明製造方法においては、生分解性粉体原料に20乃至25%重量割合で粒径の大きな生分解性ペレットを分散配合し使用するため、押出成形機にスムースな供給がなされ、而も該押出成形機の低温度、低内部圧力の供給部において、連続気泡構造形成のために注水される水が容易に生分解性原料内に浸透されて加熱加圧混練されるため、注水された水が加熱加圧水蒸気化されたうえ分散内包され、吐出による減圧に伴い該加熱加圧水蒸気が噴散されて連続気泡構造体が形成され、且高温で軟弱な該連続気泡構造体を冷却遊動ケージ内で二方向から送風させながらカットし且冷却遊動させることにより連続気泡構造体を変形や融着させずに緩衝材が形成しえる等、極めて新規で且特長の多い生分解性緩衝材の製造方法である。
【図面の簡単な説明】
【図1】本発明緩衝材の説明図である。
【図2】緩衝材の使用態様図である。
【図3】生分解性原料の説明図である。
【図4】押出成形機の断面説明図である。
【図5】冷却遊動ケージの説明図である。
【符号の説明】
1 緩衝材
1A 緩衝材の素材
1B 通孔
2 包装輸送物
2A 外包装体
2B 包装間隙
3 生分解性原料
3A コンスターチ粉体
3B ポリビニルアルコール粉体
3C 生分解性ペレット
4 押出成形機
4A ホッパー
4B スクリュー
4C シリンダー
4D 注水
4E ブレーカープレート
4F ダイス部
5 冷却遊動ケージ
5A ケージ体
5B カッター
5C 送風ファン
5D 吸引ダクト
6A 噴散
[0001]
[Industrial application fields]
The present invention prevents damage and damage even when external impact is applied or dropped by packing between the outer packaging body when transporting and handling packaging equipment such as precision instruments, glass, ceramic products or furniture furniture. In addition, the present invention relates to a biodegradable cushioning material that can be completely decomposed and erased even when discarded after use to prevent disposal pollution, and a method for manufacturing the same.
[0002]
[Prior art]
In order to prevent damage due to external impacts during transportation and handling of precision instruments, in the case of products that have been produced in large quantities in the past, a shape that can enclose precision instruments in advance and a packaging material that uses a highly styrofoam material is formed. However, after being wrapped in the packaging mold material and stored and packaged in an outer packaging box made of corrugated cardboard material, in today's situation where many kinds and small quantities are being produced, a variety of precision instruments are used. Each precision instrument is packaged with a dustproof film or the like in an outer packaging box that can be stored and packaged in common, and then stored in the outer packaging box, and a spherical object made of a highly foamed polystyrene material in the gap between the outer packaging box and A thin piece such as a rod-like object or a plate-like object is filled as a cushioning material for distribution. Furthermore, for glass, ceramic products and furniture furniture, it absorbs and reduces external impacts during transportation and handling to prevent breakage and damage. Also, foam sheet or polyethylene made of materials that retain viscoelasticity such as polyurethane and polyethylene materials. It is packaged with a so-called air cap film or the like in which an air layer is encapsulated between the films and used for distribution.
[0003]
However, these packaging molds, cushioning materials, foamed sheet-like materials, air cap films, etc. are discarded after being subjected to short-term distribution, and these are not only made of synthetic resin materials, but also very bulky, From the standpoint of environmental protection, which will be an important issue in the future, not only does it go against volume reduction and volume reduction, but these wastes can only be incinerated. In addition to preventive measures against dioxins, urgent issues have been raised.
[0004]
In recent years, development of products using so-called biodegradable materials, such as polylactic acid resins and acetate resin materials, which are intended to be decomposed and eliminated by the involvement of microorganisms under natural conditions, has been actively attempted. In addition to the high cost, the biodegradability on the other side is impaired if the practical performance is maintained, and if the biodegradability is fully exhibited, on the other hand, there is a problem that the practical performance cannot be achieved. In particular, there are many problems in the development of materials that can maintain practical performance in a short period of time, such as packaging materials and cushioning materials, and can be quickly disassembled and deleted by disposal.
[0005]
The inventor has conducted extensive research in view of such circumstances, and as a result, biodegradability has been promoted with the degree of reproduction of microorganisms that reproduce using water, temperature, and nutrient sources as a breeding condition, and starch-based starch Is a suitable source of nutrients for microorganisms, and starch and corn starch have long been known in the food industry as extrusion cooking. It can be easily prepared, and by mixing polyvinyl alcohol in the presence of about 5 to 10% moisture and kneading under heat and pressure, the polyvinyl alcohol is homogeneously dispersed, and viscoelasticity and toughness are imparted to the plastic workpiece. It is hoped that the so-called specific surface area of the microorganisms should be made large in order to prevent biodegradation and elimination at the time of disposal. In order to achieve this, it has been determined that an open cell structure is suitable. Further, in the production method, only water-absorbing and hygroscopic and fine powdery starch powder and polyvinyl alcohol powder are used as raw materials. Since a blocking phenomenon occurs in the hopper part that feeds the raw material during extrusion molding, a supply hindrance is caused. Therefore, these raw materials are dispersed and mixed with pellets having a large particle size at a ratio of about 20 to 25% by weight. Therefore, it is possible to prevent blocking and to form an open cell structure along with the spraying of heat and pressure steam by spraying water after water injection and heating and pressure kneading without using a chemical foaming agent. As a result, the present invention has been completed.
[0006]
[Problems to be solved by the invention]
That is, according to the present invention, the composition component is composed of starch, polyvinyl alcohol and residual moisture, and can be packed in the gap with the outer package during transportation and handling to protect the transported goods by absorbing the impact in the external impact, and An object of the present invention is to provide a biodegradable cushioning material that can be quickly decomposed and eliminated under natural conditions after use, and a method for producing the same.
[0007]
[Means for Solving the Problems]
The technical means used by the present invention in order to solve the above-mentioned problem is that the present invention uses biodegradation and elimination under natural conditions when discarded after use. Widening the particle size distribution and ensuring stable supply to the extrusion molding machine for the biodegradable powder raw material blended in a proportion of 70 to 75% by weight and 25 to 30% by weight of polyvinyl alcohol powder, and polyvinyl alcohol powder Create a void in the powder raw material by adding water to the body and homogenizing kneading in the extruder, and widening the particle size distribution, and infiltrate water injection to create pressurized heated steam related to the formation of open cells From the top, blended with a starch powder of 65 to 75% weight, polyvinyl alcohol powder of 15 to 25% weight and water of 10 to 20% weight. Comparatively low temperature in a large biodegradable pellets after forming the particle diameter of the heat-kneading further with 20 to 25% by weight biodegradable material dispersed in a proportion.
[0008]
The biodegradable raw material has a uniaxial or biaxial screw, and a hopper of an extrusion molding machine capable of maintaining a temperature gradient from room temperature to 200 ° C. over its supply unit, compression unit, metering unit, and die unit. 1.0 to 5.0% by weight with respect to the supplied biodegradable raw material in the screw supply section in which the biodegradable raw material supplied at a low temperature is not melted and the internal pressure is small. In addition, water is injected and dispersed in the compression part and metering part, and the injected and dispersed and kneaded water is dispersed and encapsulated as heat and pressure steam, and discharged from the die part at the required size. By making the heated and pressurized water vapor contained in the dispersion scatter, an extrusion molding machine that discharges and forms an open-cell structure having a foaming ratio of about 35 to 70 times, and the discharge formed continuous In order to form the required cushioning material from the foam structure, a cooling floating cage is provided in the immediate vicinity of the die, and a cutter that cuts the open-cell structure to be formed to a required length is disposed and cut. In addition to cooling the open cell structure so that it does not deform and floating so that the cut pieces are not fused together, the fan is blown by a blower fan from at least two directions of the cooling floating cage, and suction collection is performed by a suction duct. The present invention resides in a method for producing a biodegradable cushioning material constituted by a cut cooling part. Further, the composition components are substantially 65 to 75% by weight of starch, 25 to 30% by weight of polyvinyl alcohol and 2% of residual moisture. .5 to 5.0% by weight, and is cut to the required size and length at an expansion ratio of 35 to 70 times with an open cell structure. It consists in construction of a biodegradable cushioning material made Te.
[0009]
[Action]
Since the cushioning material of the present invention is configured as described above, it has the following effects. That is, the composition component is foamed with a starch of 65 to 75%, polyvinyl alcohol of 25 to 30% and a residual moisture of 2.5 to 5.0%, and a foam ratio of 35 to 70 times by open cells. Therefore, the solidification property of the starch is imparted with the viscoelasticity and resilience of polyvinyl alcohol, and it is sufficiently bulky because it is foamed 35 to 70 times, preventing damage to the packaged goods even when external impact is applied. In addition to the effect of absorbing the impact force, the rehabilitation is also exhibited and the packaged goods are protected. And when discarded after use, it absorbs moisture and absorbs immediately under natural conditions to promote dissolution and weakening, and constellation is a good source of nutrients for bacteria and gonococcal degrading bacteria, and has an open cell structure with an extremely large specific surface area. Therefore, the decomposing bacteria propagate over the outer surface and the inside, and are decomposed and eliminated in a short time.
Furthermore, in the production method of the present invention, the biodegradable raw material to be used is composed of 20 to 20 biodegradable pellets having a larger particle size with respect to the total amount of biodegradable powder in which the starch powder and the polyvinyl alcohol powder are blended. Because it uses a material that is dispersed and blended at a 25% weight ratio and has a large particle size distribution, blocking in the hopper of the extrusion molding machine is eliminated and voids are created in the biodegradable raw material. Water that is poured for the formation of is easily penetrated.
In forming the discharge, water injected into the supply unit is dispersed and included as heat-pressurized water vapor by heat-pressure kneading, so that an open-cell structure is formed by instantaneously spouting with reduced pressure accompanying discharge. This open cell structure formed by discharge is cut to a required length in a cooling floating cage provided in the immediate vicinity of the die part and is blown by a blower fan from at least two directions, so that cooling is instantaneously performed. It is made and the mutual fusion | melting cut | disconnected by being moved within this cooling floating cage is blocked | prevented, and the buffer material of required length is formed.
[0010]
【Example】
In the following, the embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory diagram of the cushioning material 1 of the present invention, FIG. 2 is a view showing how the cushioning material 1 is used. Sufficient bulkiness to protect the packaged package 2A from being damaged by external impact during transportation and handling, and practical performance such as damage and failure prevention and restoration performance by absorbing external shock. On the other hand, it is necessary to maintain biodegradability that can be easily biodegraded and erased even under natural conditions during disposal after use to prevent disposal pollution.
Therefore, the buffer material 1 of the present invention is selected as a main component in its composition component, which is a starch that retains physical solidification and foam-forming properties and is a good nutrient source for the propagation of degrading bacteria such as bacteria and bacilli. The composition ratio of the starch is preferably 65 to 75% by weight. That is, when the ratio of the starch is 65% or less, it becomes difficult to foam to a desired foaming ratio for imparting bulkiness, and when the ratio exceeds 75%, the open cell structure formed becomes brittle. It depends. Furthermore, various types of starches are commercially available, but in the case of the present invention, those having a particle diameter of several μm to several μm that are generally marketed can be used sufficiently.
[0011]
Further, polyvinyl alcohol is used in the buffer material 1 in a proportion of 25 to 30% by weight. The polyvinyl alcohol imparts viscoelasticity and restorability to the buffer material 1 and also imparts durability, so-called toughness. At the time of disposal, it is intended to promote dissolution and embrittlement due to its hygroscopicity and water absorption, and the remainder is constituted by 2.5 to 5.0% by weight as residual moisture.
In this case, the polyvinyl alcohol having a particle size of generally several to several hundred μm can be used as the polyvinyl alcohol, but it should be noted that the polyvinyl alcohol component is preferably at least 94% or more, In addition, a component having a maximum content of 0.1% by weight or less such as methyl acetate is desired for preventing corrosion of the molding machine.
[0012]
In addition, since sufficient bulkiness is required for practical use, the foaming ratio is preferably at least 35 times or more, preferably 40 times or more, but it is viscoelastic to use a too high foaming ratio. And the restorability is hindered and weakening is also caused. More importantly, in the formation of the foam structure, when it is discarded, bacteria such as bacteria and bacilli are propagated not only to the outside surface but also to the inside to promote biodegradation elimination. The pores 1B are formed by so-called continuous bubbles.
Of course, since the buffer material 1 is also an important object of the present invention to be non-polluting upon disposal, no chemical gas or chemical foaming agent is used in the formation of the foam structure. In the present invention, a means for spraying pressurized and heated steam is employed.
[0013]
The specific size and length of the cushioning material 1 thus formed are appropriately determined depending on the weight of the package transport 2 and the like, but when the weight of the package transport 2 is about 10 to 20 kg, It is preferable that the length is about 16 to 20 mm and the length is about 60 to 80 mm, and if the weight of the package transport 2 is 5 kg or less, the diameter is about 3 to 6 mm and the length is about 60 to 80 mm.
In practical use, as shown in FIG. 2, an appropriate amount may be filled in the packaging gap 2B formed between the package transport 2 to be distributed and the appropriate outer package 2A.
[0014]
FIG. 3 is an explanatory view of the biodegradable raw material 3 used for manufacturing the buffer material 1, and FIG. 4 is a cross-sectional explanatory view of the extrusion molding machine 4 for manufacturing the buffer material 1. As the material, the starch powder 3A is used, and the starch powder 3A having a particle diameter of several μm to several μm generally available on the market can be used satisfactorily. % Polyvinyl alcohol powder 3B is blended in an amount of 25 to 30% by weight. Polyvinyl alcohol powder 3B in such a case can also be used with a particle diameter of about several to several hundred μm, which is generally marketed, but it should be noted that the polyvinyl alcohol component is at least 94% or more. Should be selected so that the methyl acetate component is at most 0.1% by weight.
[0015]
Thus, in such a blended state, the starch powder 3A and the polyvinyl alcohol powder 3B are finely powdered, and these materials are highly hygroscopic and water-absorbing, so that they are supplied during molding by the extruder 4. There is a risk that blocking may occur in the so-called hopper 4A, resulting in uneven supply or inability to supply.
Therefore, as a means for solving such a problem, it is proposed to construct a wide particle size distribution. For this purpose, the starch powder 3A is 65 to 75% by weight, the polyvinyl alcohol powder 3B is 15 to 20% by weight, and water is 10 to 20 so as not to affect the composition of the buffer material 1 to be formed. In addition, the mixture was heated and kneaded at a relatively low temperature, preferably at a die part temperature of about 160 ° C., and a biodegradable pellet 3C having a particle size of about 1 to 3 mm was formed. The biodegradable pellet 3C is further blended at a weight ratio of 20 to 25%, thereby forming the biodegradable raw material 3.
[0016]
The biodegradable raw material 3 thus formed is formed by using an extruder 4 as shown in FIG. 4. In the present invention, the extruder 4 has special improvements and special manufacturing means. Be taken.
That is, as the basic structure of the extrusion molding machine 4, one having a uniaxial or biaxial screw 4B used in food processing, plastic molding processing or the like is used. In such a case, the screw 4B is generally composed of a supply unit 40B, a compression unit 41B, and a weighing unit 42B. Depending on the material used, a slow compression type, a rapid compression type, a non-weighing unit type, a dalmage torpedo type, and a vent type However, in the present invention, a slow compression type, a rapid compression type, or a non-weighing type is preferable.
A hopper 4A for supplying the biodegradable raw material 3 is provided at a position corresponding to the supply portion 40B of the screw 4B of the cylinder 4C to which the screw 4B is mounted.
[0017]
The extruder 4 according to the present invention has means for dispersing and encapsulating the water injected during the formation of the foamed structure in the biodegradable raw material 3 to be heated and pressurized and kneaded, and causing the eruption 6A at the time of discharge. Adopted. Therefore, a water injection pipe 40D for providing the required water injection 4D is provided at the supply site of the screw 4B to which the biodegradable raw material 3A supplied from the hopper 4A is not heated and not subjected to internal pressure, and by a proper water injection pump 41D. It is considered to be injected. In such a case, the amount of water injected into the biodegradable raw material 3A varies depending on the rotation speed of the screw 4B, the internal pressure related to the heating temperature, and the desired foaming ratio. A weight ratio of 0 to 3.0% is a guide.
Naturally, a die part 4F having a discharge hole of a required diameter is mounted on the tip of the screw 4B through a breaker plate 4E for maintaining the internal pressure.
[0018]
Thus, the biodegradable raw material 3 supplied to the supply part of the screw 4B further includes water injection 4D at a ratio of 1.0 to 3.0% by weight with respect to the weight of the biodegradable raw material 3 supplied in the supply part. In addition, melting for kneading is performed by the transfer force to the compression unit and the metering unit accompanying the rotation of the screw 4B and the back pressure of the breaker plate 4E, and the injected water 4D is heated and pressurized A suitable heater is attached so that the temperature gradient is maintained at a maximum temperature of 200 ° C. or less from the supply unit to the metering unit or the die unit 4F in order to vaporize and disperse.
In such a case, the heating temperature is limited to a maximum of 200 ° C. The decomposition of polyvinyl alcohol is accelerated when the heating temperature exceeds the limit temperature, and further, there is a risk that the corrosion of the extruder is accelerated by the generation of acetic acid gas or the like. Another reason is that excessive melting is performed at a high temperature and the shape retention of the discharge formed product is impaired.
[0019]
Thus, by discharging from the discharge port provided in the die part 4F of the extrusion molding machine 4, the heated and pressurized water vapor contained in the dispersion accompanying the rapid pressure reduction is instantaneously ejected from the outer surface, and the through hole 1B continues. The so-called open cell structure thus formed is discharged and formed.
Furthermore, the open-cell structure formed by discharge needs to be cut to a required length in order to be put to practical use. However, the open-cell structure formed by discharge is soft at high temperature and has hygroscopicity and water absorption. Therefore, in order to cut the open cell structure to a required length, it is impossible to apply mechanical external force or cooling with water having a high cooling effect.
[0020]
Therefore, in the present invention, as shown in FIG. 5, the continuous cell structure cut to a required length is formed in a mesh so as not to leak out in the vicinity of the die portion 4F where the continuous cell structure is discharged and formed. The continuous cell structure discharged from the die portion 4 is cut to a required length by the cutter 5B and the continuous cut from the blower fan 5C in at least two directions of the cage body 5A is provided. The bubble structure is cooled by blowing air, and the cut open cell structure is moved in the cage while sufficient cooling can be achieved to prevent fusion, and thus the open cell structure is cooled. The biodegradable cushioning material is manufactured by the cooling floating cage 5 which collects the suction from the suction duct 5D provided below the cage body 5A.
[0021]
【The invention's effect】
As described above, according to the present invention, the composition of the cushioning material is composed of a starch of 65 to 75% by weight, a polyvinyl alcohol of 25 to 30% by weight and a residual water of 2.5 to 5.0% by weight, and has an open cell structure. In this case, it is foamed at a foaming ratio of 35 to 70 times and formed to the required size and length, so that it can be filled into the gap with the outer package regardless of the size, shape and weight of the package transported goods or It can be used simply by filling the gaps between the packaged packages, and it can deal with a wide range of packaged packages by preparing a single standard package.
In addition, the solidifying property of the constituent component maintains the shape-retaining force, and the polyvinyl alcohol provides viscoelasticity and resilience, and the foaming ratio is 35 to 70 times, thus maintaining sufficient bulkiness. Even when an external impact is applied during transportation or handling, the impact is absorbed and mitigated and damages and failures are prevented as well as preventing damage to the packaged goods.
In addition, when it is discarded after use, the shape is easily collapsed by promoting moisture absorption and water absorption under natural conditions. Due to the open cell structure, the degrading bacteria adhere to and propagate from the outer surface to the inner surface, so that they are biodegraded and erased at an early stage, so that no disposal pollution occurs.
Furthermore, in the manufacturing method of the present invention, since biodegradable pellets having a large particle size are dispersed and used in the biodegradable powder raw material in a proportion of 20 to 25%, smooth supply is made to the extrusion molding machine. In the low temperature, low internal pressure supply section of the extruder, the water injected for the formation of the open cell structure was easily infiltrated into the biodegradable raw material and heated and pressurized and kneaded. Water is heated and pressurized to be steamed and dispersed and contained, and the heated and pressurized steam is spouted by decompression by discharge to form an open-cell structure, and the open-cell structure that is soft at high temperature is placed in the cooling floating cage. This is a novel and highly featured biodegradable cushioning material manufacturing method that can form a cushioning material without deforming or fusing the open cell structure by cutting and cooling while blowing air from two directions. It is.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a cushioning material of the present invention.
FIG. 2 is a view showing how the cushioning material is used.
FIG. 3 is an explanatory diagram of a biodegradable raw material.
FIG. 4 is a cross-sectional explanatory view of an extrusion molding machine.
FIG. 5 is an explanatory diagram of a cooling floating cage.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Buffer material 1A Buffer material 1B Through-hole 2 Package transport 2A Outer package 2B Packing gap 3 Biodegradable raw material 3A Constarch powder 3B Polyvinyl alcohol powder 3C Biodegradable pellet 4 Extruder 4A Hopper 4B Screw 4C Cylinder 4D Water injection 4E Breaker plate 4F Die part 5 Cooling floating cage 5A Cage body 5B Cutter 5C Blower fan 5D Suction duct 6A Spout

Claims (1)

コンスターチ粉体65乃至75%重量、ポリビニルアルコール粉体15乃至20%重量、水10乃至20%重量割合で配合され且比較的低温度で加熱混練のうえ形成させた生分解性ペレットを、コンスターチ粉体70乃至75%重量とポリビニルアルコール粉体25乃至30%重量割合で配合された生分解性粉体原料に更に20乃至25%重量割合で分散配合させてなる生分解性原料と、一軸若しくは二軸のスクリューを有しその供給部、圧縮部、計量部及びダイス部に亘って常温から200℃までの温度勾配を保持せしめられる押出成形機のホッパーより生分解性原料を供給し、且その供給部において該供給される生分解性原料に対し1.0乃至3.0重量割合の水を注入させて、加熱加圧混練させながらダイス部より吐出させることにより、加熱加圧された水蒸気を噴散せしめて35乃至70倍の発泡倍率を有する連続気泡構造体を吐出成形させる押出成形機と、ダイス部直近に設けられる冷却遊動ケージ内で吐出成形された連続気泡構造体を所要の長さに切断するカッターと、切断された連続気泡構造体相互が融着せぬよう冷却し、且遊動させるために該冷却遊動ケージの少なくとも二方向から送風させるファン及び所要の長さに切断された冷却された連続気泡構造体を吸引収集させる吸引ダクトよりなるカット冷却部とにより構成される生分解性緩衝材の製造方法。  A biodegradable pellet blended in a ratio of 65 to 75% by weight of a starch powder, 15 to 20% by weight of polyvinyl alcohol powder and 10 to 20% by weight of water and formed by heating and kneading at a relatively low temperature, A biodegradable raw material obtained by further dispersing and blending a biodegradable powder raw material 70 to 75% by weight and a polyvinyl alcohol powder 25 to 30% by weight in a proportion of 20 to 25%; A biodegradable raw material is supplied from a hopper of an extrusion molding machine that has a shaft screw and can maintain a temperature gradient from room temperature to 200 ° C. across its supply unit, compression unit, metering unit and die unit. By injecting 1.0 to 3.0% by weight of water to the biodegradable raw material supplied in the part and discharging it from the die part while heating and press kneading. , An extrusion molding machine for discharging and molding an open-cell structure having a foaming ratio of 35 to 70 times by spraying heated and pressurized water vapor, and a continuous discharge molding in a cooling floating cage provided in the immediate vicinity of the die A cutter that cuts the bubble structure to a required length, a fan that cools the cut open cell structure so that the cut open cell structures do not fuse together, and a fan that blows air from at least two directions of the cooling floating cage; A method for producing a biodegradable cushioning material, comprising: a cut cooling part comprising a suction duct for sucking and collecting a cooled open-cell structure cut into a length.
JP2001177763A 2001-05-10 2001-05-10 Production method of biodegradable cushioning material Expired - Fee Related JP3844049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001177763A JP3844049B2 (en) 2001-05-10 2001-05-10 Production method of biodegradable cushioning material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001177763A JP3844049B2 (en) 2001-05-10 2001-05-10 Production method of biodegradable cushioning material

Publications (2)

Publication Number Publication Date
JP2002337949A JP2002337949A (en) 2002-11-27
JP3844049B2 true JP3844049B2 (en) 2006-11-08

Family

ID=19018559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001177763A Expired - Fee Related JP3844049B2 (en) 2001-05-10 2001-05-10 Production method of biodegradable cushioning material

Country Status (1)

Country Link
JP (1) JP3844049B2 (en)

Also Published As

Publication number Publication date
JP2002337949A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
CN102695748A (en) Biodegradable and breathable film
US6106753A (en) Method of forming a biodegradable molded packing
KR970705606A (en) Biodegradable materials containing regenerated raw materials and methods for producing same (Biodegradable material containing regenerative raw material and method of producing the same)
JP3844049B2 (en) Production method of biodegradable cushioning material
CN109679307A (en) A kind of biodegradable pearl cotton and preparation method thereof
JPH04356538A (en) Biodegradable foamed polyolefin resin molding
WO2023286258A1 (en) Method for producing resin composite material, and resin composite material
JP2003072854A (en) Packaging cushioning body, and manufacturing method thereof
JP2002371153A (en) Biodegradable foamed molded body and method for manufacturing the same
JP3597645B2 (en) Method for producing biodegradable buffer
CN106553285A (en) A kind of preparation method of starch EVA composite foam materials
KR100514054B1 (en) A Product made from starch foam and adhesive mixture and its preparing method
JP2583170B2 (en) Method of forming cushioning material using waste paper or pulp
KR950029317A (en) Composition of biodegradable disposable container and manufacturing method thereof
WO2004003063A8 (en) Thermoplastic foamed materials comprising nanostructured filling materials and method for producing the same
KR100631161B1 (en) Masterbatch and masterbatch's manufacturing method and its film
JP2000086793A (en) Cellulose acetate foam and its production
JP3162011U (en) Multifunctional cushioning material
KR102177742B1 (en) Disposable vessel and straw having biodegradability and manufacturing method of the same the those
KR101036450B1 (en) Synthetic wood using charcoal and method for manufacturing the same
JP3408840B2 (en) Method for producing biodegradable resin foam
JP2010260631A (en) Decomposition cushioning material and manufacturing method thereof
JPH11181260A (en) Biodegradable thermoplastic resin composition and its molded product
JP2006316236A (en) Foamed molding
JPH11140214A (en) Biodegradable cellulose acetate foam and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees