JP2010260631A - Decomposition cushioning material and manufacturing method thereof - Google Patents

Decomposition cushioning material and manufacturing method thereof Download PDF

Info

Publication number
JP2010260631A
JP2010260631A JP2009126982A JP2009126982A JP2010260631A JP 2010260631 A JP2010260631 A JP 2010260631A JP 2009126982 A JP2009126982 A JP 2009126982A JP 2009126982 A JP2009126982 A JP 2009126982A JP 2010260631 A JP2010260631 A JP 2010260631A
Authority
JP
Japan
Prior art keywords
degradable
decomposable
rice
cushioning material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009126982A
Other languages
Japanese (ja)
Inventor
Ichiro Arai
一郎 荒井
Shinichi Arai
進一 荒井
Shunichi Kagami
俊一 鑑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO PACK CO Ltd
Original Assignee
TOKYO PACK CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO PACK CO Ltd filed Critical TOKYO PACK CO Ltd
Priority to JP2009126982A priority Critical patent/JP2010260631A/en
Publication of JP2010260631A publication Critical patent/JP2010260631A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Abstract

<P>PROBLEM TO BE SOLVED: To provide a decomposable cushioning material and a manufacturing method thereof having an excellent cushioning properties against products and commodities of a wide range of weights and shapes, while being capable of being decomposed to be lost promptly after use. <P>SOLUTION: The decomposable cushioning material and its manufacturing method include a process of blending 25-45 units of a mutual-fusion-bonding material made of polyethylene or polypropylene resin with 100 units of decomposable material having rice or 20-40 wt.% of grain crop mixed with rice, while, against the whole quantity of the foregoing, a decomposition accelerator of 0.1-5.0 wt.% is blended, whereas furthermore, water of 3.0-6.0 wt.% is added thereto so as to be subjected to extrusion forming for a resultant achievement of a prescribed width and thickness while foaming with an expansion ratio of 20-100 times. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は分解性緩衝材及びその製造方法に係り、更に詳しくは多重且多様な製品や商品を高い緩衝性を以って安全に輸送しえ、而も使用後には速やかに分解滅失させることの可能な分解性緩衝材及びその製造方法に関する。  The present invention relates to a degradable cushioning material and a method for producing the same, and more particularly, it is possible to safely transport multiple and diverse products and products with high cushioning properties, and to quickly decompose and destroy them after use. The present invention relates to a degradable cushioning material and a manufacturing method thereof.

我が国では高度成長期における大量生産、大量販売を背景として大量輸送も牽連され、これに伴い軽量安価で且輸送製品や商品の保護機能、所謂緩衝性を保持する緩衝材が多量に要請されるに至った。これがため加工性に優れるポリエチレンやポリプロピレン或いはポリスチレン樹脂素材を発泡成形させた緩衝シート材やブロック状のバラ緩衝材等が開発され、多量に使用されて来ていた。  In Japan, mass transportation and mass sales in the high growth period have been supported, and accordingly, a large amount of cushioning materials that are lightweight and inexpensive and that protect the transported products and products, that is, the so-called cushioning properties, are required. It came. For this reason, buffer sheet materials, block-shaped rose cushioning materials, etc., which are formed by foaming polyethylene, polypropylene, or polystyrene resin materials having excellent processability, have been developed and used in large quantities.

ところで緩衝材は製品や商品が生産され消費される間の僅かな期間内を、梱包輸送される製品や商品を保護するためのものであるから消費とともに廃棄されることとなる。
而してこれら緩衝材は分解性や崩壊性が無く、埋設廃棄が出来ぬばかりか、焼却処分に際しても排気ガスや焦煙或いはダイオキシンの発生対策等はもとより焼却炉の損傷も激しく、而も嵩高軽量のため使用済緩衝材が随所に飛散散乱し、景観を著しく阻害すること等環境公害を招来しており、これの対策が強く求められている。
By the way, since the cushioning material is intended to protect the product or commodity to be packed and transported within a short period during which the product or commodity is produced and consumed, it is discarded along with the consumption.
These buffer materials are not decomposable or disintegratable and cannot be disposed of in landfills. Also, incineration is not only damaging to the incinerators, but also is very bulky. Due to its light weight, used cushioning materials are scattered and scattered everywhere, causing environmental pollution such as significantly hindering the landscape, and countermeasures against this are strongly demanded.

これがため、合成樹脂素材に代えて脂肪族ポリエステル系や澱粉/PVA系の如く加水分解性や微生物分解性を保持する所謂生分解性素材を用い加水による加熱蒸散により発泡させることにより分解性緩衝材の形成が可能となるものの、該生分解性素材は剛性や硬度が高く、フィルム材や板材等には好都合なものの、緩衝材の如く柔軟性と発泡による高い圧縮弾性力即ち緩衝性を発揮せるためには、少なくとも30乃至70倍以上の発泡倍率で隔壁が薄く且粗な発泡区画構造で発泡成形させぬと柔軟性が保持されず、反面かかる発泡区画構造では圧縮弾性力が発揮されず、多重な製品や商品に対する緩衝性が創出されない。これがため脂肪族ポリエステル系や澱粉/PVA系の如き分解性素材が用いられても、現状ではその径で略10乃至30mm及び長さで30乃至60mm程度に発泡成形し切断したバラ緩衝材を、比較的軽量な製品や商品の梱包空隙内に充填使用している程度であって、緩衝材から招来される諸問題を解決するには至っていない。  Therefore, a degradable buffer material can be obtained by foaming by heat evaporation using water, using a so-called biodegradable material that retains hydrolyzability and microbial degradability such as aliphatic polyester and starch / PVA instead of synthetic resin material. However, the biodegradable material has high rigidity and hardness and is convenient for film materials and plate materials, etc., but can exhibit high compression elastic force, that is, shock absorbing property due to foaming and softness like a cushioning material. Therefore, if the foamed partition structure is thin and rough and has a foaming ratio of at least 30 to 70 times or more, the foamed partition structure does not retain flexibility, while the foamed partition structure does not exhibit compression elastic force, Buffering for multiple products and products is not created. For this reason, even if a degradable material such as an aliphatic polyester type or starch / PVA type is used, at present, a rose cushioning material that is foam-molded and cut to about 10 to 30 mm in diameter and about 30 to 60 mm in length, The product is used only in a relatively light-weight product or product packing space, and has not yet solved various problems caused by the cushioning material.

発明者等はかかる状況に鑑み鋭意研究を重ねた結果、分解性を保持し且柔軟性と高い圧縮弾性力を保持した緩衝材の形成には、加熱加圧と且加水により高粘着性と可塑性及び分解性を保持する素材として米若しくは該米に対し20乃至40%重量割合で穀類が混合された分解性素材を100部と、該分解性素材と相溶混練しえ且比較的厚くとも柔軟な発泡区画構造を密に形成しえ、而も発泡形成された緩衝材を相互に融着積層しえる融着性を保持せしめるためポリエチレン若しくはポリプロピレン樹脂からなる相溶融着材が25乃至45部と、これら全体量に対し0.1乃至5.0%重量割合の分解促進剤とを加水しつつ押出成形により扁平状に発泡成形させることにより、前記問題を解決しえることに想到し本発明に至った。  Inventors and others have made extensive studies in view of such circumstances, and as a result, in order to form a cushioning material that retains degradability and retains flexibility and high compressive elasticity, high adhesiveness and plasticity can be obtained by heating and pressurizing and adding water. 100 parts of rice or a degradable material mixed with cereals in a proportion of 20 to 40% by weight with respect to the rice as a material that retains degradability can be mixed and kneaded with the degradable material and is flexible even if relatively thick 25 to 45 parts of a phase melt adhesive material made of polyethylene or polypropylene resin can be used to form a dense foamed compartment structure and maintain a fusion property that allows the foamed cushioning material to be fused and laminated together. The present invention has been conceived to solve the above-mentioned problems by foaming into a flat shape by extrusion while adding 0.1 to 5.0% by weight of a decomposition accelerator with respect to the total amount. It came.

本発明は広範囲に亘る重量や形状の製品や商品でも、優れた緩衝性により安全に保持し輸送ができ、且使用後は速やかに分解滅失させることの可能な分解性緩衝材及びその製造方法を提供することにある。  The present invention provides a degradable cushioning material that can be safely held and transported by excellent buffering properties even in products and products having a wide range of weights and shapes, and that can be quickly destroyed after use, and a method for producing the same. It is to provide.

上述の課題を解決するために本発明の分解性緩衝材が用いた技術的手段は、自然環境下で容易に分解滅失せしめるため、使用素材が米若しくは米に対し20乃至40重量%割合で穀類が混合された分解性素材100部と、該分解性素材と相溶混練されて比較的厚い発泡区画構造を密に形成しえ且発泡形成体相互を融着積層しえる融着性を保持したポリエチレン若しくはポリプロピレン樹脂からなる相溶融着材が25乃至45部、及びこれらを短時に分解させるため光分解剤並びに生分解剤或いは化学分解剤からなる分解促進剤が全体量に対し0.1乃至5.0%重量%割合で配合されたうえ、更に水を3.0乃至6.0重量%割合で加水のうえ、押出成形により所要の幅と厚さで且その発泡倍率が20乃至100倍で表裏面にはやや硬化した外被層が形成され、而も外被層には多数の縦皺が形成されてなる分解性緩衝材に存する。  The technical means used by the degradable cushioning material of the present invention to solve the above-mentioned problems is easily decomposed and lost in a natural environment, so that the material used is 20% to 40% by weight based on rice or rice. 100 parts of the decomposable material mixed with the above, and the meltable kneading with the decomposable material can form a relatively thick foamed compartment structure densely and maintain the fusion property capable of fusing and laminating the foamed products. 25 to 45 parts of a phase melting adhesive material made of polyethylene or polypropylene resin, and a decomposition accelerator made of a photodecomposing agent and a biodegrading agent or a chemical decomposing agent for decomposing them in a short time, 0.1 to 5 with respect to the total amount. In addition to being blended at a ratio of 0.0% by weight, water is further added at a ratio of 3.0 to 6.0% by weight, and the extrusion is performed to obtain the required width and thickness and the expansion ratio is 20 to 100 times. Slightly cured on the front and back The layers are formed, Thus also located beyond the layers of formed a number of vertical wrinkles in the degradable buffer material.

加えて発泡成形された分解性緩衝材の相互を適宜数融着積層させた分解性緩衝材、及び製品若しくは商品が装着しえる装着空隙を形成した分解性緩衝材の相互を適宜数融着積層させた分解性緩衝材に存するものである。  In addition, several decomposable cushioning materials in which foam-molded degradable cushioning materials are appropriately fused and laminated, and several decomposable cushioning materials in which a mounting gap for mounting a product or a product is formed are suitably fused and laminated. It exists in the degradable shock absorbing material made.

更には押出成形機を用いて、そのホッパーより分解性素材と相溶融着材及び分解促進剤を所要の割合で配合供給のうえ、シリンダー内の温度勾配が供給部で30乃至40℃、圧縮部で220乃至250℃、及び計量部で250乃至290℃に設けられ、且ホッパー前部位より供給される分配性素材と相溶融着材及び分解促進剤の全体量に対し3乃至6%重量割合の加水をなし熔融混練をなしたるうえ先端部には所要の厚さと幅のスリットが形成されたT型ダイスを設けるとともに、シリンダー計量部にて十分加熱熔融され且高圧力に保持された熔融混練物の吐出成形に伴うダイスエル及びメルトフラクチュアを防止するため、該T型ダイスを160乃至190℃に減温させて実質的にその発泡倍率が20乃至100倍で扁平状に発泡吐出させたうえ冷却ロールによる引取速度を以って所要の厚さ及び幅の分解性緩衝材を製造する方法に存するものである。  Furthermore, using an extruder, the decomposable material, the phase melt adhesive and the decomposition accelerator are blended and supplied from the hopper at the required ratio, and the temperature gradient in the cylinder is 30 to 40 ° C. 3 to 6% by weight with respect to the total amount of distributable material, phase melt adhesive and decomposition accelerator supplied from the front part of the hopper. In addition to hydration and melt kneading, the tip is provided with a T-shaped die with slits of the required thickness and width, and melted and kneaded with sufficient heat and melting at the cylinder metering section. In order to prevent die swell and melt fracture due to discharge molding of objects, the temperature of the T-shaped die is reduced to 160 to 190 ° C., and the foam is blown and discharged in a flat shape with a foaming ratio of 20 to 100 times. Those existing in a method of manufacturing the degradable buffer material of a required thickness and width drives out take-off speed by the upper cooling roll.

加えてこの発泡形成された分解性緩衝材のそれぞれを供給ロールより供給させたうえ、加熱部において相互の対向面を加熱したうえ相互の対向加熱面を加圧ロールにて加圧し、以って融着積層させる分解性緩衝材の製造方法に存するものであり、更には供給ロールにより供給される発泡形成された分解性緩衝材に梱包される製品若しくは商品が装着しえる装着部が予め形成されてなる構成に存する。  In addition, each of the foam-formed degradable cushioning materials is supplied from a supply roll, the opposing surfaces are heated in the heating unit, and the opposing heating surfaces are pressurized with a pressure roll, thereby The present invention resides in a method for manufacturing a degradable cushioning material to be fused and laminated, and further, a mounting portion on which a product or a product to be packed is mounted in a foamable degradable cushioning material supplied by a supply roll is formed in advance. It exists in the structure which becomes.

本発明は上述の如き構成からなり分解性緩衝材の主たる使用素材が米若しくは米に対し20乃至40重量%割合で穀類が混合された分解性素材が100部と、且この分解性素材と相溶混練しえ且融着性を保持したポリエチレン若しくはポリプロピレン樹脂からなる相溶融着材が25乃至45部及びこれら全体量に対して0.1乃至5.0%重量割合で光分解剤並びに生分解剤或いは化学分解剤からなる分解性促進剤が配合され、更に水が3.0乃至6.0%重量割合で加水されたうえ押出成形機で熔融混練され扁平状で所要の厚さと幅で且20乃至100倍の発泡倍率に吐出成形されるものである。  The present invention has the structure as described above, and the main use material of the degradable cushioning material is 100 parts of rice or a degradable material in which cereals are mixed in a proportion of 20 to 40% by weight with respect to the rice, 25 to 45 parts of a phase melt adhesive material made of polyethylene or polypropylene resin which can be melt-kneaded and retains the meltability, and 0.1 to 5.0% by weight based on the total amount of the photodecomposition agent and biodegradation A decomposability accelerator consisting of an agent or a chemical decomposing agent is blended, and water is added in an amount of 3.0 to 6.0% by weight, melted and kneaded by an extruder, and is flat and has a required thickness and width. It is formed by discharge molding at an expansion ratio of 20 to 100 times.

これがため主たる使用素材に米や米に20乃至40重量%の穀類が混合された分解性素材が使用されるため、穀粒状のままで使用できることから澱粉の如き製粉や調整工程を要することなく使用出来るため極めて安価であるばかりか、押出成形機による発泡成形が用いられるため、米や穀物等の小粒チップ状形態は極めて供給性が良く高い生産性も期待できる。
そして本発明では米や穀物を用いるものの、澱粉の如き加熱によるα化を抑制せぬと成形製品が吸湿吸水より膨潤脆化する危険が内在するが、本発明ではポリエチレンやポリプロピレン樹脂からなる相溶融着材が25乃至45部配合されて分解性素材と熔融混練され全体に均質に分散されるため十分な耐湿耐水性が発揮されるとともに、発泡成形後の低温度条件での使用に際しても柔軟性が保持され且分解性素材の強粘性とも相俟って比較的厚肉の発砲区画構造で密に発泡が形成されるため、軽量な製品や商品はもとより多重な製品や商品も高い緩衝性で保持され、取扱いや輸送がなしえる。そしてこの分解性素材並びに相溶融着材の全体量に対し光分解剤及び生分解剤或いは化学分解材からなる分解促進剤が0.1乃至5.0重量%割合で分散混練されてなるから、使用後は自然条件下で短時に分解滅失が可能となる。
Because of this, the main material used is rice or a degradable material in which 20 to 40% by weight of cereal is mixed with rice, so it can be used as grain, so it can be used without requiring milling and adjustment processes such as starch. In addition to being extremely inexpensive because it can be used, foam molding by an extrusion molding machine is used, so that small chip-like forms such as rice and cereals can be expected to have very good supply and high productivity.
In the present invention, although rice and grains are used, there is a risk that the molded product will swell and become brittle due to moisture absorption and moisture absorption unless the gelatinization by heating such as starch is suppressed. 25 to 45 parts of the dressing material is blended and melt-kneaded with the decomposable material and homogeneously dispersed throughout, so that sufficient moisture and water resistance is exhibited, and flexibility when used under low temperature conditions after foam molding In combination with the strong viscosity of the degradable material, foaming is formed densely with a relatively thick foaming compartment structure, so lightweight products and products as well as multiple products and products have high buffering properties. It is retained and can be handled and transported. And, since the decomposition accelerator composed of a photodecomposition agent and a biodegradation agent or a chemical decomposition material is dispersed and kneaded at a ratio of 0.1 to 5.0% by weight with respect to the total amount of the decomposable material and the phase melt adhesive, After use, it can be decomposed and lost in a short time under natural conditions.

加えて形成される分解性緩衝材には25乃至45部の配合割合で相溶融着材が全体に亘って分散混練されてなるから、対向する相互の側面を加熱し且加圧するのみで相互が融着積層されるため、十分な厚さを要する分解性緩衝材も容易に形成しえる。  In addition, since the decomposable buffer material is formed by dispersing and kneading the phase melt adhering material over the whole at a blending ratio of 25 to 45 parts, the mutual side surfaces can be heated and pressurized only by pressing each other. Since fusion lamination is performed, a degradable cushioning material that requires a sufficient thickness can be easily formed.

更に本発明製造方法においては、押出成形機を用いてT型ダイスからの発泡吐出成形をなすものであって、そのホッパーより所要の配合割合を以って分解性素材並びに相溶融着材及び分解促進剤が供給されるもので、分解性素材が米や米に穀物が混合された粒形状であり、且相溶融着材のポリエチレンやポリプロピレン樹脂もペレット状であるから、スクリューを用いる押出成形機では供給効率が極めて良好で高い生産性も期待できる。
そしてホッパーの前部には、供給される分解性素材や相溶融着材等の全体量に対し3.0乃至6.0%重量割合で加水のうえシリンダー内温度を供給部で30乃至40℃、圧縮部で220乃至250℃及び計量部で250乃至290℃の温度勾配を以って加熱加圧し熔融混練させ且加圧水蒸気が含有されたうえ、その先端に所要のスリットと幅のT型ダイスが設けられ、且該T型ダイスが160乃至190℃の低温度に設定されてなるため、発泡吐出圧力が著しく低減されダイスエル即ち吐出ふくれや、メルトフラクチュア即ち吐出時の肉厚変動も防止される。
Further, in the production method of the present invention, foam discharge molding is performed from a T-shaped die using an extrusion molding machine, and the decomposable material, the phase melt adhesive material, and the decomposition material with the required blending ratio from the hopper. Extruder using screw, because the accelerator is supplied, the degradable material is in the shape of grains in which rice and grains are mixed, and the polyethylene and polypropylene resin of the phase melting material is also in the form of pellets Then, supply efficiency is very good and high productivity can be expected.
At the front part of the hopper, water is added in a proportion of 3.0 to 6.0% by weight with respect to the total amount of the decomposable material and phase melting material to be supplied, and the temperature in the cylinder is 30 to 40 ° C. in the supply part. A T-shaped die having a required slit and width at the tip thereof, which is heated and pressurized by melt pressure kneading with a temperature gradient of 220 to 250 ° C. in the compression section and 250 to 290 ° C. in the weighing section and contains pressurized steam. And the T-shaped die is set at a low temperature of 160 to 190 ° C., so that the foaming discharge pressure is remarkably reduced, and die swell, ie, blistering, and melt fracture, ie, fluctuation in thickness during discharge, are prevented. The

而も本発明製造方法では、T型ダイスより実質的にその発泡倍率が20乃至100倍で扁平状に発泡吐出させたうえは、冷却ロールによる引取速度の調整により所望の厚さと幅の分解性緩衝材が簡便且能率的に生産できる。
加えて扁平状で所要の厚さと幅で吐出形成させた分解性緩衝材の相互を、それぞれの供出ロールで供出させながら相互の対向面を加熱し、且この加熱面相互を加圧ロールにて接合加圧させることにより、極めて簡便且能率的に融着積層されるとともに所望の厚さの分解性緩衝材も容易に形成される。
In the manufacturing method of the present invention, the foaming rate is substantially 20 to 100 times from the T-shaped die, and the foam is discharged in a flat shape. Buffer material can be produced easily and efficiently.
In addition, the opposite surfaces of the decomposable cushioning material, which are flat and discharged and formed with the required thickness and width, are heated by the feeding rolls while the opposing faces are heated. By applying the bonding pressure, it is possible to fuse and laminate very easily and efficiently and to easily form a decomposable buffer material having a desired thickness.

米からなる分解性素材100部に、ポリプロピレン樹脂からなる相溶融着材が40部とと、脂肪族ケトンからなる光分解剤並びにキチンからなる生分解剤及び金属カルボン酸塩と脂肪族ポリヒドロキシカルボン酸からなる化学分解剤が、分解性素材と相溶融着材の全体量に対し4.5重量%で配合されたうえ、押出成型機でシリンダーの供給部が30℃で計量部280℃の温度勾配と且T型ダイス180℃の条件で、更に全体量に対して4.5重量%割合の加水をなし、発泡倍率30倍で発泡吐出形成させる。  100 parts of a degradable material made of rice, 40 parts of a phase melt adhesive made of polypropylene resin, a photodecomposing agent made of an aliphatic ketone, a biodegrading agent made of chitin, a metal carboxylate and an aliphatic polyhydroxycarboxylic acid The chemical decomposing agent consisting of acid is blended at 4.5% by weight with respect to the total amount of the decomposable material and the phase melt adhering material, and the cylinder supply unit is 30 ° C. and the measuring unit is 280 ° C. in the extruder. Under conditions of a gradient and a T-shaped die of 180 ° C., water is further added at a ratio of 4.5% by weight based on the total amount, and foam discharge is formed at a foaming ratio of 30 times.

以下に本発明実施例を本発明製造方法をもとに詳細に説明すれば、図1は本発明に使用する使用素材1の説明図であって、図1のAには分解性素材1Aとして主体的に使用される米の見取図であって、分解性素材1Aとして米を使用する所以は、押出成型機2を使用するうえから粒形状はスクリュー内への供給性に優れるばかりか吸水と且加熱加圧混練により澱粉質のα化による強度の粘性と可塑性が創出されること及び吸水による発泡性の創出と将来的にもコスト的に安価で且生産供給面でも安定していること、更には形成する緩衝材に分解性を保持させることにある。  In the following, the embodiment of the present invention will be described in detail based on the production method of the present invention. FIG. 1 is an explanatory view of a material 1 used in the present invention. It is a sketch of the rice used mainly, and the reason why the rice is used as the degradable material 1A is that the use of the extrusion molding machine 2 makes the grain shape excellent in the ability to feed into the screw and water absorption. Heat-pressure kneading creates strong viscosity and plasticity due to starch gelatinization, creation of foamability due to water absorption, and low cost in the future and stable production and supply. Is to maintain the decomposability in the buffer material to be formed.

この米は国産米でも外米でも利用できるばかりか、より望ましくは同図1に示す如く略1/2乃至1/4程度に破砕10Aしたものが好都合である。そしてこの分解性素材1Aの米は、米のみを使用しても或いは20乃至40%重量の麦やあわ、ひえ、モロコシ等の穀類を混合させても差支えない。
しかしながら使用素材1として米や穀物等の澱粉質を使用することは、加熱加圧と加水により澱粉がα化したままで緩衝材が形成されることとなり、かかる状態では吸湿吸水により容易に膨潤脆化し実用使用に供しえぬばかりか、加水条件によっては極めて硬く緩衝性に劣る性能となり、且反面加水が十分であると薄い発泡区画構造の発泡となり多重な製品や商品への圧縮弾性力が不足して実用使用に供しえぬ結果ともなる。
This rice can be used not only in domestic rice but also in foreign rice, and more preferably it is crushed 10A to about 1/2 to 1/4 as shown in FIG. And the rice of this degradable material 1A may use only rice or may mix cereals such as wheat, whey, fins and sorghum with a weight of 20 to 40%.
However, the use of starch such as rice or cereal as the raw material 1 results in the formation of a buffer material while the starch is pre-gelatinized by heating and pressurization and hydration. Not only for practical use but also extremely hard and inferior in buffering performance depending on the water conditions. On the other hand, if the water is sufficient, the foamed foam structure is thin and the compression elasticity of multiple products and products is insufficient. As a result, the result cannot be put to practical use.

かかる分解性素材1Aの不備を補足するため、本発明では図2のAに示す如くポリエチレン若しくはポリプロピレン樹脂からなる相溶融着材1Bが配合されるもので、該相溶融着材1Bの配合割合は分解性素材1Aの100部に対して25乃至45部が望まれる。
この相溶融着材1Bは押出成形機2を用いて加熱加圧混練に際して、分解性素材1Aと十分に混練し相互が均質に分散され且加熱水蒸気を含有した状態で混練されることにある。
そしてかかる相溶融着材1Bとしてポリエチレンやポリプロピレン樹脂が選択されることは、これら樹脂素材が分解性素材1Aの加熱加圧条件に適合するとともに分解性素材1Aと相溶性を示し、常温下においても柔軟性を創出するばかりか加熱発泡に際して比較的厚い発泡区画構造で且密な発泡を形成し易いことと、他方において合成樹脂素材としては極めて安価なうえ耐光性や耐候性に劣り分解性の目的に沿うこと、及び相溶性により全体に分散されるため、発泡形成後に加熱により容易に相互の融着積層が可能なこと等による。
In order to supplement the deficiency of the degradable material 1A, in the present invention, as shown in FIG. 2A, a phase melt adhesive 1B made of polyethylene or polypropylene resin is blended, and the blending ratio of the phase melt adhesive 1B is as follows. 25 to 45 parts are desired for 100 parts of the degradable material 1A.
This phase melt adhering material 1B is to be kneaded with the decomposable material 1A sufficiently while being heated and pressurized and kneaded using the extrusion molding machine 2 so as to be uniformly dispersed and containing heated steam.
The fact that polyethylene or polypropylene resin is selected as the phase melt adhesive 1B means that these resin materials are compatible with the heat and pressure conditions of the decomposable material 1A and are compatible with the decomposable material 1A, even at room temperature. In addition to creating flexibility, it is easy to form dense foam with a relatively thick foamed compartment structure when heated and foamed, and on the other hand, it is extremely inexpensive as a synthetic resin material and has the object of degradability due to inferior light resistance and weather resistance And, because of the compatibility, it is dispersed throughout, so that after the formation of foam, mutual fusion lamination can be easily performed by heating.

そして本発明では分解性緩衝材7の提供を目的とするものであるから、実用使用後には積極的に分解滅失を図る必要がある。これがためには図2のBに示す如く分解性素材1A並びに相溶融着材1Bの分解滅失を図るうえから分解促進剤1Cが、分解性素材1A及び相溶融着材1B全体量に対して0.1乃至5.0重量割合で配合される。
この分解促進剤1Cは分解滅失が加水分解や微生物等の生分解作用や紫外線や赤外線等による光分解作用により、或いは温度変化や外部衝撃若しくは酸アルカリ等の化学作用等が相互に作用してなされるものであるから、該分解促進剤1Cとしては光分解剤10Cと生分解剤11C及び化学分解剤12Cの一種以上を混合させたものが好適である。
And since it aims at provision of the degradable buffer material 7 in this invention, it is necessary to aim at decomposition | disassembly loss after a practical use actively. For this purpose, as shown in FIG. 2B, the decomposition accelerator 1C is 0 with respect to the total amount of the decomposable material 1A and the phase melt adhesive 1B in order to decompose and lose the decomposable material 1A and the phase melt adhesive 1B. .1 to 5.0 by weight.
This decomposition accelerator 1C is decomposed and lost by hydrolysis, biodegradation action of microorganisms, etc., photolysis action by ultraviolet rays, infrared rays, etc., or by chemical action such as temperature change, external impact or acid alkali. Therefore, the decomposition accelerator 1C is preferably a mixture of one or more of the photodegradation agent 10C, the biodegradation agent 11C, and the chemical decomposition agent 12C.

光分解剤10Cの具体的なものとしては脂肪族または芳香族ケトン類を初めキノン類、パーオキサイド類、ヒドロパーオキサイド類、アゾ化合物類等が挙げられ、生分解剤11Cとしてはキチン、スターチ、セルロース、グルコース誘導体、ポリ−β−ヒドロキシブチレート、カルボジイミド類等が、更に化学分解剤12Cとしては金属カルボン酸塩と脂肪族ポリヒドロキシカルボン酸、金属カルボン酸塩と充填剤の組合せ、遷移金属コンプレックス等が挙げられる。  Specific examples of the photodegradation agent 10C include aliphatic or aromatic ketones as well as quinones, peroxides, hydroperoxides, azo compounds and the like, and biodegradation agents 11C include chitin, starch, Cellulose, glucose derivatives, poly-β-hydroxybutyrate, carbodiimides and the like, and further as a chemical decomposition agent 12C, a combination of a metal carboxylate and an aliphatic polyhydroxycarboxylic acid, a combination of a metal carboxylate and a filler, a transition metal complex Etc.

かくして選択された分解性素材1Aや相溶融着材1B及び分解促進剤1Cは、図3に示す如き押出成形機2を用いて発泡成形がなされる。
即ち押出成形機2は図3に示されてなる如く加熱手段が装備されたシリンダー3内にはホッパー2Aより供給される分解性素材1A及び相溶融着材1B並びに分解促進剤1Cを該シリンダー3内を前方に加熱加圧しつつ混練移送させるスクリュー4が駆動モーター4Aにより回転可能に形成されている。
そしてこの押出成形機2は、前述の分解性素材1A及び相溶融着材1B並びに分解促進剤1Cを混練させるとともに、加水による加熱水蒸気を以って発泡成形させるうえから、ホッパー2Aの前部位に加水10Dを注入するための注入孔2Bが設けられている。そしてこのシリンダー3には適宜の加熱手段が設けられており、且一旦このシリンダー3内で十分な加熱加圧と加熱水蒸気を含む熔融状態となすうえから、シリンダー供給部3Aでは略30乃至40℃程度で、更にシリンダー圧縮部3Bでは略230乃至250℃、及びシリンダー計量部3Cでは260乃至290℃の温度勾配で設定される。
The decomposable material 1A, the phase melt adhesive 1B and the decomposition accelerator 1C thus selected are subjected to foam molding using an extruder 2 as shown in FIG.
That is, as shown in FIG. 3, the extrusion molding machine 2 has a decomposable material 1A, a phase melt adhering material 1B and a decomposing accelerator 1C supplied from the hopper 2A in the cylinder 3 equipped with heating means. A screw 4 that is kneaded and transferred while being heated and pressurized forward is formed to be rotatable by a drive motor 4A.
The extruder 2 kneads the aforementioned degradable material 1A, the phase melt adhesive 1B, and the decomposition accelerator 1C, and foams them with heated water vapor from the water. An injection hole 2B for injecting water 10D is provided. The cylinder 3 is provided with appropriate heating means, and once the cylinder 3 is brought into a molten state containing sufficient heating and pressurization and heated steam, the cylinder supply section 3A has a temperature of about 30 to 40 ° C. Further, the temperature is set at a temperature gradient of about 230 to 250 ° C. in the cylinder compression unit 3B and 260 to 290 ° C. in the cylinder metering unit 3C.

かくして加熱加圧されてなる熔融状態のまま、その先端に設けたT型ダイス5の吐出スリット5Aより発泡吐出成形させるとダイスエル(吐出による圧力低下のためのふくれ現象)の発生や、メルトフラクチュア(高速吐出に伴う肉厚の変動)の発生が惹起される。
これがためT型ダイス5は略170乃至190℃の低温度に設定しダイスエルやメルトフラクチュアの防止と且高粘度化させて安定した発泡吐出成形をなすことにより、本発明分解性緩衝材7が形成される。
In this way, when foamed and discharged from the discharge slit 5A of the T-shaped die 5 provided at the tip in the molten state formed by heating and pressurizing, die swell (blowing phenomenon due to pressure drop due to discharge) occurs and melt fracture occurs. Occurrence of (fluctuation in wall thickness due to high-speed discharge) is caused.
Therefore, the T-type die 5 is set at a low temperature of about 170 to 190 ° C. to prevent die swell and melt fracture and to increase the viscosity to achieve stable foam discharge molding. It is formed.

しかしながら、この発泡吐出成形された分解性緩衝材7は高温度であり、且必ずしも所定の厚さや幅で形成されぬ場合も発生することから、該発泡吐出成形された分解性緩衝材7は、その引取速度が可変の冷却ロール6により、T型ダイス5からの吐出速度と冷却ロール6の引取速度とにより分解性緩衝材7の厚さと幅を調整しつつ且冷却させて分解性緩衝材7が形成される。  However, since the decomposable cushioning material 7 formed by foaming and discharging is at a high temperature and may not necessarily be formed with a predetermined thickness or width, the decomposable buffering material 7 formed by foaming and discharging is The cooling roll 6 having a variable take-up speed is cooled by adjusting the thickness and width of the decomposable buffer material 7 according to the discharge speed from the T-type die 5 and the take-up speed of the cooling roll 6, and is cooled. Is formed.

図4は形成された分解性緩衝材7の見取図であって、該分解性緩衝材7の表裏面には、押出発泡吐出成形に際し、流動性に優れる相溶融着材1Bがシリンダー3内及びT型ダイス5の内表面に沿って流動することにより、やや硬化した外被層7Aが形成され且この外被層7Aにはその吐出方向に沿って加熱発泡吐出後、急速に降温し且冷却を図ることによる幅方向の収縮に伴う多数の縦皺7Bが創出されている。そしてかかる外被層7Aに囲まれた内部には膨大数の発泡区画7Cが形成されている。  FIG. 4 is a schematic view of the formed degradable cushioning material 7. On the front and back surfaces of the degradable cushioning material 7, a phase melt adhesive 1 B having excellent fluidity is formed in the cylinder 3 and T By flowing along the inner surface of the die 5, a slightly hardened outer coat layer 7 A is formed, and the outer cover layer 7 A is rapidly cooled and cooled after being discharged by heating and foaming along the discharge direction. A number of downspouts 7B are created along with the contraction in the width direction by the drawing. An enormous number of foamed compartments 7C are formed inside the envelope layer 7A.

ところで本発明分解性緩衝材7は、押出成形機2のT型ダイス5に形成された吐出スリット5Aの厚さと幅の断面積と吐出速度とにより、加熱加圧混練に用いる押出成形機2の吐出量も決定されるものであるが、一般的にはスクリュー分径において65m/mや90m/m程度のものが使用され、65m/mのツインスクリュー押出成形機2の場合におけるT型ダイス5の吐出スリット5Aの厚さと幅は、0.4乃至0.5mmで且200乃至250mm程度で吐出速度も100乃至150mm/分が見込まれ、かかる吐出スリット5Aの場合の発泡吐出成形される分解性緩衝材7の実質的厚さは略5乃至6mm程度に形成されるものであり、これ以上の厚さの分解性緩衝材7の生産は、発泡管理の面で至難となる。  By the way, the decomposable cushioning material 7 of the present invention has a thickness and width cross-sectional area of the discharge slit 5A formed in the T-shaped die 5 of the extruder 2 and a discharge speed of the extruder 2 used for heat and pressure kneading. The discharge amount is also determined, but generally a screw diameter of about 65 m / m or 90 m / m is used, and the T-type die 5 in the case of the twin screw extruder 2 of 65 m / m is used. The discharge slit 5A has a thickness and width of 0.4 to 0.5 mm, about 200 to 250 mm, and a discharge speed of 100 to 150 mm / min. The substantial thickness of the cushioning material 7 is formed to be about 5 to 6 mm, and the production of the degradable cushioning material 7 having a thickness larger than this becomes difficult in terms of foam management.

而して、輸送や梱包に際し強い圧縮弾性力を要する多重な製品や商品或いは高い緩衝性を要請される精密機器等では、緩衝材の厚さも略30乃至100mm程度の物が使用されることも多い。  Thus, in the case of multiple products and products that require strong compressive elasticity during transportation and packaging, or precision equipment that requires high shock-absorbing properties, a buffer material with a thickness of about 30 to 100 mm may be used. Many.

そこで本発明では分解性緩衝材7を融着積層してかかる要請に対処するもので、図5には融着積層方法8が示されている。
即ち予め所要の厚さと幅を以って発泡吐出形成させた分解性緩衝材7、7をそれぞれの供出ロール8A、8Aより供出させながら、この供出される分解性緩衝材7、7の対向する側面を適宜の加熱具8Bにより加熱したうえ、その加熱側面相互を加圧ロール8Cにより接合加圧せしめて、融着積層分解性緩衝材70が積層形成される。
反面かかる融着積層方法8以外にも、分解性緩衝材7を予め所要の長さに切断し、この分解性緩衝材7の2枚の同一側面を加熱したうえ、この加熱側面を相互に接合加圧しても形成される。かかる場合融着積層させるための加熱温度は相溶融着材の素材にもよるが、概ね120乃至180℃程度が良好である。
Therefore, in the present invention, the decomposable buffer material 7 is fused and laminated to cope with such a demand, and FIG. 5 shows a fusion lamination method 8.
That is, the decomposable cushioning materials 7 and 7 that have been foamed and discharged in advance with a required thickness and width are delivered from the delivery rolls 8A and 8A, respectively, and the delivered degradable cushioning materials 7 and 7 face each other. The side surfaces are heated by an appropriate heating tool 8B, and the heated side surfaces are bonded and pressurized by a pressure roll 8C, so that the fusion-bonding decomposable buffer material 70 is laminated.
On the other hand, in addition to the fusion laminating method 8, the decomposable buffer material 7 is cut to a required length in advance, the two identical side surfaces of the degradable buffer material 7 are heated, and the heated side surfaces are joined to each other. It is formed even under pressure. In such a case, the heating temperature for fusing and laminating is generally about 120 to 180 ° C., although it depends on the material of the phase fusing material.

更に図6に示すように、予め形成された分解性緩衝材7に、輸送や梱包される製品や商品が装着しえるような寸法及び形状に装着部70Aを打抜き加工等で切欠させたうえ、この切欠された分解性緩衝材7の同一側面を加熱したうえ、その加熱側面を相互に接合加圧することにより、製品や商品を装着し且高い緩衝性の融着積層分解性緩衝材70が形成される。  Further, as shown in FIG. 6, the mounting portion 70 </ b> A is notched by a punching process or the like in a size and shape so that a product or a product to be transported or packed can be mounted on the degradable cushioning material 7 formed in advance. The same side surface of the cutout decomposable cushioning material 7 is heated, and the heated side surfaces are bonded and pressurized to each other, thereby forming a product or a product and forming a highly buffered fusion laminated degradable cushioning material 70. Is done.

産業上利用可能性Industrial applicability

輸送や梱包する製品や商品の重量や形状に合せた形状や厚さ及び発泡度合により、従来の緩衝材に代替できる。  The cushioning material can be replaced by conventional cushioning materials according to the shape, thickness and degree of foaming according to the weight and shape of the products and goods to be transported and packed.

分解性素材の見取図である。  It is a sketch of a degradable material. 相溶融着材及び分解促進剤の見取図である。  It is a sketch of a phase melt adhesion material and a decomposition accelerator. 本発明製造方法の説明図である。  It is explanatory drawing of this invention manufacturing method. 本発明分解性緩衝材の説明図である。  It is explanatory drawing of this invention degradable shock absorbing material. 融着積層方法の説明図である。  It is explanatory drawing of the fusion | melting lamination method. 融着積層分解性緩衝材の説明図である。  It is explanatory drawing of a fusion | melting lamination | stacking decomposable buffer material.

1 使用素材
1A 分解性素材
10A 破砕した分解性素材
1B 相溶融着材
1C 分解促進剤
1D 加水
10C 光分解剤
11C 生分解剤
12C 化学分解剤
2 押出成形機
2A ホッパー
2B 注入孔
3 シリンダー
3A シリンダー供給部
3B シリンダー圧縮部
3C シリンダー計量部
4 スクリュー
4A 駆動モーター
5 T型ダイス
5A 吐出スリット
6 冷却ロール
7 本発明分解性緩衝材
7A 外被層
7B 縦皺
7C 発泡区画
70 融着積層分解性緩衝材
70A 装着部
8 融着積層方法
8A 供給ロール
8B 加熱具
8C 加圧ロール
DESCRIPTION OF SYMBOLS 1 Material used 1A Degradable material 10A Crushed degradable material 1B Phase melt-adhesive material 1C Decomposition accelerator 1D Hydrolysis 10C Photodegradation agent 11C Biodegradation agent 12C Chemical decomposition agent 2 Extruder 2A Hopper 2B Injection hole 3 Cylinder 3A Cylinder supply Part 3B Cylinder compression part 3C Cylinder metering part 4 Screw 4A Drive motor 5 T-type die 5A Discharge slit 6 Cooling roll 7 This invention decomposable buffer material 7A Outer layer 7B Vertical gutter 7C Foaming section 70 Fusion lamination decomposable buffer material 70A Mounting part 8 Fusing and laminating method 8A Supply roll 8B Heating tool 8C Pressure roll

Claims (6)

米若しくは米に対し20乃至40重量%割合で穀類が混合された分解性素材が100部と、ポリエチレン若しくはポリプロピレン樹脂からなる相溶融着材が25乃至45部及び光分解剤、生分解剤並びに化学分解剤からなる分解促進剤が分解性素材及び相溶融着材全体に対して0.1乃至5.0重量割合で配合され、且水が3.0乃至6.0重量割合で加水され押出成形により加熱加圧混練のうえ、所要の幅と厚さで20乃至100倍の発泡倍率で、而もその表裏面には外被層が形成され且その吐出方向に多数の縦皺が創出されてなることを特徴とする分解性緩衝材。  100 parts of degradable material in which cereals are mixed at a rate of 20 to 40% by weight with respect to rice or rice, 25 to 45 parts of phase melt adhesive made of polyethylene or polypropylene resin, and photodegradation agent, biodegradation agent and chemistry A decomposition accelerator composed of a decomposing agent is blended in an amount of 0.1 to 5.0% by weight with respect to the entire decomposable material and the phase melt adhesive, and water is added in an amount of 3.0 to 6.0% by weight and extruded. After heating and pressure kneading, the foam width is 20 to 100 times with the required width and thickness, and the outer cover layer is formed on the front and back surfaces, and many vertical lines are created in the discharge direction. A degradable cushioning material characterized by comprising: 分解性素材の米若しくは穀類が略1/2乃至1/4程度に破砕されてなる請求項1記載の分解性緩衝材。  The degradable cushioning material according to claim 1, wherein the degradable material rice or cereal is crushed to about 1/2 to 1/4. 光分解剤が脂肪族または芳香族ケトン類、キノン類、パーオキサイド類、ヒロドパーオキサイド類、アゾ化合物から選ばれ、生分解剤がキチン、スターチ、セルロース、グルコース誘導体、ポリ−β−ヒドロキシブチレート、カルボジイミド類から選ばれ、化学分解剤が金属カルボン酸塩と脂肪族ポリヒドロキシカルボン酸、金属カルボン酸塩と充填剤の組合せ、遷移金属コンプレックスから選ばれる、請求項1記載の分解性緩衝材。  The photodegradation agent is selected from aliphatic or aromatic ketones, quinones, peroxides, hydroperoxides, and azo compounds, and the biodegradation agent is chitin, starch, cellulose, glucose derivatives, poly-β-hydroxybutyrate The decomposable buffer material according to claim 1, wherein the chemical decomposing agent is selected from metal carboxylates and aliphatic polyhydroxycarboxylic acids, combinations of metal carboxylates and fillers, and transition metal complexes. 分解性緩衝材の一側面を加熱のうえ、この加熱された側面を対向接合加圧させ融着積層されてなることを特徴とする融着積層分解性緩衝材。  A fusion-decomposable cushioning material characterized in that one side surface of a degradable buffer material is heated, and the heated side surface is subjected to opposing bonding and pressurization to be fused and laminated. その先端に所要のスリットと幅のT型ダイスが設けられた押出成形機で、且そのシリンダー温度が供給部で30乃至40℃、圧縮部で220乃至250℃、計量部で250乃至290℃及びT型ダイスが160乃至190℃に保持されたうえ、分解性素材が100部相溶融着材が25乃至45部と、この全体量に対し分解促進剤が0.1乃至5.0重量%割合でホッパーより供給し、且ホッパー前部位より供給全体量に対し3.0乃至6.0%重量割合の水を加水し加熱加圧熔融混練のうえ、所要の厚さと幅で且その発泡倍率を20乃至100倍に発泡吐出成形させたうえ、冷却ロールの引取速度を以って所望の厚さと幅の分解性緩衝材を形成することを特徴とする分解性緩衝材の製造方法。  An extrusion machine provided with a required slit and a T-shaped die at its tip, and its cylinder temperature is 30 to 40 ° C. at the supply unit, 220 to 250 ° C. at the compression unit, 250 to 290 ° C. at the weighing unit, and The T-type die was maintained at 160 to 190 ° C., the decomposable material was 100 parts, the phase melt was 25 to 45 parts, and the decomposition accelerator was 0.1 to 5.0% by weight based on the total amount. The water is supplied from the hopper, and water is added in an amount of 3.0 to 6.0% by weight with respect to the total amount supplied from the front part of the hopper. A method for producing a degradable cushioning material, wherein foamable discharge molding is performed 20 to 100 times and a degradable cushioning material having a desired thickness and width is formed with a take-up speed of a cooling roll. 所要の厚さと幅に形成された2枚の分解性緩衝材を、それぞれの供給ロールにより供出させながら、対向する側面を加熱のうえこの加熱側面相互を加圧ロールで接合加圧させて融着積層させる、融着積層分解性緩衝材の製造方法。  Two degradable cushioning materials formed in the required thickness and width are fused by fusing each supply side with a pressure roll while heating the opposing side surfaces while supplying them with the respective supply rolls. A method for producing a fusion-decomposable buffer material that is laminated.
JP2009126982A 2009-04-30 2009-04-30 Decomposition cushioning material and manufacturing method thereof Pending JP2010260631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009126982A JP2010260631A (en) 2009-04-30 2009-04-30 Decomposition cushioning material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009126982A JP2010260631A (en) 2009-04-30 2009-04-30 Decomposition cushioning material and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2010260631A true JP2010260631A (en) 2010-11-18

Family

ID=43359071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009126982A Pending JP2010260631A (en) 2009-04-30 2009-04-30 Decomposition cushioning material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2010260631A (en)

Similar Documents

Publication Publication Date Title
JP4594445B1 (en) Foam and production method thereof
US7872056B2 (en) Polymer blends of biodegradable or bio-based and synthetic polymers and foams thereof
CA2717359A1 (en) Polymer blends of biodegradable or bio-based and synthetic polymers and foams thereof
JP2010260631A (en) Decomposition cushioning material and manufacturing method thereof
CN101469076A (en) Method for manufacturing special foam material
KR20180016572A (en) Polypropylene-based honeycomb sandwich sheets or panels with a center thermoforming film
US20070254970A1 (en) Biodegradable Foam for Sheet, Process for Producing the Same, Biodegradable Molding from the Foam and Process for Producing the Same
JP2010132296A (en) Assembly type shock-absorbing heat insulating material
JP2006257360A (en) Biodegradable foam for sheet, method for producing the same and biodegradable molded product using the same foam and method for producing the same
RU2356732C2 (en) Method for recycling of biaxially oriented polystyrene film wastes
EA038351B1 (en) Honeycomb sandwich sheet or panel, based on polypropylene, with central thermoformed films
JP2003300243A (en) Extrusion molding machine
WO2005035222A1 (en) Extrusion molding machine
KR101706907B1 (en) Resin foamed article containing hollowness and method of preparing the same
WO2016121142A1 (en) Foam
JP3162011U (en) Multifunctional cushioning material
JP2008001859A (en) Resin composition and merchandise housing tray using the same
JP2012081679A (en) Foam heat insulating material and production method thereof
JP2010132295A (en) Assembly type shock-absorbing heat insulating material
CN117545632A (en) Co-extruded sheet
Ghosh et al. Foaming Technology
JP3844049B2 (en) Production method of biodegradable cushioning material
JP2024065942A (en) Foam sheet, its manufacturing method, and product
CN117561155A (en) Co-extruded sheet and resin molded article
WO2020055274A1 (en) Multilayer thermoplastic sheet and method to produce the same