JP3597645B2 - Method for producing biodegradable buffer - Google Patents

Method for producing biodegradable buffer Download PDF

Info

Publication number
JP3597645B2
JP3597645B2 JP21301296A JP21301296A JP3597645B2 JP 3597645 B2 JP3597645 B2 JP 3597645B2 JP 21301296 A JP21301296 A JP 21301296A JP 21301296 A JP21301296 A JP 21301296A JP 3597645 B2 JP3597645 B2 JP 3597645B2
Authority
JP
Japan
Prior art keywords
mold
paper
binder
biodegradable
fine paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21301296A
Other languages
Japanese (ja)
Other versions
JPH1036550A (en
Inventor
謙一 中村
Original Assignee
株式会社産業技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社産業技術研究所 filed Critical 株式会社産業技術研究所
Priority to JP21301296A priority Critical patent/JP3597645B2/en
Publication of JPH1036550A publication Critical patent/JPH1036550A/en
Application granted granted Critical
Publication of JP3597645B2 publication Critical patent/JP3597645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Buffer Packaging (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Nonwoven Fabrics (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、廃棄処理の際に発泡スチロール樹脂のような環境負荷がないコーナーパッドなどに使用される生分解性緩衝材の製造方法に関する。
【0002】
【従来の技術】
従来から、梱包用緩衝材には、古新聞紙等の紙を丸めたものや、おが屑、籾殻など身近なものが有効利用されていたが、産業の発達に伴い、家電製品、精密機械、ガラス製品、電子部品等の工業製品を多量にかつ安全に運ぶ必要が高まってくると、現今では、軽量で取扱い性が良く、かつ緩衝特性を有する発泡スチロール樹脂成形緩衝材が大量に使用されるようになっている。
【0003】
【発明が解決しようとする課題】
しかし乍ら、この便利な発泡スチロール樹脂緩衝材は、使用後は軽量、安定であるが故に、却って廃棄処分に困る存在となっている。即ち、地区の焼却センターで焼却処分するにしても、かさばるため回収コストが掛かるだけでなく、燃焼カロリーが高すぎるため、焼却時に焼却炉を傷め、また黒煙が発生するなどの問題がある。
また、土中に埋め立て処分するにしても、化学的に安定なため、いつまでも消滅することなく、かさばることと相埃って埋め立て処分場の寿命を短かくしている問題があった。
【0004】
一方、素材を再利用するにしても、熱熔融処理工程を取ることが一般的なため、熱劣化による着色や、物性低下、不純物混入等があり、付加価値のない限られた用途にしか再利用し得ない難点もある。
そのため、ドイツを始めとする欧米先進国の一部では、発泡スチロール樹脂自体の持ち込みを禁止している国もあり、特に輸出の多い家電メーカーからは、発泡スチロール樹脂に代る梱包緩衝材が強く望まれている。また、この緩衝材には、使用後は、有効にリサイクル使用できるか、そのまま土中に埋め立てても環境に悪影響を及ぼすことなく分解消滅してしまうか、焼却炉を傷めずに焼却処分できるものが求められている。
【0005】
一方、本出願人は、先に特願平5−350809号に於て、発泡スチロール製品に代るべき軽量でクッション性のある発泡状紙成形品の提案を行った。このものは、対向する複数の成形型間のキャビティに成形材料を充填して成形するものてあり、成形型を完全に締切らない状態で、予め発泡状態にした紙ペレットに液状もしくはペースト状の接着剤を塗布して、所要量を成形型キャビティ内に射出注入した後、成形型を閉鎖し、加熱して接着剤を固化し形成するか、または、微小紙片の所要量と、発泡剤を練り込んだ液状もしくはペースト状の接着剤の所要量とを予め混練した成形材料を、閉鎖した成形型の射出口よりキャビティ内に射出注入し型内で発泡固化させるもので、接着剤は加熱により固化する生分解性のものを使用するようにしている。
【0006】
ところが、出願人等は、この提案を実施するべく実験プラントにおいて種々テストの結果、予め発泡状態にした紙ペレット、又は微小紙片等のバインダー(接着剤)に液状もしくはペースト状のものを用いた成形材料を使用していることから、成形型に設けた射出口より成形型キャビティ内に該成形材料を射出注入する工程において、成形材料の粘性のため、その流動性に問題があり、成形型の射出口よりの型内への射出注入が円滑に行われないことを見出すに至った。
【0007】
本発明は、このような実情に鑑みてなされるものであって、発泡スチロール製品に代わるべき軽量にして緩衝性(クッション性)があり、使用後はそのまま土中に埋め立てても環境に悪影響を及ぼすことなく分解消滅するとともに、コーナーパットなど緩衝材を成形型を用いて成形する際、成形材料として、型内に容易に注入充填して成形することのできる成形加工性のよい生分解性緩衝材の製造方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
前記目的を達成するために本発明に於ては、生分解性緩衝材の製造に当り、複数の成形型を組合せ、対向する成形型の内面間のキャビティに成形材料を充填して成形するものとし、成形型を完全に締切らない状態で、微小紙材に粉末状の生分解性バインダーをまぶして所要量を加圧空気により成形型キャビティ内に吹込んだ後、加熱空気を吹込んでバインダーを熔融した後成形型を閉鎖して微小紙材相互の接点に於て接着し、次いで金型もしくは金型内を冷却してバインダーを固化せしめて成形するという方法をとっている。
この場合、成形材料には微小紙材に粉末状のバインダーをまぶして紙材表面にバインダーをくまなく付着せしめたものを用いており、成形材料は、乾式の成形材料であって、液状若しくはペースト状の接着剤を用いた粘性のある湿式の成形材料でないから、成形型の一部に設けた射出口から加圧空気により注入して型の隅々まで円滑にくまなく容易に充填することができる。そして加熱空気によるバインダーの熔融後型を閉鎖した後型の冷却によりバインダーは固化し、対向する型の開放により所定形状に型成形された生分解性緩衝材(コーナーパッド等)を取出すことができる。
【0009】
前記粉末状の生分解性バインダーとしては、平均粒子径が20〜200μm の粉末ポリ乳酸を使用するのが効果的である。
この場合、微小紙材のバインダーとして、澱粉などの水系ポリマー、酢酸ビニル、アクリル酸エステル、スチレンブタジエンなどのエマルジョン系ポリマーが検討されたが、澱粉、酢酸ビニルをバインダーに使用したきには、得られる緩衝材の脆性が顕著となるため、緩衝特性が不十分なことは免れない。また、アクリル酸エステル、スチレンブタジエンをバインダーに使用したときには、バインダーに生分解性がないため、土中に埋め立てられたときには、緩衝材中のパルプ成分は生分解しても、バインダーは分解せず土中に蓄積されて行くことになり、自然界への悪影響が懸念される。
【0010】
本発明者らは、発泡スチロール樹脂緩衝材に代るものとして、微小紙材をバインダーで結合せしめた乾式パルプモールド緩衝材を用い、該緩衝材における微小紙材のバインダーとして緩衝特性、成形加工性が良く、且つ、生分解性があって環境に優しいバインターを鋭意検討した結果、バインダーのガラス転移点が50〜100℃の間にあり、生分解性と微小紙材のパルプ繊維への接着性に優れた熱可塑性樹脂を、ある範囲の大きさに粉末化して得られるポリマーをバインダーとして使用すると前述の課題解決に適合することを見出し、平均粒子径20〜200μm の粉末ポリ乳酸をバインダーとして使用することが効果的なことを見出したのである。すなわち、このポリ乳酸は、耐熱性が低く軟化点が60℃なので100〜150℃の熱空気を吹込めば粉末はすぐ熔融するが紙は150℃迄は変化しないため〔紙は170℃位で黄変が始まり、次第に褐変(200℃)し、240℃で発火〕、微小紙材のバインダーに好適に使用することができるのである。
【0011】
本発明に使用するポリ乳酸の平均粒子径は20〜200μm であるが、特に40〜100μm が好適に用いられる。この場合、平均粒子径が200μm 以上では梱包緩衝材としての強度が弱くなり、緩衝性能が不十分である。強度を向上させるためには、バインダーの使用量を増やせば良いが、緩衝性能は低下してしまう。また、平均粒子径が20μm 以下では取扱中に粉塵爆発の可能性があり、使用に適しない。
【0012】
前記ポリ乳酸粉末を使用した微小紙片の乾式モールドによる熱成形温度は、ポリ乳酸の融点以上、熱分解温度以下であれば問題はなく、通常100℃〜200℃程度で行われる。熱圧成形時間はポリマーが溶融し、微小紙片のパルプ繊維に融着する時間があれば良く、成形厚やかさ密度にもよるが通常30秒〜2分あれば十分である。成形体のかさ密度は成形圧により通常0.05〜0.5g/cmに調整される。なお、微小紙片のパルプ繊維に対するバインダーの使用量は、緩衝特性、風合い、コストとのバランスから5〜20重量%が好ましい。
【0013】
前記微小紙材としては、都市ゴミから分割された紙ゴミ又は古紙を微細な微小紙片に粉砕したものを用いるのが効果的である。これにより、従来焼却処理された紙ゴミや供給過剰の古紙を有効に活用することができ、炭酸ガスの発生など焼却による環境汚染を少くするとともに、焼却処理に伴う焼却灰の処理などの費用や労力を軽減することができる。
【0014】
また、前記微小紙材として、微小紙片と澱粉を水で混練して発泡させた小発泡体を使用することができる。
この場合、微小紙片と澱粉を水で混練し、之を加熱加圧しつつ、例えば、1〜0.5mmφ位のダイスで押出すと、秒速2m位の速度で発泡しつつ3〜4mmφの発泡体が押出され之を3mm長にホットカットすると3〜4mmφ×3mmの小発泡体ができる。之を生分解性樹脂で接着すると非常に軽い(比重0.1以下)緩衝材ができ、発泡スチスール(EPS)の代替に好適に用いることができる。
【0015】
前述のごとく、ポリ乳酸粉末などの生分解性バインダーを微小紙片や小発泡体等の微小紙材に用いて乾式で製造される生分解性緩衝材は、発泡スチロール樹脂緩衝材に代わり得る緩衝性,成形性を有しながら、生分解性に優れ、使用後土中に埋め立てされても環境への負荷が少く、速やかに分解消滅する。また、発泡スチロール樹脂緩衝材と異なり、古紙リサイクルによる資源の有効利用も可能であり、焼却処分しても燃焼熱が低く、有害ガスも発生しない。
【0016】
【発明の実施の形態】
本発明の好ましい実施の形態を下記の各実施例に基づいて説明する。
【0017】
【実施例】
〔実施例1〕
本発明の第1の実施例として請求項3に基づく製造を行い、製品として縦200mm×横200mm×厚さ20mmのパルプモールド緩衝材の成形を行った。この実施例では1ケ取りの金型(上型,下型各1面)を使用した。次にその製造工程を図1の工程図に基づいて説明する。
1. 古紙(新聞紙)を粉砕機(ハンマーヘッドミル)により粉砕して一辺の平均長さ2mmの微小紙片を造る。
2. 生分解性バインダーとして島津製作所製ポリ乳酸「ラクティー」の小粒状物を冷凍粉砕し、平均粒子径100μm の粉体を得た。
3. 微小紙片100重量部に対し、ポリ乳酸粉末15重量部を夫々に秤量機で秤量し、混合機(ミキサー)に供給して常温攪拌し原料を十分混合した。
4. 之により発生する静電気の作用で生分解性微粉末が表面に付着した微小紙片が得られた。
5. 混合機からの上記原料を、圧縮空気により射出成形機の上型、下型半開きの成形型内に吹込む一方、圧縮空気をヒーターで加熱し、加熱空気(200℃)を成形型内に吹込みバインダーを熔融せしめた。
6. そして、上型・下型を閉鎖型締めして1分間熱圧成形し、冷却水で閉鎖状態の金型を冷却せしめ材料を固化成形した。
7. 金型を開き、製品を取出して、かさ密度0.2g/cmで寸法:縦200×横200mm×厚さ20mmのパルプモールド緩衝材を完成することができた。
【0018】
これを現在流通しているかさ密度0.02g/cmの発泡スチロール樹脂緩衝材と緩衝特性を比較したところ、次のごとく十分実使用できる水準であった。

Figure 0003597645
なお、緩衝係数、圧縮強度の測定は、新・包装技術便覧(日本包装技術協会)に記載の方法によった。
また、実施例で得られた緩衝材の生分解性は、土中に埋め立て後、3ヶ月で崩壊が始まり、1年後には消滅していた。
【0019】
〔実施例2〕
本発明の第2の実施例として請求項4に基づく製造を実施した。次にその製造工程を図2の工程図に基づいて説明する。
1. 古紙(新聞紙)を粉砕機(ハンマーヘッドミル)により粉砕して1mmφパスの微小紙片を造る。
2. 小発泡体作製のための接着剤として澱粉(コーンスターチ)を粉砕し100 mesh以下の粉末澱粉を得た。
3. 微小紙片20重量部に対し、澱粉末50重量部を夫々秤量機で秤量し、混練機に供給して混合するとともに水を秤量機で秤量して10〜20重量部を逐次添加しつつ混練機で十分混練する。
4. 混練機からの十分混練した上記原料を、スクリュー外径50mmの押出機(L/D=20)により、加熱加圧しつつ先端のダイス孔(0.5mmφ) より高速( 秒速1.5m)で押出すと外径3mmφの発泡体が押出される。之を高速のホットカッターで長さ3mmに切断すると3φ×3mmの紙発泡ペレットが得られた。
5. 生分解性バインダーとして島津製作所製ポリ乳酸「ラクティー」の小粒状物を冷凍粉砕し、100mesh以下の平均粒子径100μm の粉体を得た。
6. 紙発泡ペレット100重量部に対し、ポリ乳酸粉末20重量部を夫々に秤量機で秤量し混合機(ミキサー)で常温攪拌すると、発生する静電気の作用により紙発泡ペレットの外部にポリ乳酸粉末が付着したものが得られる。
7. この材料を圧縮空気を用いて発泡成形金型(上・下型半開き状態)の中に吹込み、さらに圧縮空気をヒーターで加熱した加熱空気(150℃)を吹込み、材料表面に付着しているポリ乳酸粉末を熔融軟化せしめた。
8. この状態で上下の金型を締切り、金型に冷水を流すと同時に金型内に−90℃の窒素ガスを吹込むとポリ乳酸は急速に固化し、紙発泡ペレットは相互に強固に接着される。金型を開きこの固化成形した製品を取出して所望の形状(金型内面に沿った)の紙発泡成形品を得ることができた。
【0020】
以上のようにして得られた製品は、その比重は0.03で軽量であり、且つ生分解性を有しており、燃焼時にも何等有毒有害なガスを発生することが無いので、発泡スチロールに代る可き環境にやさしい無公害な緩衝材とすることができる。
なお、前記実施例では微小紙材にまぶすべき粉末状の生分解性バインダーとして、平均粒子径100μm のポリ乳酸粉末を用いたが、軟化点が低く150℃以下で粉末がすぐ熔融するもので、平均粒子径が20〜200μm の範囲内の生分解性のものであれば、他の生分解性微粉末を用いることが可能なのは勿論である。
【0021】
【発明の効果】
請求項1記載の本発明の生分解性緩衝材の製造方法によれば、緩衝材を使用後廃棄しても完全生分解し環境を汚染することがなく、また緩衝材の成形に際して成形材料を乾式で型内に容易に充填して成形することができ、従来の発泡スチロール樹脂緩衝材が引き起していた廃棄物処理の諸問題を解決することができて発泡スチロール樹脂に代ることのできる生分解性緩衝材を成形性よく製造することができる。
【0022】
請求項2記載の発明によれば、粉末状の生分解性バインダーとして、この粉末ポリ乳酸を使用するとき、生分解性と微小紙材への接着性にすぐれ、且つ製造した緩衝材の強度、緩衝性能の保持を十分にするとともに、バインダー取扱中の粉塵爆発の危険性をなくすことができる。
【0023】
請求項3記載の発明によれば、従来焼却処理されていた紙ゴミや、その他古紙を有効に活用することができ、炭酸ガスの発生など焼却による環境汚染を少なくするとともに、焼却処理にともなう焼却灰の処理などの費用や労力を軽減することができる。
【0024】
請求項4記載の発明によれば、原料の微小紙材に小発泡体を使用することにより、成形した生分解性緩衝材の重量をきわめて軽くして発泡スチロール樹脂に代る軽量な生分解性緩衝材を容易に製造することができる。
【図面の簡単な説明】
【図1】成形材料の微小紙材として微小紙片を使用したときの本発明方法の工程図である。
【図2】成形材料の微小紙材として紙発泡ペレットを使用したときの本発明方法の工程図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a biodegradable cushioning material used for a corner pad having no environmental load, such as styrene foam resin, at the time of disposal.
[0002]
[Prior art]
Conventionally, rounded paper such as old newspaper, sawdust, rice husk, and other familiar items have been effectively used as packing cushioning materials.However, with the development of industry, home appliances, precision machinery, glass products As the need to transport industrial products such as electronic components in large quantities and safely increases, at present, a large amount of styrofoam resin molded cushioning materials that are lightweight, easy to handle, and have cushioning properties have been used. ing.
[0003]
[Problems to be solved by the invention]
However, this convenient styrofoam resin cushioning material is light and stable after use, so that it is rather difficult to dispose of it. That is, even if the waste is incinerated at the incineration center in the district, there is a problem in that not only is it bulky, so that the collection cost is high, but also because the calorie burned is too high, the incinerator is damaged at the time of incineration, and black smoke is generated.
Further, even when landfilled in the soil, it is chemically stable, so that it does not disappear forever, and is bulky and dusty, thus shortening the life of the landfill.
[0004]
On the other hand, even if the material is reused, it is common to take a hot-melt treatment step, so there is coloration due to thermal deterioration, deterioration in physical properties, contamination with impurities, etc., and it is only used for limited applications without added value. Some disadvantages are not available.
For this reason, some advanced countries in Europe and the United States, such as Germany, have banned the import of styrofoam resin itself.Especially from home appliances manufacturers who export a lot, there is a strong demand for packing cushioning materials that can replace styrofoam resin. ing. In addition, this cushioning material is one that can be effectively recycled after use, can be eliminated without harming the environment even if it is buried in the soil, or can be incinerated without damaging the incinerator Is required.
[0005]
On the other hand, the present applicant has previously proposed in Japanese Patent Application No. 5-350809 a lightweight and cushioned foamed paper molded article which can be substituted for a styrofoam product. In this method, a molding material is filled in a cavity between a plurality of opposing molding dies, and the liquid or paste is bonded to a foamed paper pellet in a state where the molding dies are not completely shut off. After applying the agent and injecting the required amount into the mold cavity, close the mold and heat to solidify the adhesive, or knead the required amount of fine paper pieces and the foaming agent. The required amount of liquid or paste-like adhesive is pre-kneaded with a molding material, which is injected into the cavity from the injection port of the closed mold and foamed and solidified in the mold. The adhesive is solidified by heating We use biodegradable materials.
[0006]
However, as a result of various tests in an experimental plant to implement this proposal, the applicants and others found that a molding using liquid or paste-like material as a binder (adhesive) such as a foamed paper pellet or a small piece of paper. Since the material is used, in the step of injecting the molding material into the molding cavity from the injection port provided in the molding die, there is a problem in the fluidity of the molding material due to the viscosity of the molding material. It has been found that the injection from the injection port into the mold is not performed smoothly.
[0007]
The present invention has been made in view of such circumstances, and has a light weight and cushioning property (cushioning property) as a substitute for a styrofoam product, and adversely affects the environment even if it is buried in soil after use. A biodegradable cushioning material with good moldability that can be easily injected and filled into the mold when molding cushioning materials such as corner pads using a mold. The purpose of the present invention is to provide a manufacturing method.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, in the production of a biodegradable cushioning material, a plurality of molds are combined, and a molding material is filled into a cavity between inner surfaces of opposed molds and molded. In a state in which the mold is not completely shut off, the powdered biodegradable binder is sprinkled on the fine paper material, and the required amount is blown into the mold cavity by pressurized air. After melting, the molding die is closed and adhered to the contact points of the fine paper materials, and then the mold or the inside of the mold is cooled to solidify the binder to form.
In this case, as the molding material, a material obtained by dusting a fine paper material with a powdery binder and allowing the binder to adhere to the surface of the paper material thoroughly is used, and the molding material is a dry molding material, which is a liquid or paste. Because it is not a viscous wet molding material using a glue, it can be injected with pressurized air from the injection port provided in a part of the mold, and smoothly and easily filled into the corners of the mold. it can. After the binder is melted by the heated air and the mold is closed, the binder is solidified by cooling the mold, and the biodegradable cushioning material (corner pad or the like) molded into a predetermined shape can be taken out by opening the opposed mold. .
[0009]
As the powdery biodegradable binder, it is effective to use powdered polylactic acid having an average particle diameter of 20 to 200 μm.
In this case, water-based polymers such as starch, and emulsion-based polymers such as vinyl acetate, acrylates, and styrene butadiene were studied as binders for fine paper materials.However, when starch and vinyl acetate were used as binders, Because the brittleness of the cushioning material to be used becomes remarkable, it is unavoidable that the cushioning characteristics are insufficient. In addition, when acrylic acid ester or styrene butadiene is used for the binder, the binder is not biodegradable, so when buried in soil, the pulp component in the buffer material does not decompose even if biodegraded. It will accumulate in the soil, and there is a concern that it will adversely affect the natural world.
[0010]
The present inventors have used a dry pulp mold buffer material in which micro paper material is bonded with a binder as an alternative to the styrofoam resin buffer material. As a result of intensive studies on good, biodegradable and environmentally friendly binders, the glass transition point of the binder is between 50 and 100 ° C, and the biodegradability and the adhesion of fine paper materials to pulp fibers are improved. It has been found that the use of a polymer obtained by pulverizing an excellent thermoplastic resin into a certain size range as a binder meets the above-mentioned problem, and uses powdered polylactic acid having an average particle diameter of 20 to 200 μm as a binder. It turned out to be effective. That is, since this polylactic acid has a low heat resistance and a softening point of 60 ° C., if hot air of 100 to 150 ° C. is blown, the powder melts immediately, but the paper does not change up to 150 ° C. [Paper is at about 170 ° C. Yellowing starts, gradually browns (200 ° C.) and ignites at 240 ° C.], and can be suitably used as a binder for fine paper materials.
[0011]
The average particle size of the polylactic acid used in the present invention is from 20 to 200 μm, and particularly preferably from 40 to 100 μm. In this case, if the average particle diameter is 200 μm or more, the strength as a packing cushioning material is weak, and the cushioning performance is insufficient. In order to improve the strength, the amount of the binder to be used may be increased, but the buffering performance is reduced. If the average particle size is less than 20 μm, there is a possibility of dust explosion during handling, which is not suitable for use.
[0012]
The thermoforming temperature of the micro-paper piece using the polylactic acid powder by a dry mold is not problematic as long as it is higher than the melting point of polylactic acid and lower than the thermal decomposition temperature. The time required for the hot pressing may be such that the polymer is melted and fused to the pulp fibers of the fine paper pieces, and usually 30 seconds to 2 minutes is sufficient depending on the molding thickness and bulk density. The bulk density of the molded body is usually adjusted to 0.05 to 0.5 g / cm 3 by the molding pressure. The amount of the binder to be used for the pulp fibers of the fine paper is preferably 5 to 20% by weight in view of the balance between the buffer characteristics, the feeling and the cost.
[0013]
As the fine paper material, it is effective to use paper refuse or waste paper divided from city refuse and crushed into fine fine paper pieces. As a result, paper waste that has been incinerated and waste paper that has been oversupplied can be used effectively, reducing environmental pollution caused by incineration such as the generation of carbon dioxide gas, and reducing costs and costs such as treating incinerated ash associated with incineration. Labor can be reduced.
[0014]
Further, as the fine paper material, a small foam obtained by kneading a fine paper piece and starch with water and foaming the mixture can be used.
In this case, the fine paper pieces and the starch are kneaded with water, and the mixture is extruded with a die of about 1 to 0.5 mmφ while being heated and pressurized, and foamed at a speed of about 2 m / sec. Is extruded and hot-cut to a length of 3 mm to form a small foam of 3-4 mmφ × 3 mm. By bonding them with a biodegradable resin, a very light (with a specific gravity of 0.1 or less) buffer material can be formed, and can be suitably used as a substitute for polystyrene foam (EPS).
[0015]
As described above, a biodegradable cushioning material manufactured in a dry manner by using a biodegradable binder such as polylactic acid powder for a minute paper material such as a small piece of paper or a small foam has a buffering property that can substitute for a styrene foam resin cushioning material. While having moldability, it is excellent in biodegradability, and has little impact on the environment even if it is buried in soil after use, and quickly disintegrates. Also, unlike styrofoam resin cushioning materials, resources can be effectively used by recycling waste paper, and even when incinerated, the combustion heat is low and no harmful gas is generated.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Preferred embodiments of the present invention will be described based on the following examples.
[0017]
【Example】
[Example 1]
As a first embodiment of the present invention, the production according to claim 3 was performed, and a pulp mold cushioning material having a length of 200 mm × width 200 mm × thickness 20 mm was formed as a product. In this embodiment, a one-piece mold (one upper mold and one lower mold) is used. Next, the manufacturing process will be described with reference to the process chart of FIG.
1. Used paper (newspaper) is pulverized by a pulverizer (hammer head mill) to produce fine paper pieces having an average length of 2 mm on one side.
2. A small granular material of polylactic acid "Lacty" manufactured by Shimadzu Corporation was frozen and pulverized as a biodegradable binder to obtain a powder having an average particle diameter of 100 µm.
3. 15 parts by weight of the polylactic acid powder were weighed with a weighing machine with respect to 100 parts by weight of the fine paper pieces, respectively, supplied to a mixer (mixer), stirred at room temperature, and sufficiently mixed with the raw materials.
4. Due to the action of the static electricity generated by this, a fine paper piece with the biodegradable fine powder adhered to the surface was obtained.
5. The above-mentioned raw material from the mixer is blown into the upper mold and the lower mold half-opening mold of the injection molding machine by compressed air, while the compressed air is heated by a heater and heated air (200 ° C.) is blown into the mold. The binder was melted.
6. Then, the upper mold and the lower mold were closed in a closed mold, and subjected to hot press molding for 1 minute, and the closed mold was cooled with cooling water to solidify and mold the material.
7. The mold was opened, the product was taken out, and a pulp mold cushioning material having a bulk density of 0.2 g / cm 3 and dimensions of 200 × 200 mm × 20 mm was completed.
[0018]
This was compared with a styrene foam resin buffer material having a bulk density of 0.02 g / cm 3 which is currently in circulation, and was found to be at a level sufficient for practical use as follows.
Figure 0003597645
In addition, the measurement of the buffer coefficient and the compressive strength was based on the method described in New Packaging Technology Handbook (Japan Packaging Technology Association).
In addition, the biodegradability of the buffer material obtained in the examples started to collapse three months after being buried in the soil and disappeared one year later.
[0019]
[Example 2]
As a second embodiment of the present invention, the production according to claim 4 was performed. Next, the manufacturing process will be described with reference to the process chart of FIG.
1. Used paper (newspaper) is pulverized by a pulverizer (hammer head mill) to produce 1 mmφ pass fine paper pieces.
2. Starch (corn starch) was pulverized as an adhesive for producing a small foam to obtain a powdered starch of 100 mesh or less.
3. 50 parts by weight of the starch powder is weighed by a weighing machine with respect to 20 parts by weight of the fine paper piece, and supplied to the kneading machine to be mixed, and water is weighed by the weighing machine, and 10 to 20 parts by weight is sequentially added to the kneading machine. And mix well.
4. The raw material sufficiently kneaded from the kneader is extruded at a high speed (1.5 m / s) through a die hole (0.5 mmφ) at the tip while heating and pressing by an extruder (L / D = 20) having a screw outer diameter of 50 mm. When it comes out, a foam having an outer diameter of 3 mmφ is extruded. This was cut to a length of 3 mm with a high-speed hot cutter, and a 3φ × 3 mm paper foam pellet was obtained.
5. A small granular material of polylactic acid "Lacty" manufactured by Shimadzu Corporation was frozen and pulverized as a biodegradable binder to obtain a powder having an average particle diameter of 100 μm or less and 100 mesh or less.
6. 20 parts by weight of polylactic acid powder is weighed by a weighing machine with respect to 100 parts by weight of foamed paper pellets, and the mixture is stirred at room temperature by a mixer. By the action of generated static electricity, the polylactic acid powder adheres to the outside of the foamed paper pellets. What you get is obtained.
7. This material is blown into a foaming mold (upper / lower mold half-opened state) using compressed air, and then heated air (150 ° C.) heated by a heater with compressed air is blown to adhere to the material surface. Polylactic acid powder was melt-softened.
8. In this state, the upper and lower dies are shut off, cold water is poured into the dies, and at the same time, nitrogen gas at -90 ° C is blown into the dies, so that the polylactic acid is rapidly solidified, and the paper foam pellets are firmly adhered to each other. You. The mold was opened, and the solidified product was taken out to obtain a paper foam molded product having a desired shape (along the inner surface of the mold).
[0020]
The product obtained as described above has a specific gravity of 0.03, is lightweight, has biodegradability, and does not generate any toxic or harmful gas when burning. It is possible to provide an environmentally friendly and non-polluting buffer material that can be replaced.
In the above example, polylactic acid powder having an average particle diameter of 100 μm was used as the powdery biodegradable binder to be applied to the fine paper material, but the powder immediately melted at a low softening point of 150 ° C. or less. Of course, other biodegradable fine powders can be used as long as they have a biodegradable particle size in the range of 20 to 200 μm.
[0021]
【The invention's effect】
According to the method for producing a biodegradable buffer material of the present invention described in claim 1, even if the buffer material is discarded after use, it is completely biodegraded and does not pollute the environment. It can be easily filled and molded in a dry mold, and can solve various waste disposal problems caused by the conventional styrofoam resin cushioning material, and can be replaced with styrofoam resin. The decomposable buffer material can be manufactured with good moldability.
[0022]
According to the invention as set forth in claim 2, when this powdered polylactic acid is used as the powdery biodegradable binder, the biodegradability and the adhesiveness to the fine paper material are excellent, and the strength of the manufactured buffer material, The buffer performance can be sufficiently maintained, and the danger of dust explosion during handling of the binder can be eliminated.
[0023]
According to the third aspect of the present invention, paper waste and other waste paper which have been conventionally incinerated can be effectively used, and environmental pollution due to incineration such as generation of carbon dioxide gas can be reduced. Costs and labor such as ash disposal can be reduced.
[0024]
According to the fourth aspect of the present invention, by using a small foam as the raw material of the fine paper material, the weight of the formed biodegradable buffer material is extremely reduced, so that a lightweight biodegradable buffer material that can replace the styrene foam resin is used. The material can be easily manufactured.
[Brief description of the drawings]
FIG. 1 is a process chart of the method of the present invention when a minute paper piece is used as a minute paper material of a molding material.
FIG. 2 is a process chart of the method of the present invention when a foamed paper pellet is used as a fine paper material of a molding material.

Claims (4)

複数の成形型を組合せ、対向する成形型の内面間のキャビテイに成形材料を充填して成形するものとし、成形型を完全に締切らない状態で、微小紙材に粉末状の生分解性バインダーをまぶして所要量を加圧空気により成形型キャビテイ内に吹込んだ後、加熱空気を吹込んでバインダーを熔融した後成形型を閉鎖して微小紙材相互の接点において接着し、次で金型もしくは金型内を冷却してバインダーを固化せしめて成形することを特徴とする生分解性緩衝材の製造方法。Combine multiple molds and fill the molding material into the cavities between the inner surfaces of the opposing molds and mold the mold. After spraying the required amount into the mold cavity with pressurized air, blowing the heated air to melt the binder, closing the mold and bonding at the point of contact between the fine paper materials, then the mold or A method for producing a biodegradable cushioning material, comprising cooling a mold and solidifying a binder to form the binder. 粉末状の生分解性バインダーが、平均粒子径20〜200μm の粉末ポリ乳酸である請求項1記載の生分解性緩衝材の製造方法。The method for producing a biodegradable buffer according to claim 1, wherein the powdery biodegradable binder is powdered polylactic acid having an average particle diameter of 20 to 200 µm. 微小紙材が、紙ゴミ又は古紙の粉砕物の微小紙片である請求項1又は2記載の生分解性緩衝材の製造方法。The method for producing a biodegradable cushioning material according to claim 1 or 2, wherein the fine paper material is a fine paper piece of crushed paper waste or waste paper. 微小紙材が、微小紙片と澱粉を水で混練し発泡させた小発泡体であることを特徴とする請求項1又は2記載の生分解性緩衝材の製造方法。3. The method for producing a biodegradable buffer material according to claim 1, wherein the fine paper material is a small foam obtained by kneading a fine paper piece and starch with water and foaming the mixture.
JP21301296A 1996-07-24 1996-07-24 Method for producing biodegradable buffer Expired - Fee Related JP3597645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21301296A JP3597645B2 (en) 1996-07-24 1996-07-24 Method for producing biodegradable buffer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21301296A JP3597645B2 (en) 1996-07-24 1996-07-24 Method for producing biodegradable buffer

Publications (2)

Publication Number Publication Date
JPH1036550A JPH1036550A (en) 1998-02-10
JP3597645B2 true JP3597645B2 (en) 2004-12-08

Family

ID=16632045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21301296A Expired - Fee Related JP3597645B2 (en) 1996-07-24 1996-07-24 Method for producing biodegradable buffer

Country Status (1)

Country Link
JP (1) JP3597645B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4821113B2 (en) * 2003-12-26 2011-11-24 東レ株式会社 Foam and production method thereof
JP6539368B2 (en) * 2018-03-05 2019-07-03 株式会社ケイケイ Biodegradable resin composition and method for producing the same
JP6731139B2 (en) * 2019-06-07 2020-07-29 株式会社ケイケイ Biodegradable resin composition and method for producing the same

Also Published As

Publication number Publication date
JPH1036550A (en) 1998-02-10

Similar Documents

Publication Publication Date Title
US5631052A (en) Coated cementitious packaging containers
BR9710254A (en) Manufacturing process of recycled material products containing plastic.
KR20120103158A (en) Composition for biodegradable plastic and biodegradable plastic goods molded by the composition
US6106753A (en) Method of forming a biodegradable molded packing
ATE185828T1 (en) BIODEGRADABLE MATERIAL MADE FROM RENEWABLE RAW MATERIALS AND PROCESS FOR ITS PRODUCTION
JP3597645B2 (en) Method for producing biodegradable buffer
JP2000273800A (en) Paper-made foam and its production
RU2155149C2 (en) Formed packing article making method
JP2002371153A (en) Biodegradable foamed molded body and method for manufacturing the same
JP3362926B2 (en) Molded product with reused ears of adhesive tape
JPH09169028A (en) Paper pellet and granulation thereof
KR19980085890A (en) Recycling Treatment of Foamed Plastic Molded Products
KR100514054B1 (en) A Product made from starch foam and adhesive mixture and its preparing method
JP3205042B2 (en) Method for producing solid fuel and solid fuel produced thereby
JP5053117B2 (en) Method for producing cellulose fiber-containing thermoplastic resin composition
JP3187105B2 (en) Recycled paper molded article having buffering property and method for producing the same
JP2000143869A (en) Preparation of foamed material using plastic-laminated paper waste
JP3844049B2 (en) Production method of biodegradable cushioning material
KR102177742B1 (en) Disposable vessel and straw having biodegradability and manufacturing method of the same the those
KR100769286B1 (en) A packing container with biodegradability using liquid binder containing polyvinylalcohol and natural fiber and manufacturing method
JP2001098078A (en) Particle for cushioning material and method for production thereof, and cushioning material and method for production thereof
JP2001129867A (en) Manufacturing method for foam utilizing waste produced in pet bottle recycling process
JPH0672466A (en) Paper-made heat insulative shock absorber and manufacture of the same
JPH1029222A (en) Environment-friendly type injection molded body and its manufacture
JP2003252377A (en) Foamed cushioning block and molding method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees