JP3844006B2 - Method for evaluating slidability of galvannealed steel sheets - Google Patents

Method for evaluating slidability of galvannealed steel sheets Download PDF

Info

Publication number
JP3844006B2
JP3844006B2 JP2005275767A JP2005275767A JP3844006B2 JP 3844006 B2 JP3844006 B2 JP 3844006B2 JP 2005275767 A JP2005275767 A JP 2005275767A JP 2005275767 A JP2005275767 A JP 2005275767A JP 3844006 B2 JP3844006 B2 JP 3844006B2
Authority
JP
Japan
Prior art keywords
slidability
steel sheet
phase
dip galvanized
alloyed hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005275767A
Other languages
Japanese (ja)
Other versions
JP2006010712A (en
Inventor
京子 藤本
眞 志村
洋一 飛山
一章 京野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005275767A priority Critical patent/JP3844006B2/en
Publication of JP2006010712A publication Critical patent/JP2006010712A/en
Application granted granted Critical
Publication of JP3844006B2 publication Critical patent/JP3844006B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、めっき被覆金属材の摺動性評価方法に関する。   The present invention relates to a method for evaluating the slidability of a plating-coated metal material.

めっき被覆金属材のめっき層としては、金属単相のめっき層と複数種類の合金相を有するめっき層がある。
特に、複数種類の合金相を有するめっき製品においては、製品の諸特性は合金相の組成および量に大きく影響されることが知られている。
このため、合金相の制御が、めっき特性の向上のために必要不可欠である。
As the plating layer of the plating coated metal material, there are a metal single phase plating layer and a plating layer having a plurality of types of alloy phases.
In particular, in a plated product having a plurality of types of alloy phases, it is known that various properties of the product are greatly influenced by the composition and amount of the alloy phase.
For this reason, control of the alloy phase is indispensable for improving the plating characteristics.

表面処理鋼板の中でも生産量の多い合金化溶融亜鉛めっき鋼板のめっき層は、ZnとFeの合金相を有し、複数種類の合金相を有するめっき層の代表例である。
また、上記した合金化溶融亜鉛めっき鋼板において、めっきの諸特性に大きく影響する合金相は、ZnとFeの合金相(ζ相,δ1 相,Γ相)である。特にζ相は自動車車体防錆鋼板として好適な合金化溶融亜鉛めっき鋼板の摺動性に大きな影響を与えるのである。
A plating layer of a galvannealed steel sheet having a large production volume among surface-treated steel sheets has a Zn and Fe alloy phase and is a representative example of a plating layer having a plurality of types of alloy phases.
In the above alloyed hot-dip galvanized steel sheet, the alloy phase that greatly affects the various characteristics of plating is the alloy phase of Zn and Fe (ζ phase, δ 1 phase, Γ phase). In particular, the ζ phase has a great influence on the slidability of an alloyed hot-dip galvanized steel sheet suitable as an automobile body rust-proof steel sheet.

めっき鋼板の合金相構造の解析には、物理的手法として、鋼板断面の光学顕微鏡あるいは走査電子顕微鏡による観察が一般的に用いられている(西村昭彦、稲垣淳一、中岡一秀:鉄と鋼,8,101(1986))。
このような観察によれば、各合金相の発達の程度が定性的に得られ、また各相の平均厚みのデータが定量的に得られるが、試料の調製や観察が煩雑であることが問題である。
For the analysis of the alloy phase structure of plated steel sheets, as a physical method, observation of the cross section of the steel sheet with an optical microscope or a scanning electron microscope is generally used (Akihiko Nishimura, Junichi Inagaki, Kazuhide Nakaoka: Iron and steel, 8,101 (1986)).
According to such observation, the degree of development of each alloy phase can be obtained qualitatively and the average thickness data of each phase can be obtained quantitatively, but the problem is that the preparation and observation of the sample is complicated. It is.

また、近年、めっき製品に期待される特性の高度化により、めっき特性に悪影響を及ぼす微少量の合金相が問題となっている。
すなわち、合金化溶融亜鉛めっき鋼板の場合、ζ相やΓ相の生成を抑制する必要があるが、これら微少量の合金相の同定は困難である。
一方、X線回折法を利用し、各合金相の回折強度とめっきの諸特性との関係づけを行う検討が行われ、オンライン測定への応用が図られている。
Further, in recent years, with the sophistication of properties expected for plated products, a small amount of alloy phase that adversely affects the plating properties has become a problem.
That is, in the case of an alloyed hot-dip galvanized steel sheet, it is necessary to suppress the formation of the ζ phase and the Γ phase, but it is difficult to identify these minute alloy phases.
On the other hand, studies have been made to use the X-ray diffraction method to relate the diffraction intensity of each alloy phase to various characteristics of plating, and application to online measurement is being attempted.

すなわち、合金化溶融亜鉛めっき鋼板において、各合金相のX線回折強度とめっき鋼板加工時の摺動性や耐パウダリング性との関係が報告され(山田正人、増子亜樹、林寿雄、松浦直樹:材料とプロセス,3,591(1990) )、またX線回折のオンライン測定への応用が報告されている(川辺順次、藤永忠男、木村肇、押場和也、安部忠広、高橋俊雄:川崎製鉄技報,18,129(1986))。   In other words, in alloyed hot-dip galvanized steel sheets, the relationship between the X-ray diffraction strength of each alloy phase and the slidability and powdering resistance during processing of the plated steel sheets has been reported (Masato Yamada, Aki Masuko, Toshio Hayashi, Naoki Matsuura) : Materials and Processes, 3,591 (1990)), and its application to online measurement of X-ray diffraction has been reported (Sawa Kawabe, Tadao Fujinaga, Satoshi Kimura, Kazuya Oshiba, Tadahiro Abe, Toshio Takahashi: Kawasaki Ironworks) , 18, 129 (1986)).

しかし、これらの方法は各合金相の絶対量を直接求める手法ではなく、各合金相の定量を行うためには、各合金相の含有量が既知の標準試料を用いて検量線を作成し、標準試料との強度比から含有量を算出する必要がある。
すなわち、例えば合金化溶融亜鉛めっき鋼板における微少量のζ相やΓ相の定量においては、ζ相やΓ相の含有量が既知である標準試料がないと測定ができない。
However, these methods are not a method for directly determining the absolute amount of each alloy phase. In order to quantify each alloy phase, a calibration curve is created using a standard sample whose content of each alloy phase is known, It is necessary to calculate the content from the strength ratio with the standard sample.
That is, for example, in the determination of a very small amount of ζ phase or Γ phase in an alloyed hot-dip galvanized steel sheet, measurement cannot be performed unless there is a standard sample whose content of ζ phase or Γ phase is known.

一方、化学的手法としては、定電流アノード電解法(電解剥離法)が用いられ、この方法では、時間−電位曲線を用いて各相に対応する電位平坦部の時間を測定し、電気量から各めっき合金相の厚みを求める(S.C.Britton: J.Inst.Metals,58,211(1936) )。
しかし、上記方法の場合、ζ相やΓ相の少ない合金化溶融亜鉛めっき鋼板では電位の変曲点(各相の電解終点)が不明瞭であり、ζ相やΓ相のような微少量の相の定量は困難である。
On the other hand, a constant current anodic electrolysis method (electrolytic peeling method) is used as a chemical method. In this method, the time of the potential flat portion corresponding to each phase is measured using a time-potential curve, and the amount of electricity is calculated. The thickness of each plated alloy phase is determined (SCBritton: J. Inst. Metals, 58, 211 (1936)).
However, in the case of the above method, the inflection point of the electric potential (electrolytic end point of each phase) is unclear in the alloyed hot-dip galvanized steel sheet with few ζ phases and Γ phases, and a very small amount such as ζ phase and Γ phase. Phase quantification is difficult.

また、この方法の場合、めっき層における各合金相の均一な溶解が困難である。
また、上記した方法を合金化溶融亜鉛めっき鋼板に適用する場合、鉄濃度の高いΓ相が残渣として残るため、平坦部の溶解時間をそのままめっき厚に換算することに問題があることが報告されている(黒沢進:表面技術,45,234(1994))。
また試料の表面状態によって時間−電流曲線の形状が変動し、めっき最表面に微少量存在する合金相、例えば合金化溶融亜鉛めっき鋼板のζ相の定量はさらに困難であった。
鉄と鋼,8,101(1986) 材料とプロセス,3,591(1990) 川崎製鉄技報,18,129(1986) J.Inst.Metals,58,211(1936) 表面技術,45,234(1994)
In this method, it is difficult to uniformly dissolve each alloy phase in the plating layer.
In addition, when the above method is applied to galvannealed steel sheets, it is reported that the Γ phase with high iron concentration remains as a residue, so that there is a problem in converting the melting time of the flat part into the plating thickness as it is. (Susumu Kurosawa: Surface Technology, 45,234 (1994)).
Moreover, the shape of the time-current curve fluctuates depending on the surface state of the sample, and it was further difficult to determine the alloy phase present on the outermost surface of the plating, for example, the ζ phase of the galvannealed steel sheet.
Iron and steel, 8,101 (1986) Materials and Processes, 3,591 (1990) Kawasaki Steel Technical Report, 18,129 (1986) J. Inst. Metals, 58, 211 (1936) Surface technology, 45,234 (1994)

本発明は、前記した従来技術の問題点を解決し、合金化溶融亜鉛めっき鋼板の摺動性評価方法を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for evaluating the slidability of a galvannealed steel sheet.

本発明は、合金化溶融亜鉛めっき鋼板をアノードとし、硫酸亜鉛−塩化ナトリウム水溶液中で、電位:−940 〜−920mV vs SCEの電位の範囲内で電解操作を行い、流れた電気量が 0.5C/cm 2 以下のものを摺動性の良好な合金化溶融亜鉛めっき鋼板とすることを特徴とする合金化溶融亜鉛めっき鋼板の摺動性評価方法である。
本発明においては、電流密度が5μA/cm2 になる時点を電解操作の終点とするのが好ましい。
The present invention, a galvannealed steel sheet as an anode, zinc sulfate - sodium chloride aqueous solution, the potential: -940 performed ~-920mV vs electrolysis operations within the potential of the SCE, the amount flowing electricity is 0.5C This is a slidability evaluation method for an galvannealed steel sheet characterized by having an alloyed galvanized steel sheet having a good slidability at / cm 2 or less .
In the present invention, preferably the time at which current density is 5 .mu.A / cm 2 and the end point of the electrolysis operation.

なお、電位の単位として記載した vs SCE とは、飽和カロメル電極に対する電位を示す。   Note that vs SCE described as a unit of potential indicates a potential with respect to a saturated calomel electrode.

本発明によれば、合金化溶融亜鉛めっき鋼板の摺動性を評価することができる。   According to the present invention, the slidability of the galvannealed steel sheet can be evaluated.

以下、本発明をさらに詳細に説明する。
本発明者らは、種々の摺動性を有する合金化溶融亜鉛めっき鋼板のζ相の電解挙動を調査した。その結果、電解が終了するまでの合計の電気量(電流密度×時間)が一定量以下の合金化溶融亜鉛めっき鋼板は摺動性が良好であることを見出した。
すなわち本発明は、合金化溶融亜鉛めっき鋼板をアノードとし、硫酸亜鉛−塩化ナトリウム水溶液中で、電位:−940 〜−920mV vs SCEの電位の範囲内で電解操作を行い、流れた電気量により摺動性の良好な合金化溶融亜鉛めっき鋼板として評価することを特徴とする合金化溶融亜鉛めっき鋼板の摺動性評価方法である。
Hereinafter, the present invention will be described in more detail.
The present inventors investigated the electrolytic behavior of the ζ phase of alloyed hot-dip galvanized steel sheets having various sliding properties. As a result, it has been found that an alloyed hot-dip galvanized steel sheet having a total electric quantity (current density × time) until the end of electrolysis of a certain amount or less has good slidability.
That is, the present invention uses an alloyed hot-dip galvanized steel sheet as an anode, performs an electrolysis operation in a zinc sulfate-sodium chloride aqueous solution within a potential range of −940 to −920 mV vs SCE, and slides depending on the amount of electricity flowing. It is a slidability evaluation method for an alloyed hot-dip galvanized steel sheet characterized by being evaluated as an alloyed hot-dip galvanized steel sheet having good mobility.

定電位電解した際に流れる電気量が 0.5C/cm 2 以下であれば、摺動性を評価する各種の試験において良好な特性を得られる。摺動性を評価する試験としては円筒平底カップ絞り試験が例示できる。定電位電解は硫酸亜鉛−塩化ナトリウム系の電解液中で、めっき板(合金化溶融亜鉛めっき鋼板)をアノードとして飽和カロメル電極に対する電位が−940mV から−920mV で行う。電位を−940mV から−920mV とする理由は、合金化溶融亜鉛めっき層のうち摺動性に影響の大きい部分を選択的に電解して定量するためである。硫酸亜鉛−塩化ナトリウム系の電解液中で電解を行うのは、めっき層の化学溶解作用が小さく、かつ表面に生成する酸化皮膜などの影響を受け難いことが理由である。なお、電解液を変更する場合は、合金化溶融亜鉛めっき層のうち摺動性に影響の大きい部分を選択的に電解し得る電位が変化するので、予備実験により確認しておく必要がある。 If the amount of electricity flowing at constant potential electrolysis is 0.5 C / cm 2 or less, good characteristics can be obtained in various tests for evaluating slidability. As a test for evaluating the slidability, a cylindrical flat bottom cup drawing test can be exemplified. Constant-potential electrolysis is performed in a zinc sulfate-sodium chloride-based electrolytic solution with a plated plate (alloyed hot-dip galvanized steel plate) as an anode and a potential with respect to a saturated calomel electrode from -940 mV to -920 mV. The reason for setting the potential to −940 mV to −920 mV is to selectively electrolyze and quantify the portion of the alloyed hot-dip galvanized layer that has a large effect on slidability. Electrolysis is performed in a zinc sulfate-sodium chloride-based electrolyte because the chemical dissolution action of the plating layer is small and it is difficult to be affected by an oxide film formed on the surface. In addition, when changing electrolyte solution, since the electric potential which can selectively electrolyze the part which has a big influence on slidability among alloying hot dip galvanization layers changes, it is necessary to confirm by preliminary experiment.

気量が 0.5C/cm2 以下であることをもってして摺動性良好と判断すれば、円筒平底カップ絞り試験における摺動性評価において良好な摺動性を有すると判断した場合と同等の判断を得ることができる。より良好な摺動性を有する合金化溶融亜鉛めっき鋼板を評価選別する場合は、 0.3C/cm2 以下であることをもってして摺動性良好と判断すると良い。
If it is determined that the sliding properties good as with the electricity amount is 0.5 C / cm 2 or less, if it is determined to have good sliding properties in the sliding property evaluation in a cylindrical flat bottom cup drawing test equivalent Judgment can be obtained. When evaluating and selecting an alloyed hot-dip galvanized steel sheet having better slidability, it is good to judge that the slidability is good based on being 0.3 C / cm 2 or less.

また本発明においては、電流密度が5μA/cm2 になる時点を電解操作の終点とすることが好ましい。電流密度が5μA/cm2 になる時点まで電解を継続すれば、実質的な電気量の測定結果として、摺動性評価に適用できる。むしろ、電流密度が5μA/cm2 を超えての電気量測定は、コストの増大ばかりか、意図せざる電解反応にかかる電気量を測定することとなり、かえって誤った電気量の測定結果を導く可能性が大きくなるのである。 In the present invention, the end point of the electrolysis operation is preferably the time when the current density reaches 5 μA / cm 2 . If electrolysis is continued until the current density reaches 5 μA / cm 2 , it can be applied to the evaluation of slidability as a substantial measurement result of electricity. Rather, the measurement of electricity when the current density exceeds 5 μA / cm 2 not only increases the cost, but also measures the amount of electricity involved in the unintended electrolytic reaction, and may lead to erroneous measurement results of electricity. Sexuality increases.

以下、本発明を実施例に基づいてさらに具体的に説明する。
供試材とする合金化溶融亜鉛めっき鋼板を次の方法で作製した。
極低炭素鋼の供試材を転炉にて溶製した後、連続鋳造によりスラブとした。このスラブをスラブ加熱温度1150〜1250℃とし、熱延工程の最終仕上げ温度を920℃とし、 550℃で巻き取った。3.2mm厚の熱延板コイルを作成し、酸洗で黒皮除去後、冷間圧延し、 0.8mm厚の冷延板とした。この鋼板を連続溶融亜鉛めっきラインにおいて焼鈍温度 790〜830 ℃でめっき原板とした。めっき浴への侵入板温は 460〜470 ℃、めっき浴の浴温は 460〜470 ℃、合金化温度は 490〜530 ℃とした。片面のめっき付着量は40〜50g/m2 とし、両面のめっき付着量を同一となるように製造した。
Hereinafter, the present invention will be described more specifically based on examples.
An alloyed hot-dip galvanized steel sheet as a test material was produced by the following method.
After ultra-low carbon steel specimens were melted in a converter, slabs were formed by continuous casting. The slab was wound at 550 ° C. with a slab heating temperature of 1150 to 1250 ° C. and a final finishing temperature of the hot rolling process of 920 ° C. A hot rolled coil coil with a thickness of 3.2 mm was prepared, the black skin was removed by pickling, and then cold rolled to obtain a cold rolled sheet with a thickness of 0.8 mm. This steel plate was used as a plating original plate at an annealing temperature of 790 to 830 ° C. in a continuous galvanizing line. The intrusion plate temperature to the plating bath was 460 to 470 ° C, the bath temperature of the plating bath was 460 to 470 ° C, and the alloying temperature was 490 to 530 ° C. The coating amount on one side was 40 to 50 g / m 2, and the coating amount on both sides was the same.

前記のように作製した合金化溶融亜鉛めっき鋼板を15mmφの円形に打ち抜いた後、−930mV vs SCEで定電位電解した。電解液には、20mass%硫酸亜鉛−10mass%塩化ナトリウム水溶液を用いた。電流密度が5μA/cm2 以下になるまで電解し、電解開始から流れた電気量を測定した。電解に要する時間は10〜20分程度であった。
前記の電気量を測定した合金化溶融亜鉛めっき鋼板について、摺動性の評価を行った。合金化溶融亜鉛めっき鋼板には 1.5g/m2 の通常の防錆油を塗布した後、33mmφの円筒平底カップ絞り試験を行い、限界絞り比を求めた。限界絞り比は数字が小さいほど良好な摺動性を示す。限界絞り比 2.0%以上…1、 1.9〜2.0 %…2、 1.8〜1.9 %…3、 1.7〜1.8 %…4、 1.7%以下…5のように評点を定め、結果を表1に示す。
The alloyed hot-dip galvanized steel sheet produced as described above was punched into a 15 mmφ circle, and then subjected to constant potential electrolysis at −930 mV vs SCE. A 20 mass% zinc sulfate-10 mass% sodium chloride aqueous solution was used as the electrolytic solution. Electrolysis was performed until the current density reached 5 μA / cm 2 or less, and the amount of electricity that flowed from the start of electrolysis was measured. The time required for electrolysis was about 10 to 20 minutes.
The slidability was evaluated for the alloyed hot-dip galvanized steel sheet whose electric quantity was measured. The alloyed hot-dip galvanized steel sheet was coated with 1.5 g / m 2 of normal rust-preventive oil and then subjected to a 33 mmφ cylindrical flat bottom cup squeeze test to determine the limit squeeze ratio. The smaller the numerical aperture ratio, the better the slidability. The critical drawing ratio is 2.0% or more ... 1, 1.9-2.0% ... 2, 1.8-1.9% ... 3, 1.7-1.8% ... 4, 1.7% or less ... 5, and the results are shown in Table 1.

Figure 0003844006
Figure 0003844006

電気量 0.5C/cm2 以下のめっき鋼板はどれも摺動性が「評価3」以下で、良好な摺動性を示したのに対して、 0.5C/cm2 を超える「試料5」では摺動性が「評価5」と劣っている。特に電気量 0.3C/cm2 以下のめっき鋼板はすべて「評価1」で、特に優れた摺動性を示した。
上記の結果から、本発明方法により、合金化溶融亜鉛めっき鋼板の摺動性を評価しうることが分かる。
All plated steel sheets with an electric quantity of 0.5 C / cm 2 or less showed good slidability with a slidability of “Evaluation 3” or less, whereas with “Sample 5” exceeding 0.5 C / cm 2 , The slidability is inferior to “Evaluation 5”. In particular, all of the plated steel sheets having an electric quantity of 0.3 C / cm 2 or less were “Evaluation 1” and showed particularly excellent slidability.
From the above results, it can be seen that the slidability of the galvannealed steel sheet can be evaluated by the method of the present invention.

Claims (2)

合金化溶融亜鉛めっき鋼板をアノードとし、硫酸亜鉛−塩化ナトリウム水溶液中で、電位:−940 〜−920mV vs SCEの電位の範囲内で電解操作を行い、流れた電気量が 0.5C/cm 2 以下のものを摺動性の良好な合金化溶融亜鉛めっき鋼板とすることを特徴とする合金化溶融亜鉛めっき鋼板の摺動性評価方法 An alloyed hot-dip galvanized steel sheet is used as an anode, and an electrolysis operation is performed in a zinc sulfate-sodium chloride aqueous solution within a potential range of −940 to −920 mV vs SCE, and the amount of electricity flowing is 0.5 C / cm 2 or less. A slidability evaluation method for alloyed hot-dip galvanized steel sheet, characterized in that the galvannealed steel sheet has good slidability . 請求項1に記載の摺動性評価方法において、電流密度が5μA/cm2 になる時点を電解操作の終点とすることを特徴とする合金化溶融亜鉛めっき鋼板の摺動性評価方法。 The slidability evaluation method according to claim 1, wherein the time point when the current density becomes 5 μA / cm 2 is set as the end point of the electrolysis operation.
JP2005275767A 2000-12-05 2005-09-22 Method for evaluating slidability of galvannealed steel sheets Expired - Fee Related JP3844006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005275767A JP3844006B2 (en) 2000-12-05 2005-09-22 Method for evaluating slidability of galvannealed steel sheets

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000370672 2000-12-05
JP2001169393 2001-06-05
JP2005275767A JP3844006B2 (en) 2000-12-05 2005-09-22 Method for evaluating slidability of galvannealed steel sheets

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001279774A Division JP3778037B2 (en) 2000-12-05 2001-09-14 Determination method of alloy phase in plating layer

Publications (2)

Publication Number Publication Date
JP2006010712A JP2006010712A (en) 2006-01-12
JP3844006B2 true JP3844006B2 (en) 2006-11-08

Family

ID=35778089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005275767A Expired - Fee Related JP3844006B2 (en) 2000-12-05 2005-09-22 Method for evaluating slidability of galvannealed steel sheets

Country Status (1)

Country Link
JP (1) JP3844006B2 (en)

Also Published As

Publication number Publication date
JP2006010712A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
JP5335595B2 (en) Chrome-plated stainless steel plate with excellent post-processing corrosion resistance
Hamlaoui et al. Corrosion monitoring of galvanised coatings through electrochemical impedance spectroscopy
EP3561138A1 (en) Zinc alloy plated steel material having excellent weldability and processed-part corrosion resistance and method of manufacturing same
JP5354165B2 (en) Method for producing galvanized steel sheet
JP2011122207A (en) Hot press member and method for producing the same
Queiroz et al. Electrochemical, chemical and morphological characterization of galvannealed steel coating
JP3824011B2 (en) Determination method of alloy phase in plating layer
EP2366812B1 (en) Method for manufacturing a galvanized steel sheet
JP3844006B2 (en) Method for evaluating slidability of galvannealed steel sheets
JP3778037B2 (en) Determination method of alloy phase in plating layer
Shibli et al. Development of zinc oxide-rich inner layers in hot-dip zinc coating for barrier protection
Tran et al. Corrosion behaviour of steel in the presence of Y (III) salts: Kinetic and mechanistic studies
JP2002038250A (en) HOT-DIP PLATED STEEL-SHEET WITH Sn-Zn SUPERIOR IN CORROSION RESISTANCE
Schoukensa et al. Effect of Local Surface Microstructure and Composition on the Electrochemical Behavior of Hot Dip Aluminum-Silicon Coatings on Steel
Oliveira et al. Corrosion Resistance of Unlacquered Chromium-Plated Steel Sheets–Study on the Influence of Pickling and Chemical Treatment Steps of the Production Process
JP2014185381A (en) Hot-dip galvanized steel sheet and method for producing the same
TWI245080B (en) Alloy galvanized steel plate having excellent slidability
US6835466B2 (en) Alloyed galvanized steel plate having excellent slidability
JP7036137B2 (en) Manufacturing method of hot-dip galvanized steel sheet
Ünal et al. Effect of Ni-Co alloy coating on corrosion behavior of 0.8% C steel
JP2003049255A (en) Galvannealed steel sheet with excellent sliding characteristic
Wang et al. Improving Corrosion Resistance of the Hot-Dip Aluminum Coating on 22MnB5 Steel Surface
JP2001303228A (en) Galvannealed steel sheet excellent in spot weldability, its producing method and evaluating method
JPH0520513B2 (en)
Šalgó et al. Structure analysis of Zn-Al-Mg coating on steel wire

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees