JP3843762B2 - Waveguide type optical component with thin film heater and manufacturing method thereof - Google Patents

Waveguide type optical component with thin film heater and manufacturing method thereof Download PDF

Info

Publication number
JP3843762B2
JP3843762B2 JP2001143335A JP2001143335A JP3843762B2 JP 3843762 B2 JP3843762 B2 JP 3843762B2 JP 2001143335 A JP2001143335 A JP 2001143335A JP 2001143335 A JP2001143335 A JP 2001143335A JP 3843762 B2 JP3843762 B2 JP 3843762B2
Authority
JP
Japan
Prior art keywords
thin film
film heater
heater
waveguide
type optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001143335A
Other languages
Japanese (ja)
Other versions
JP2002341300A (en
Inventor
康太郎 田中
延明 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2001143335A priority Critical patent/JP3843762B2/en
Publication of JP2002341300A publication Critical patent/JP2002341300A/en
Application granted granted Critical
Publication of JP3843762B2 publication Critical patent/JP3843762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、薄膜ヒータ付き導波路型光部品及びその製造方法に関する。
【0002】
【従来の技術】
近年、石英系ガラス光導波路により構成される光干渉計を用いて、光減衰器、光分岐器、光スイッチ等の機能部品が開発されている。通常、ガラス導波路型光干渉計に用いられる位相シフタには、熱光学効果を利用するための薄膜ヒータが用いられている。
【0003】
図3(a)は従来の薄膜ヒータ付き導波路型光部品の製造方法を適用した光減衰器の平面図であり、図3(b)は図3(a)のA−A線断面図である。
【0004】
この光減衰器は、クラッド層5内に平行に形成され長さの等しい二つのアーム導波路3−1、3−2と、分岐側が両アーム導波路3−1、3−2で接続された二つのY分岐導波路2−1、2−2と、一方(図では上側)のアーム導波路3−1上に形成されたTa2Nからなる薄膜ヒータ4とで構成されている。
【0005】
この光減衰器の入力導波路1−1から入射した信号光は、一方(図では左側)のY分岐導波路2−1で二つのアーム導波路3−1、3−2に等分配される。等分配された信号光は、他方(図では右側)のY分岐導波路2−2で結合し、入力信号光の光パワーが保持されて出力導波路1−2を通してそのまま出射する。
【0006】
これに対して、薄膜ヒータ4に電力を供給して加熱すると、アーム導波路3−1の屈折率が変化し、アーム導波路3−1を伝搬する信号光の位相が変化する。信号光の位相が変化するとY分岐導波路2−2で結合する信号光の強度が変化する。この信号光の光強度は薄膜ヒータ4に供給する電力を変えることによって制御することができる。
【0007】
【発明が解決しようとする課題】
ところで、上述した従来の薄膜ヒータ付き導波路型光部品に用いられる薄膜ヒータには実用上長期の信頼性が求められる。
【0008】
しかしながら、実際の長期通電においては、薄膜ヒータの表面の酸化による材料変質が発生し、薄膜ヒータの抵抗値が劣化したり、薄膜ヒータが断線したりするという問題があった。
【0009】
そこで、本発明の目的は、上記課題を解決し、薄膜ヒータの寿命が長い薄膜ヒータ付き導波路型光部品及びその製造方法を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために本発明の薄膜ヒータ付き導波路型光部品は、石英系ガラス光導波路素子に金属からなる薄膜ヒータを形成した薄膜ヒータ付き導波路型光部品において、薄膜ヒータは、高真空中に保持したまま石英系ガラス光導波路素子上に順次成膜した窒化珪素膜、窒化タンタル膜及び窒化珪素膜を有する三層構造を有するものである。
【0011】
本発明の薄膜ヒータ付き導波路型光部品の製造方法は、石英系ガラス光導波路素子に金属からなる薄膜ヒータを形成する薄膜ヒータ付き導波路型光部品の製造方法において、高真空中に保持したまま石英系ガラス光導波路素子上に窒化珪素膜、窒化タンタル膜及び窒化珪素膜を順次成膜して三層構造の薄膜ヒータを形成するものである。
【0012】
上記構成に加え本発明の薄膜ヒータ付き導波路型光部品は、薄膜ヒータ全体がSiO2又は窒化珪素からなる保護膜で覆われているのが好ましい。
【0013】
上記構成に加え本発明の薄膜ヒータ付き導波路型光部品の製造方法は、高真空中でターゲットの変更が可能なマルチターゲットスパッタ装置を用いて薄膜ヒータを石英系ガラス光導波路素子上に成膜するのが好ましい。
【0014】
ここで、ガラス導波路上にヒータ材料となるTa2N膜を成膜する際に、高真空中でスパッタターゲットの変更が可能なマルチターゲットスパッタ装置を用い、窒化珪素膜、窒化タンタル膜及び窒化珪素膜の順で成膜を行った。フォトリソグラフィ技術を用いてパターニングしたレジストをマスク材として反応性イオンエッチングを用いてヒータパターンを形成した後、SiH4とO2との混合ガスを用いたプラズマCVD法或いはRFスパッタリング法により、SiO2保護膜を形成した。
【0015】
Ta2Nヒータに電力を供給すると、ヒータ膜の温度が上昇する。このとき、ヒータ膜の表面が大気に露出していると大気中の酸素により膜表面の酸化が進行する。高真空状態を保持したまま、窒化珪素膜、窒化タンタル膜及び窒化珪素膜を順次成膜することにより、窒化タンタル膜の表面に酸素が吸着することが防止される。さらに、ヒータ膜の表面にプラズマCVD法或いはRFスパッタリング法によりSiO2保護膜を形成することにより、通電時の酸化の進行を防止することができる。
【0016】
窒化珪素膜、窒化タンタル膜及び窒化珪素膜の成膜を行う場合、各々の膜の成膜後に大気に曝すことで大気中の酸素や水分が膜表面に吸着する。その結果、ヒータ膜中に酸素や水分が取り込まれ、通電時の膜の酸化を防止できない。また、ヒータ膜側面からの酸化を防止するためにヒータ膜全体を覆うSiO2保護膜が必要である。
【0017】
すなわち、本発明によれば、薄膜ヒータが窒化珪素膜、窒化タンタル膜及び窒化珪素膜の三層構造からなるので、窒化タンタル膜の中に酸素や水分が取り込まれるのが防止され、薄膜ヒータの寿命が長い薄膜ヒータ付き導波路型光部品が得られる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて詳述する。
【0019】
図1(a)は本発明の薄膜ヒータ付き導波路型光部品の製造方法を適用した薄膜ヒータ付き導波路型光部品の平面図であり、図1(b)は図1(a)のB−B線断面図である。尚、図3(a)、(b)に示した部材と同様の部材には共通の符号を用いた。
【0020】
本薄膜ヒータ付き導波路型光部品は、石英系ガラス光導波路素子のクラッド層5に金属からなる薄膜ヒータ40を形成した薄膜ヒータ付き導波路型光部品であって、導波路3を加熱するための薄膜ヒータ40が窒化珪素膜8−1/窒化タンタル膜9/窒化珪素膜8−2の三層構造を有するものである。薄膜ヒータ40はクラッド層5ごと保護膜7で覆われている。尚、6−1、6−2は薄膜ヒータ40と、配線(図示せず。)とを接続するための電極パッドである。
【0021】
本薄膜ヒータ付き導波路型光部品は、薄膜ヒータ40が窒化珪素膜8−1/窒化タンタル膜9/窒化珪素膜8−2の三層構造からなるので、窒化タンタル膜9の中に酸素や水分が取り込まれるのが防止され、薄膜ヒータ40の寿命が長くなる。
【0022】
【実施例】
以下具体的な数値を挙げて説明するが、本発明はこれに限定されるものではない。
【0023】
(実施例1)
石英系ガラス光導波路素子のクラッド層5上に窒化Si膜8−1、Ta2N膜9及び窒化Si膜8−2を順次成膜して三層構造の薄膜ヒータ40を形成し、保護膜として厚さ約2μmのSiO2膜7で薄膜ヒータ40を覆った。窒化Si膜8−1、Ta2N膜9及び窒化Si膜8−2は、高真空中でターゲットの変更が可能なマルチターゲット反応性スパッタ装置(図示せず。)により成膜し、フォトリソグラフィ技術を用いてパターニングしたレジストをマスク材として反応性イオンエッチング加工を施した。SiO2からなる保護膜7を薄膜ヒータ40の形成後に、SiH4とO2との混合ガスを用いたプラズマCVD法を用いて成膜した。この成膜時の温度は300℃とした。その後、製作した光導波路素子をHeガス中700℃、30分の熱処理を行った。
【0024】
図2は種々の試料に1Wの電力を供給し、500時間の通電試験を行った結果を示す特性図であり、横軸が通電時間軸を示し、縦軸が抵抗変化率軸を示す。同図において、特性曲線L1はTa2N膜のみで薄膜ヒータを構成した試料、特性曲線L2は窒化Si膜、Ta2N膜及び窒化Si膜の各膜を成膜した際に大気中に曝した場合の試料、特性曲線L3は高真空を保持したまま窒化Si膜/Ta2N膜/窒化Si膜を成膜した試料に関し、それぞれ1Wの電力を供給し、500時間の通電試験を行った結果を示す特性曲線である。
【0025】
高真空を保持したまま窒化Si膜/Ta2N膜/窒化Siを成膜した試料の500時間経過後の抵抗変化率は約7%であった。
【0026】
図2から明らかなように高真空を保持したまま窒化Si膜/Ta2N膜/窒化Si膜を成膜して得られた三層構造の薄膜ヒータは抵抗の変化率を抑制することができることが分かる。
【0027】
(実施例2)
窒化Si膜/Ta2N膜/窒化Si膜からなる三層構造の薄膜ヒータの保護膜をSi34とした以外は実施例1に記載の方法と同様の方法で製作した試料に対し、実施例1と同様の通電試験を行った。500時間経過後の抵抗率変化は約7%であった。
【0028】
(比較例1)
窒化Si膜/Ta2N膜の二層構造の薄膜ヒータを高真空でターゲットの変更が可能なマルチターゲット反応性スパッタ装置により成膜し、実施例1に記載の方法でパターニングした後、SiO2保護膜を形成した。通電試験において1Wの電力を供給した結果、500時間で10%の抵抗増加が生じた。これはTa2N膜の表面を大気中に曝したときに吸着した酸素や水分がヒータ表面を劣化させていることに起因する。
【0029】
(比較例2)
窒化Si膜/Ta2N膜の二層構造の薄膜ヒータを高真空中でターゲットの変更が可能なマルチターゲット反応性スパッタ装置により成膜し、実施例1に記載の方法と同様の方法でパターニングした後、SiO2からなる保護膜を形成した。通電試験において1Wの電力を供給した結果、500時間で10%の抵抗増加が生じた。これはヒータ成膜前に基板側に吸着していた大気中の酸素や水分がヒータ表面を劣化させていることに起因する。
【0030】
以上において本実施例によれば、光導波路素子に用いる薄膜ヒータの材料変質を低減することができ、抵抗変動、断線等を抑制することができ、薄膜ヒータの寿命を長くすることができる。
【0031】
【発明の効果】
以上要するに本発明によれば、次のような優れた効果を発揮する。
【0032】
薄膜ヒータの寿命が長い薄膜ヒータ付き導波路型光部品及びその製造方法の提供を実現することができる。
【図面の簡単な説明】
【図1】(a)は本発明の薄膜ヒータ付き導波路型光部品の製造方法を適用した薄膜ヒータ付き導波路型光部品の平面図であり、(b)は(a)のB−B線断面図である。
【図2】種々の試料に1Wの電力を供給し、500時間の通電試験を行った結果を示す特性図である。
【図3】(a)は従来の薄膜ヒータ付き導波路型光部品の製造方法を適用した光減衰器の平面図であり、(b)は(a)のA−A線断面図である。
【符号の説明】
1 石英系ガラス光導波路素子
3 導波路
7 保護膜(SiO2膜)
8−1、8−2 窒化珪素膜(窒化Si膜)
9 窒化タンタル膜(Ta2N膜)
40 薄膜ヒータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a waveguide type optical component with a thin film heater and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, functional parts such as an optical attenuator, an optical branching unit, and an optical switch have been developed using an optical interferometer configured by a silica-based glass optical waveguide. Usually, a thin film heater for utilizing a thermo-optic effect is used for a phase shifter used in a glass waveguide type optical interferometer.
[0003]
FIG. 3A is a plan view of an optical attenuator to which a conventional method for manufacturing a waveguide-type optical component with a thin film heater is applied, and FIG. 3B is a cross-sectional view taken along line AA in FIG. is there.
[0004]
This optical attenuator is formed in parallel in the clad layer 5 and has two arm waveguides 3-1 and 3-2 having the same length, and the branch side is connected by both arm waveguides 3-1 and 3-2. Two Y branch waveguides 2-1 and 2-2, and a thin film heater 4 made of Ta 2 N formed on one (upper side in the figure) arm waveguide 3-1.
[0005]
The signal light incident from the input waveguide 1-1 of this optical attenuator is equally distributed to the two arm waveguides 3-1 and 3-2 by one (left side in the figure) Y-branch waveguide 2-1. . The equally distributed signal light is coupled by the other (right side in the figure) Y-branch waveguide 2-2, and the optical power of the input signal light is maintained and emitted as it is through the output waveguide 1-2.
[0006]
On the other hand, when electric power is supplied to the thin film heater 4 and heated, the refractive index of the arm waveguide 3-1 changes, and the phase of the signal light propagating through the arm waveguide 3-1 changes. When the phase of the signal light changes, the intensity of the signal light coupled by the Y branch waveguide 2-2 changes. The light intensity of the signal light can be controlled by changing the power supplied to the thin film heater 4.
[0007]
[Problems to be solved by the invention]
By the way, a long-term reliability in practical use is required for the above-described conventional thin film heater used in the waveguide type optical component with a thin film heater.
[0008]
However, in actual long-term energization, there has been a problem that material deterioration due to oxidation of the surface of the thin film heater occurs, the resistance value of the thin film heater is deteriorated, or the thin film heater is disconnected.
[0009]
Accordingly, an object of the present invention is to solve the above-mentioned problems and provide a waveguide type optical component with a thin film heater having a long life of the thin film heater and a method for manufacturing the same.
[0010]
[Means for Solving the Problems]
The thin film heater with the waveguide type optical component of the present invention in order to attain the above objects, the silica based glass optical waveguide thin film heater with the waveguide type optical component to form a thin film heater made of metal on the element, the thin film heater, high silicon nitride film were sequentially formed on a silica glass waveguide element while holding a vacuum, and has a three-layer structure having a tantalum film and a silicon nitride film nitride.
[0011]
The method of manufacturing a waveguide type optical component with a thin film heater according to the present invention is a method for manufacturing a waveguide type optical component with a thin film heater, in which a thin film heater made of metal is formed on a silica-based glass optical waveguide element . A three-layer thin film heater is formed by sequentially forming a silicon nitride film, a tantalum nitride film, and a silicon nitride film on the quartz glass optical waveguide element as they are.
[0012]
In addition to the above configuration, the waveguide type optical component with a thin film heater of the present invention is preferably covered with a protective film made of SiO 2 or silicon nitride.
[0013]
In addition to the above-described configuration, the method of manufacturing a waveguide-type optical component with a thin film heater according to the present invention uses a multi-target sputtering apparatus capable of changing a target in a high vacuum, and forms the thin film heater on a quartz glass optical waveguide element. A membrane is preferred.
[0014]
Here, when forming a Ta 2 N film as a heater material on a glass waveguide, a multi-target sputtering apparatus capable of changing a sputtering target in a high vacuum is used, and a silicon nitride film, a tantalum nitride film, and a nitride film are used. Films were formed in the order of silicon films. After forming a heater pattern by reactive ion etching using the patterned resist by photolithography as a mask material by a plasma CVD method or RF sputtering method using a mixed gas of SiH 4 and O 2, SiO 2 A protective film was formed.
[0015]
When electric power is supplied to the Ta 2 N heater, the temperature of the heater film rises. At this time, if the surface of the heater film is exposed to the atmosphere, the film surface is oxidized by oxygen in the atmosphere. By sequentially forming a silicon nitride film, a tantalum nitride film, and a silicon nitride film while maintaining a high vacuum state, oxygen is prevented from being adsorbed on the surface of the tantalum nitride film. Furthermore, by forming a SiO 2 protective film on the surface of the heater film by plasma CVD or RF sputtering, it is possible to prevent the progress of oxidation during energization.
[0016]
In the case where a silicon nitride film, a tantalum nitride film, and a silicon nitride film are formed, oxygen and moisture in the atmosphere are adsorbed on the film surface by exposure to the atmosphere after each film is formed. As a result, oxygen and moisture are taken into the heater film, and oxidation of the film during energization cannot be prevented. In addition, a SiO 2 protective film that covers the entire heater film is necessary to prevent oxidation from the side surface of the heater film.
[0017]
That is, according to the present invention, since the thin film heater has a three-layer structure of a silicon nitride film, a tantalum nitride film, and a silicon nitride film, oxygen and moisture are prevented from being taken into the tantalum nitride film, and the thin film heater A waveguide type optical component with a thin film heater having a long lifetime can be obtained.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0019]
FIG. 1A is a plan view of a waveguide type optical component with a thin film heater to which the method for manufacturing a waveguide type optical component with a thin film heater of the present invention is applied, and FIG. FIG. In addition, the same code | symbol was used for the member similar to the member shown to Fig.3 (a), (b).
[0020]
This waveguide type optical component with a thin film heater is a waveguide type optical component with a thin film heater in which a thin film heater 40 made of a metal is formed on the clad layer 5 of a silica-based glass optical waveguide element, for heating the waveguide 3. The thin film heater 40 has a three-layer structure of silicon nitride film 8-1 / tantalum nitride film 9 / silicon nitride film 8-2. The thin film heater 40 is covered with the protective film 7 together with the cladding layer 5. Reference numerals 6-1 and 6-2 denote electrode pads for connecting the thin film heater 40 and wiring (not shown).
[0021]
In this waveguide type optical component with a thin film heater, the thin film heater 40 has a three-layer structure of silicon nitride film 8-1 / tantalum nitride film 9 / silicon nitride film 8-2. Moisture is prevented from being taken in, and the life of the thin film heater 40 is prolonged.
[0022]
【Example】
Hereinafter, specific numerical values will be described. However, the present invention is not limited to this.
[0023]
Example 1
A thin film heater 40 having a three-layer structure is formed by sequentially forming a Si nitride film 8-1, a Ta 2 N film 9 and a Si nitride film 8-2 on the cladding layer 5 of the silica glass optical waveguide device, and a protective film. The thin film heater 40 was covered with a SiO 2 film 7 having a thickness of about 2 μm. The Si nitride film 8-1, the Ta 2 N film 9, and the Si nitride film 8-2 are formed by a multi-target reactive sputtering apparatus (not shown) capable of changing the target in a high vacuum, and photolithography is performed. Reactive ion etching processing was performed using a resist patterned using the technique as a mask material. After the formation of the thin film heater 40, the protective film 7 made of SiO 2 was formed using a plasma CVD method using a mixed gas of SiH 4 and O 2 . The temperature during the film formation was 300 ° C. Thereafter, the manufactured optical waveguide device was heat-treated in He gas at 700 ° C. for 30 minutes.
[0024]
FIG. 2 is a characteristic diagram showing the result of conducting an energization test for 500 hours by supplying 1 W of power to various samples. The horizontal axis indicates the energization time axis, and the vertical axis indicates the resistance change rate axis. In the figure, a characteristic curve L1 is a sample in which a thin film heater is constituted by only a Ta 2 N film, and a characteristic curve L2 is exposed to the atmosphere when a Si nitride film, a Ta 2 N film, and a Si nitride film are formed. In this case, the characteristic curve L3 relates to a sample in which a Si nitride film / Ta 2 N film / Si nitride film was formed while maintaining a high vacuum, and a 500-hour energization test was performed by supplying 1 W of power. It is a characteristic curve which shows a result.
[0025]
The resistance change rate after elapse of 500 hours was about 7% for the sample in which the Si nitride film / Ta 2 N film / Si nitride film was formed while maintaining a high vacuum.
[0026]
As is clear from FIG. 2, the thin-film heater having a three-layer structure obtained by forming a Si nitride film / Ta 2 N film / Si nitride film while maintaining a high vacuum can suppress the rate of change in resistance. I understand.
[0027]
(Example 2)
For a sample manufactured by the same method as described in Example 1 except that the protective film of the thin film heater having a three-layer structure composed of a Si nitride film / Ta 2 N film / Si nitride film is Si 3 N 4 , An energization test similar to that in Example 1 was performed. The change in resistivity after about 500 hours was about 7%.
[0028]
(Comparative Example 1)
A thin film heater having a two-layer structure of a nitrided Si film / Ta 2 N film is formed by a multi-target reactive sputtering apparatus capable of changing the target in a high vacuum, patterned by the method described in Example 1, and then SiO 2 A protective film was formed. As a result of supplying 1 W of power in the energization test, a 10% increase in resistance occurred in 500 hours. This is because oxygen and moisture adsorbed when the surface of the Ta 2 N film is exposed to the atmosphere deteriorate the heater surface.
[0029]
(Comparative Example 2)
A thin film heater having a two-layer structure of a Si nitride film / Ta 2 N film is formed by a multi-target reactive sputtering apparatus in which the target can be changed in a high vacuum, and patterned by the same method as described in the first embodiment. After that, a protective film made of SiO 2 was formed. As a result of supplying 1 W of power in the energization test, a 10% increase in resistance occurred in 500 hours. This is because oxygen and moisture in the atmosphere adsorbed on the substrate side before the heater film formation deteriorates the heater surface.
[0030]
As described above, according to the present embodiment, material deterioration of the thin film heater used for the optical waveguide element can be reduced, resistance fluctuation, disconnection, and the like can be suppressed, and the life of the thin film heater can be extended.
[0031]
【The invention's effect】
In short, according to the present invention, the following excellent effects are exhibited.
[0032]
It is possible to provide a waveguide type optical component with a thin film heater having a long life of the thin film heater and a manufacturing method thereof.
[Brief description of the drawings]
FIG. 1A is a plan view of a waveguide type optical component with a thin film heater to which the method for manufacturing a waveguide type optical component with a thin film heater according to the present invention is applied, and FIG. It is line sectional drawing.
FIG. 2 is a characteristic diagram showing the results of conducting an energization test for 500 hours by supplying 1 W of power to various samples.
3A is a plan view of an optical attenuator to which a conventional method for manufacturing a waveguide type optical component with a thin film heater is applied, and FIG. 3B is a cross-sectional view taken along line AA in FIG.
[Explanation of symbols]
1 Silica-based glass optical waveguide element 3 Waveguide 7 Protective film (SiO 2 film)
8-1, 8-2 Silicon nitride film (Si nitride film)
9 Tantalum nitride film (Ta 2 N film)
40 Thin film heater

Claims (4)

石英系ガラス光導波路素子に金属からなる薄膜ヒータを形成した薄膜ヒータ付き導波路型光部品において、該薄膜ヒータは、高真空中に保持したまま前記石英系ガラス光導波路素子上に順次成膜した窒化珪素膜、窒化タンタル膜及び窒化珪素膜を有する三層構造を有することを特徴とする薄膜ヒータ付き導波路型光部品。In a waveguide type optical component with a thin film heater in which a thin film heater made of metal is formed on a silica glass optical waveguide element, the thin film heater is sequentially formed on the silica glass optical waveguide element while being held in a high vacuum . A waveguide-type optical component with a thin film heater, characterized by having a three-layer structure including a silicon nitride film, a tantalum nitride film, and a silicon nitride film. 上記薄膜ヒータ全体がSiO2又は窒化珪素からなる保護膜で覆われている請求項1に記載の薄膜ヒータ付き導波路型光部品。The waveguide type optical component with a thin film heater according to claim 1, wherein the entire thin film heater is covered with a protective film made of SiO 2 or silicon nitride. 石英系ガラス光導波路素子に金属からなる薄膜ヒータを形成する薄膜ヒータ付き導波路型光部品の製造方法において、高真空中に保持したまま前記石英系ガラス光導波路素子上に窒化珪素膜、窒化タンタル膜及び窒化珪素膜を順次成膜して三層構造の薄膜ヒータを形成することを特徴とする薄膜ヒータ付き導波路型光部品の製造方法。The method of manufacturing a thin-film heater with a waveguide-type optical components for forming a thin film heater made of metal on a silica-based glass optical waveguide element, while holding a high vacuum before Symbol silica based glass optical waveguide element on the silicon nitride film, nitride A method of manufacturing a waveguide type optical component with a thin film heater, comprising forming a thin film heater having a three-layer structure by sequentially forming a tantalum film and a silicon nitride film. 高真空中でターゲットの変更が可能なマルチターゲットスパッタ装置を用いて、上記薄膜ヒータを上記石英系ガラス光導波路素子上に成膜する請求項3に記載の薄膜ヒータ付き導波路型光部品の製造方法。Change Target in high vacuum using a multi-target sputter apparatus capable, on SL thin film heater of the thin film heater with the waveguide type optical component according to claim 3 formed on said silica glass optical waveguide device Production method.
JP2001143335A 2001-05-14 2001-05-14 Waveguide type optical component with thin film heater and manufacturing method thereof Expired - Fee Related JP3843762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001143335A JP3843762B2 (en) 2001-05-14 2001-05-14 Waveguide type optical component with thin film heater and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001143335A JP3843762B2 (en) 2001-05-14 2001-05-14 Waveguide type optical component with thin film heater and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002341300A JP2002341300A (en) 2002-11-27
JP3843762B2 true JP3843762B2 (en) 2006-11-08

Family

ID=18989501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001143335A Expired - Fee Related JP3843762B2 (en) 2001-05-14 2001-05-14 Waveguide type optical component with thin film heater and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3843762B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6416553B2 (en) * 2014-09-02 2018-10-31 住友電気工業株式会社 Semiconductor device and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2002341300A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
US6002823A (en) Tunable directional optical waveguide couplers
US6687446B2 (en) Optical waveguide device and manufacturing method therefor
JP2006208518A (en) Thermo-optical effect type optical waveguide element and its manufacturing method
EP0987580A1 (en) Optical intensity modulator and switch comprising the same
JP2005531030A (en) Optical waveguide
JP4638749B2 (en) Thermo-optic phase modulator and manufacturing method thereof
US6366730B1 (en) Tunable optical waveguides
JP4758714B2 (en) Normal dark Y-shaped digital optical switch and variable optical attenuator
JP3843762B2 (en) Waveguide type optical component with thin film heater and manufacturing method thereof
JP3573332B2 (en) Interferometric thermo-optical components
JP3965060B2 (en) Manufacturing method of waveguide type optical component with thin film heater
KR100396678B1 (en) Thermo-Optical Switch
JP3077719B2 (en) Thermo-optic phase shifter
US6709882B2 (en) Planar lightwave circuit active device metallization process
JP3459040B2 (en) Polymer thermo-optical waveguide device
JP3800039B2 (en) Thermo-optic optical attenuator
JP3534385B2 (en) Thermo-optic switch
JP2003084251A (en) Optical waveguide element
JPH0954291A (en) Optical phase shifter and optical switch using the same
KR100429225B1 (en) Thermo-Optical Switch
JPH05313032A (en) Manufacture of optical waveguide
JP2001147335A (en) Optical waveguide element
JP2004046044A (en) Quartz-based optical waveguide
JPH103013A (en) Polymer waveguide and its production
JP2002221631A (en) Method for manufacturing interference device optical circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees