JP3843235B2 - Electronic component assembly method and electronic component mounted substrate - Google Patents

Electronic component assembly method and electronic component mounted substrate Download PDF

Info

Publication number
JP3843235B2
JP3843235B2 JP2001372737A JP2001372737A JP3843235B2 JP 3843235 B2 JP3843235 B2 JP 3843235B2 JP 2001372737 A JP2001372737 A JP 2001372737A JP 2001372737 A JP2001372737 A JP 2001372737A JP 3843235 B2 JP3843235 B2 JP 3843235B2
Authority
JP
Japan
Prior art keywords
electronic component
bump
circuit forming
sealing material
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001372737A
Other languages
Japanese (ja)
Other versions
JP2003174117A5 (en
JP2003174117A (en
Inventor
和司 東
法人 塚原
和也 後川
和之 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001372737A priority Critical patent/JP3843235B2/en
Publication of JP2003174117A publication Critical patent/JP2003174117A/en
Publication of JP2003174117A5 publication Critical patent/JP2003174117A5/ja
Application granted granted Critical
Publication of JP3843235B2 publication Critical patent/JP3843235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/1134Stud bumping, i.e. using a wire-bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品の組立方法、及び該組立方法により組み立てられた電子部品に関する。
【0002】
【従来の技術】
近年、電子部品の生産量は増加し続け、それに伴い多種、多様なパッケージ形態が提案されている。例えばCSP(chip sides package)、C4(Controlled Collapse Chip Connection)やBGA(Ball Grid Allay)、QFPなどの形態がある。特に小型、軽量を実現する電子部品のCSPは重要なものになると考えられている。従来のICチップなどの半導体素子は、電極に金バンプ、半田バンプなどを形成して実装基板に実装した後、封止材で固定するものであった。この一例として、図22を参照して説明すると、半導体素子1の電極にスタッドバンプボンディングなどにより、例えば金にてなるバンプ3を形成する。そしてセラミックや樹脂材等からなる実装基板2上の基板電極4上に超音波振動を加えながらバンプ3を接合する。その後、バンプ3と基板電極4との接合箇所及び半導体素子1の周辺部分を含めて絶縁樹脂などの封止材5により封止を行う。
【0003】
又、SAW(surface acoustic wave)フィルターなどの半導体素子は回路形成面に異物が介在してはならないため、図23に示すようなキャビティータイプのセラミック基板7にSAWフィルタ6を、バンプ3を介してフリップチップボンディング工法で導通させたり、図24に示すように、ダイボンド材11にてSAWフィルタ6を固定し金ワイヤ8を用いてワイヤボンディング工法にて導通させる。その後、両者とも、セラミック基板7の上部に、ガラス材又は半田10を用いて金属プレート9の蓋を施し、上記キャビティーを密閉する形態があった。
【0004】
【発明が解決しようとする課題】
しかしながら、上述の従来の方法では、上記基板電極4上に超音波振動を加えながらバンプ3を接合するとき、バンプ3と半導体素子1の電極との接合箇所付近に応力が集中し、半導体素子1の回路形成面にダメージを与える場合が考えられる。又、上記キャビティーに収納する場合には、パッケージの形状が特殊となり、蓋をするという工程が必要となる。よっていずれの場合も、製品品質の安定化、実装コストの低下、及び生産タクトの向上を図ることが困難であるという問題がある。
本発明は、このような問題点を解決するためになされたもので、製品品質の安定化、及び生産タクトの向上を含めた実装コストの低減が可能な、電子部品の組立方法、及び該組立方法により組み立てられた電子部品を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の第1態様の電子部品組立方法は、回路形成部を形成した半導体素子の回路形成面に形成された突起電極を覆い上記回路形成面に封止材を設けた後、上記回路形成部を保護した状態で上記突起電極が上記封止材に露出するまで上記封止材を除去することを特徴とする。
【0008】
本発明の第2態様の電子部品組立方法は、半導体素子の回路形成部を形成した回路形成面の一部である突起電極を形成する箇所を除いた上記回路形成部に接触して該回路形成部を覆い保護する保護材を設けた後、上記保護材に密着して上記保護材を密閉する密閉部材を設けることを特徴とする。
【0009】
上記第2態様の組立方法において、上記密閉部材を設けた後、上記回路形成面上に突起電極を形成することもできる。
【0010】
上記第1態様及び第2態様の組立方法において、上記半導体素子は、上記突起電極と電気的に接続される実装基板上に実装するようにしてもよい。
【0013】
又、本発明の第3態様の電子部品は、上記第1態様及び第2態様の電子部品組立方法にて組み立てられたことを特徴とする。
【0014】
【発明の実施の形態】
本発明の実施形態である電子部品組立方法、及び該組立方法にて組み立てられた電子部品について、図を参照しながら以下に説明する。尚、各図において、同じ構成部分に付いては同じ符号を付している。
第1実施形態;
上記電子部品組立方法の第1実施形態について説明する。
まず、図6に示すように本実施形態ではスタッドバンプボンディング装置のキャピラリー201の導線通路201aを通して突出した金線などの金属線202の先端箇所を放電溶融させ、金属ボール202aを形成する。そして半導体素子111の回路形成面111aに形成されている回路形成部113に備わる電極上に対して上記金属ボール202aを押圧するとともに超音波振動を作用させて金属ボール202aを上記電極に接合する。該接合後、キャピラリー201を上昇させ、キャピラリー201の横移動、下降、及び上昇の各動作を行なうことで、上記金属ボール202aにつながっている金属線202を破断し、図7に示すように上記電極上に、突起電極に相当するバンプ112を形成する。尚、バンプ112の材質は、金に限らず、半田でもよい。
尚、上記半導体素子111は、Si半導体、化合物半導体、セラミック、樹脂、又はガラス等の基板上に形成された回路を備える。
【0015】
次のステップでは、図8に示すように、バンプ112を形成した半導体素子111の回路形成面111a上に、本実施形態では絶縁樹脂にてなる封止材114を供給し、バンプ112を覆うように上記回路形成面111aを封止材114にて封止する。具体的には図示するように、封止材114は、塗布機115のノズル116から供給され、回路形成面111aとバンプ112との全体を覆い、封止材114の厚みはバンプ112の高さを超える値であり、例えば、バンプ高さの2倍、又はバンプ高さ+設定値とすることができる。又、封止材114は、ガラス系、アクリル系、エポキシ系、又はポリイミド系の樹脂であり、熱硬化性、熱可塑性、及び光硬化性のものである。供給後、封止材114は硬化される。
【0016】
封止材114を上述のように塗布方法で供給することで、上記回路形成面111aを保護できると伴に、塗布後、硬化した封止材114を研磨してバンプ112の露出面を平滑化することができる。
尚、本実施形態では封止材114を上述のように塗布方法にて供給したが、印刷方法、スピンコート、又は転写方法により供給してもよい。尚、一般的には、粘度の高い封止材を供給するときには、施工時間の短縮化が可能なことから、印刷方法が好ましい。一方、粘度の低い封止材を供給するときには、その膜厚を安定させるため、スピンコート方法が好ましい。
【0017】
次のステップでは、図1に示すように、半導体素子111の回路形成面111aを封止材114にて保護した状態で、バンプ112が封止材114に露出するまで封止材114及びバンプ112を除去する。本実施形態では、図示するように駆動部205にて駆動される研削工具206を用いて封止材114及びバンプ112を研削する。封止材114の材質により、封止材114に対する上記研削工具206の押圧力、回転数、及び削り深さが調整される。尚、封止材114及びバンプ112の除去方法は、上記研削に限らず研磨により除去するようにしてもよい。
上記研削及び研磨動作によれば、除去後の封止材114の表面とバンプ112の露出面112aとを同一面とすることができる。又、バンプ112の周囲を封止材114にて包囲することができ、実装基板の電極とバンプ112との接合時にバンプ112に作用する力を封止材114へ分散させることもできる。又、上記研削によれば、完成される電子部品の厚みを均一にすることができる。又、上記研磨する場合、上述の工程をウエハ状の基板に対して行ったときには、一括的に処理できるのでコスト低減を図ることができる。
【0018】
又、上記研削工具206にて研削されたバンプ112の高さは、バンプ112の横断面積が最も大きい、つまり封止材114から露出するバンプ112の露出面112aの面積が最も大きくなる高さが好ましい。具体的には、図10に示すように、バンプ112の形状において、一般的に最大周囲を有する、バンプ112の台座部112bにおける上記回路形成面111aからの高さhの1/2の高さが好ましい。
このようにして図9に示すように、半導体素子111のバンプ112の一部が露出した状態で、半導体素子111の回路形成部113が封止材114にて覆われている電子部品161が形成される。該電子部品161の一例として、LED(発光ダイオード)が挙げられる。尚、上述のような、回路形成部113に直接、封止材114が接触する方法は、SAWフィルタには適用できない。
【0019】
このように本実施形態の電子部品組立方法、及び該組立方法にて組み立てられる電子部品によれば、回路形成部113が封止材114にて覆われた状態でバンプ112を露出させていることから、実装基板上の電極に例えば超音波振動を加えながらバンプ112を接合する場合であっても、バンプ112と半導体素子111の電極との接合箇所付近に応力が集中することはなく、上記回路形成部113に損傷を与えることはない。よって、製品品質の安定化を図ることができる。
【0020】
上述のように作製された電子部品161は、図2に示すように、実装基板180の基板電極181上に、半田、導電性ペースト、又は導電性シートを介してバンプ112の上記露出面を対向させて配置し、上記基板電極181とバンプ112とを電気的、及び機械的に接合し、電子部品実装済基板101を作製する。
このように電子部品実装済基板101によれば、回路形成部113が封止材114にて保護された状態にて基板電極181とバンプ112とを半田等にて接続することから、回路形成部113に損傷を与えることがなく、製品品質の安定化を図ることができる。さらに、従来のように特殊形状のパッケージは不要であり蓋をするという工程も必要ない。よって、生産タクトの向上を含めた実装コストの低減が可能である。
【0021】
図6から図9に示すように、上述の説明は、一つの半導体素子111に対してバンプ112の形成、封止材114の供給、及びバンプ112の露出の各動作を行ったが、図11及び図12に示すように、半導体ウエハ170上に格子状に形成された各回路形成部113に対して上記各動作を行ってもよい。そしてその後、各回路形成部113に対応して半導体ウエハ170をダイシングし、それぞれの電子部品161に切り分けてもよい。
このようにウエハ状態で処理することで、一度に電子部品161を複数生産することができ、又、個々の半導体素子111にて処理する場合に比べて取り扱いが容易になる。
【0022】
第2実施形態;
上述の第1実施形態では、図2に示すように、封止材114に露出したバンプ112の露出面112aと、実装基板180の基板電極181とが導電性ペースト等を介して接続されるように構成した。一方、図3に示す電子部品実装済基板102のように、封止材114に対するバンプ112の露出動作後、実装基板180への装着前に、少なくとも上記露出面112aに接触する金属膜117を形成する。該金属膜117は、導電性材料の一例に相当し例えば銅又は金にてなる。又、金属膜117の形成方法は、下記のウエハ状態の場合に同じである。
【0023】
ウエハ状態にて処理する場合には、図13に示すように、露出面112aが露出している封止材114の表面114aの全てに、スパッタ、蒸着、又はメッキにより、金属膜117を形成する。その後、図14に示すように、電気的接続の必要なバンプ112を導通させるようにパターニングレジストを塗布し、パターニング後、上記金属膜117の不要部分をドライエッチング又はウエットエッチングにより除去する。次に、パターニングされた金属膜117上に、例えば印刷方法により半田を供給しリフロー後、電極を形成する。そして、各回路形成部113に対応して半導体ウエハ170をダイシングし、それぞれの電子部品に切り分ける。
【0024】
個々の半導体素子111にて作製する場合、及びウエハ状態から切り分けて作製する場合のいずれの方法においても、作製された電子部品162は、上記金属膜117上の半田と基板電極181とを対向させて実装基板180に配置され、リフローにより上記金属膜117上の半田を溶融して、電子部品162と実装基板180とを導通させ、上記電子部品162を実装基板180に装着する。
【0025】
上記金属膜117の形成前に、上記露出面112a及び封止材114への金属膜117の密着性を向上させるために、露出面112a及び封止材114の表面にアルゴンプラズマ、又は亜硫酸アンモニウム等の化学研磨を施した後、上記スパッタ、蒸着、又はメッキを実施するのが好ましい。
以上説明したステップを有する第2実施形態によれば、上述の第1実施形態の場合と同様の効果を奏することができるとともに、さらに、上述の第1実施形態に比べて、研磨面への電極の密着性が向上し、機械的外部応力に対して剥がれ難い、つまり信頼性の高い構成を実現することができる。
【0026】
第3実施形態;
上述の第1実施形態及び第2実施形態は、上記封止材114のみにて上記回路形成部113を保護する形態である。本第3実施形態では、上記回路形成部113に対して専用の保護材を設け、該保護材をも含めて封止材114にて封止を行う形態を採る。図4、及び図15〜図17を参照して以下に詳しく説明する。尚、以下の説明では、ウエハ状態にて処理する場合を例に採るが、勿論、個々の半導体素子111毎に処理を行っても良い。
【0027】
第1実施形態及び第2実施形態で説明したように、半導体ウエハ170の回路形成部113にバンプ112を形成した後、図15に示すように、回路形成部113の全体を覆う大きさにてなり、本実施形態ではアクリル樹脂にてなる保護材131を回路形成部113に載置し密着させて回路形成部113を保護する。又、アクリル樹脂以外にエポキシ系樹脂が使用可能である。
以後、上述の第1実施形態及び第2実施形態の場合と同様にして、バンプ112を覆うように、本実施形態ではさらに上記保護材131をも覆い図16に示すように半導体ウエハ170の回路形成面111aに封止材114を供給し、その後、図17に示すようにバンプ112の一部が封止材114から露出するように封止材114を除去する。尚、このように封止材114及びバンプ112の一部を除去する工程が含まれることから、該除去動作に上記保護材131が干渉しては回路形成部113の損傷を招く場合も考えられる。又、上述したようにバンプ112は、上記h/2の高さまで除去される場合があることから、保護材131における回路形成面111aからの高さは、上記h/2未満とする。
【0028】
次のステップでは、各回路形成部113に対応して、半導体ウエハ170をダイシングして個々の電子部品163に切り分ける。
そして、図4に示すように、分割した電子部品163を実装基板180に対向させ、基板電極181とバンプ112とを半田、導電性ペースト、又は導電性シート等を介して電気的及び機械的に接合する。これにて電子部品実装済基板103が完成する。
【0029】
このように本第3実施形態によれば、上述の各実施形態の場合と同様の効果を奏することができる。又、本第3実施形態では、上述の第1実施形態に比べて、封止材114が保護材131を覆って設けられることでより高い信頼性にて回路形成部113を保護することができる。
尚、上述の説明では、保護材131は、回路形成部113の全体を覆う大きさの場合を例に採ったが、回路形成部113の一部を覆う大きさとすることもできる。
【0030】
第4実施形態;
上述の第3実施形態では、上記回路形成部113に接触して保護材131を設けた後、上記回路形成面111aの全面を封止材114にて封止した。これに対し、本第4実施形態では回路形成部113に保護材131を設けた後、該保護材131のみを密閉部材132にて覆う形態を採る。図5、及び図18〜図21を参照して以下に詳しく説明する。尚、以下の説明では、個々の半導体素子111毎に処理を行う場合を例に採るが、勿論、ウエハ状態にて処理を行いダイシングにて個々の電子部品に切り分けてもよい。
【0031】
図18及び図19に示すように、半導体素子111の回路形成面111aの一部にバンプ112を形成するとともに、上記第3実施形態と同様に、回路形成部113に上記保護材131を設ける。さらに次のステップでは、該保護材131に対応した形状をなし保護材131を収納する凹部133を有し、シリコン系のガラス部材にてなる密閉部材132を、保護材131を囲うようにして回路形成面111a上に設け固定して保護材131を密閉する。又、密閉部材132の材料としてはエポキシ系、アクリル系の材料が使用可能である。又、保護材131と密閉部材132とは非接触であるように図示しているが、保護材131と密閉部材132とは密着している。このようにして電子部品164が完成する。
そして図20に示すように、電子部品164を実装基板180に対向させ、実装基板180の基板電極181と電子部品164のバンプ112とを、半田、導電性ペースト、又は導電性シート等を介して電気的及び機械的に接合する。これにて図5に示すように電子部品実装済基板103が完成する。
【0032】
尚、上述の説明では、半導体素子111の回路形成面111aにバンプ112を形成したが、図21に示すように、実装基板180の基板電極181にバンプ112を形成することで電子部品164側にはバンプ112形成を省略することもできる。
又、バンプ112の設置箇所を問わず、図5に示すように電子部品164を実装基板180に確実に装着するためには、装着中さらに装着完了後の状態において、上記密閉部材132が実装基板180に干渉してはならない。よって、回路形成面111aからの密閉部材132の高さは、装着完了後における、上記回路形成面111aと実装基板180の基板表面180aとの隙間169よりも小さくなければならない。
【0033】
又、バンプ112の設置箇所を問わず、バンプ112の形成動作と、上記密閉部材132の取付動作とは、どちらを先に行っても良いが、上述のように密閉部材132の高さに注意を払う必要があることを考慮すると、バンプ112の高さはバンプ112の形成動作において比較的容易に制御可能であることから、密閉部材132を設置した後にバンプ112を形成する方が好ましい。
【0034】
以上説明したように、本第4実施形態によれば、上述の各実施形態の場合と同様の効果を奏することができる。又、さらに本第4実施形態によれば、上述の第3実施形態に比べて、密閉部材132の設置後、バンプ112を形成できるため、バンプ形状の制御が容易である。又、保護される部分とバンプ112とが分離しているため、熱による応力が保護部分に集中せず、部品の信頼性が向上する。
【0035】
又、上記第4実施形態では、回路形成部113を保護材131にて覆ったが、保護材131の設置を省略することもできる。即ち、回路形成部113を上記密閉部材132のみにて密閉することで、回路形成部113の保護を行っても良い。
【0036】
又、上述の各実施形態では、電子部品の実装基板180への装着方法は、フリップチップ方法を例に採って説明したが、ダイボンドにて電子部品を実装基板180へ固定しワイヤボンディング法にて電気的接続を図っても良い。
【0037】
【発明の効果】
以上詳述したように本発明の第1態様の電子部品組立方法、及び第3態様の電子部品によれば、回路形成部を封止材にて覆った後、該封止材に突起電極が露出するまで上記封止材を除去したことにより、実装基板上の電極に例えば超音波振動を加えながら突起電極を接合する場合であっても、突起電極と半導体素子との接合箇所付近に応力が集中することはない。よって、上記回路形成部に損傷を与えることがなく、製品品質の安定化を図ることができる。又、従来のように特殊形状のパッケージは不要であり蓋をするという工程も必要ない。よって、生産タクトの向上を含めた実装コストの低減が可能である。
【0038】
又、上記封止材にて覆う前に、上記回路形成部に保護材を設けることで、より一層、回路形成部の損傷を防止でき、製品品質の安定化を図ることができる。
【0039】
又、本発明の第2態様の電子部品組立方法、及び第3態様の電子部品によれば、回路形成部に保護材を設けさらに該保護材を密閉材にて覆うことで、実装基板上の電極に例えば超音波振動を加えながら突起電極を接合する場合であっても、突起電極と半導体素子との接合箇所付近に応力が集中することはない。よって、上記回路形成部に損傷を与えることがなく、製品品質の安定化を図ることができる。又、従来のように特殊形状のパッケージは不要であり蓋をするという工程も必要ない。よって、生産タクトの向上を含めた実装コストの低減が可能である。
【図面の簡単な説明】
【図1】 本発明の第1実施形態における電子部品組立方法における一工程を示す図であり、封止材を除去している状態を示す図である。
【図2】 本発明の第1実施形態における電子部品組立方法にて組み立てられた電子部品を実装基板へ実装した状態を示す図である。
【図3】 本発明の第2実施形態における電子部品組立方法にて組み立てられた電子部品を実装基板へ実装した状態を示す図である。
【図4】 本発明の第3実施形態における電子部品組立方法にて組み立てられた電子部品を実装基板へ実装した状態を示す図である。
【図5】 本発明の第4実施形態における電子部品組立方法にて組み立てられた電子部品を実装基板へ実装した状態を示す図である。
【図6】 本発明の各実施形態における電子部品組立方法における一工程を示す図であり、半導体素子上にバンプを形成している状態を説明する図である。
【図7】 半導体素子上にバンプが形成された状態を示す図である。
【図8】 本発明の第1〜第3実施形態における電子部品組立方法における一工程を示す図であり、バンプを覆い封止材を供給している状態を示す図である。
【図9】 本発明の第1〜第3実施形態における電子部品組立方法における一工程を示す図であり、バンプの一部を露出させるまで封止材を除去した状態を示す図である。
【図10】 図1に示すように、封止材を除去するときの除去量をバンプの高さから説明するための図である。
【図11】 本発明の第1〜第3実施形態における電子部品組立方法をウエハに対して行っている場合であって、バンプの一部を露出させるまで封止材を除去した状態を示す図である。
【図12】 図11に示すウエハを切り分けた状態を示す図である。
【図13】 本発明の第2実施形態における電子部品組立方法の一工程を示す図であり、封止材上に金属膜を形成した状態を示す図である。
【図14】 図13に示す金属膜の一部をエッチングにより除去した状態を示す図である。
【図15】 本発明の第3実施形態における電子部品組立方法の一工程を示す図であり、回路形成部に保護材を設置した状態を示す図である。
【図16】 図15に示すウエハ上に封止材を供給した状態を示す図である。
【図17】 図16に示す封止材を除去した状態を示す図である。
【図18】 本発明の第4実施形態における電子部品組立方法にて組み立てられた電子部品の一部断面を含む側面図である。
【図19】 図18に示す電子部品の平面図である。
【図20】 図18及び図19に示す電子部品を実装基板へ装着する状態を示す図である。
【図21】 図18及び図19に示す電子部品の変形例を、バンプを形成した実装基板へ装着する状態を示す図である。
【図22】 従来の電子部品組立方法におけるフリップチップ実装にて組み立てられた電子部品実装済み基板を示す図である。
【図23】 従来の電子部品組立方法にて組み立てられた電子部品実装済み基板を示す図であって、パッケージ内に電子部品をフリップチップ実装した場合の電子部品実装済み基板を示す図である。
【図24】 従来の電子部品組立方法にて組み立てられた電子部品実装済み基板を示す図であって、パッケージ内に電子部品をワイヤボンディング実装した場合の電子部品実装済み基板を示す図である。
【符号の説明】
111…半導体素子、111a…回路形成面、112…バンプ、112a…露出面、113…回路形成部、114…封止材、117…金属膜、131…保護材、132…密閉部材、180…実装基板。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electronic component assembling method and an electronic component assembled by the assembling method.
[0002]
[Prior art]
In recent years, the production volume of electronic components has continued to increase, and various and diverse package forms have been proposed. For example, there are forms such as CSP (chip sides package), C4 (Controlled Collapse Chip Connection), BGA (Ball Grid Allay), and QFP. In particular, it is considered that the CSP of an electronic component that realizes small size and light weight becomes important. A conventional semiconductor element such as an IC chip is formed by forming gold bumps, solder bumps, etc. on electrodes and mounting them on a mounting substrate, and then fixing with a sealing material. As an example of this, referring to FIG. 22, bumps 3 made of, for example, gold are formed on the electrodes of the semiconductor element 1 by stud bump bonding or the like. Then, the bump 3 is joined to the substrate electrode 4 on the mounting substrate 2 made of ceramic or resin material while applying ultrasonic vibration. After that, sealing is performed with a sealing material 5 such as an insulating resin including the joint portion between the bump 3 and the substrate electrode 4 and the peripheral portion of the semiconductor element 1.
[0003]
Further, since a semiconductor element such as a SAW (surface acoustic wave) filter should not have foreign matter on the circuit forming surface, the SAW filter 6 is placed on the cavity type ceramic substrate 7 as shown in FIG. Then, conduction is performed by a flip chip bonding method, or, as shown in FIG. 24, the SAW filter 6 is fixed by a die bonding material 11 and conduction is performed by a wire bonding method using a gold wire 8. Then, both had the form which gave the lid | cover of the metal plate 9 to the upper part of the ceramic substrate 7 using the glass material or the solder 10, and sealed the said cavity.
[0004]
[Problems to be solved by the invention]
However, in the above-described conventional method, when the bump 3 is bonded to the substrate electrode 4 while applying ultrasonic vibration, stress is concentrated in the vicinity of the bonding portion between the bump 3 and the electrode of the semiconductor element 1. It may be possible to damage the circuit formation surface. Moreover, when storing in the said cavity, the shape of a package becomes special and the process of covering is required. Therefore, in either case, there is a problem that it is difficult to stabilize product quality, reduce mounting costs, and improve production tact.
The present invention has been made to solve such problems, and an assembly method of an electronic component capable of reducing the mounting cost including stabilization of product quality and improvement of production tact, and the assembly. An object is to provide an electronic component assembled by the method.
[0005]
[Means for Solving the Problems]
The electronic component assembling method according to the first aspect of the present invention covers the protruding electrode formed on the circuit forming surface of the semiconductor element on which the circuit forming portion is formed, and after providing the sealing material on the circuit forming surface, The sealing material is removed until the protruding electrode is exposed to the sealing material in a state in which is protected.
[0008]
According to a second aspect of the present invention, there is provided an electronic component assembly method comprising: After providing a protective material that covers and protects the part, a sealing member that tightly contacts the protective material and seals the protective material is provided.
[0009]
In the assembling method of the second aspect, after the sealing member is provided, the protruding electrode can be formed on the circuit forming surface.
[0010]
In the assembly method according to the first aspect and the second aspect, the semiconductor element may be mounted on a mounting substrate that is electrically connected to the protruding electrode.
[0013]
The electronic component according to the third aspect of the present invention is assembled by the electronic component assembling method according to the first and second aspects.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
An electronic component assembling method according to an embodiment of the present invention and an electronic component assembled by the assembling method will be described below with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected about the same component.
1st Embodiment;
A first embodiment of the electronic component assembling method will be described.
First, as shown in FIG. 6, in the present embodiment, the tip portion of a metal wire 202 such as a gold wire protruding through the conducting wire passage 201a of the capillary 201 of the stud bump bonding apparatus is discharged and melted to form a metal ball 202a. Then, the metal ball 202a is pressed against the electrode provided on the circuit forming portion 113 formed on the circuit forming surface 111a of the semiconductor element 111, and ultrasonic vibration is applied to join the metal ball 202a to the electrode. After the joining, the capillary 201 is raised, and the metal wire 202 connected to the metal ball 202a is broken by performing the lateral movement, lowering, and raising operations of the capillary 201. As shown in FIG. A bump 112 corresponding to the protruding electrode is formed on the electrode. The material of the bump 112 is not limited to gold but may be solder.
The semiconductor element 111 includes a circuit formed on a substrate such as Si semiconductor, compound semiconductor, ceramic, resin, or glass.
[0015]
In the next step, as shown in FIG. 8, on the circuit forming surface 111a of the semiconductor element 111 on which the bump 112 is formed, the sealing material 114 made of insulating resin is supplied in this embodiment so as to cover the bump 112. The circuit forming surface 111 a is sealed with a sealing material 114. Specifically, as shown in the figure, the sealing material 114 is supplied from the nozzle 116 of the coating machine 115 and covers the entire circuit forming surface 111a and the bump 112. The thickness of the sealing material 114 is the height of the bump 112. For example, it can be set to twice the bump height or bump height + set value. The sealing material 114 is a glass-based, acrylic-based, epoxy-based, or polyimide-based resin, and has a thermosetting property, a thermoplastic property, and a photocurable property. After the supply, the sealing material 114 is cured.
[0016]
By supplying the sealing material 114 by the coating method as described above, the circuit forming surface 111a can be protected, and after the coating, the cured sealing material 114 is polished to smooth the exposed surface of the bump 112. can do.
In this embodiment, the sealing material 114 is supplied by the coating method as described above, but may be supplied by a printing method, a spin coating, or a transfer method. In general, when supplying a sealing material having a high viscosity, the printing method is preferable because the construction time can be shortened. On the other hand, when supplying a sealing material having a low viscosity, a spin coating method is preferable in order to stabilize the film thickness.
[0017]
In the next step, as shown in FIG. 1, with the circuit formation surface 111 a of the semiconductor element 111 protected by the sealing material 114, the sealing material 114 and the bump 112 are exposed until the bump 112 is exposed to the sealing material 114. Remove. In the present embodiment, the sealing material 114 and the bumps 112 are ground using a grinding tool 206 driven by the drive unit 205 as shown in the figure. Depending on the material of the sealing material 114, the pressing force, the number of rotations, and the cutting depth of the grinding tool 206 against the sealing material 114 are adjusted. The removal method of the sealing material 114 and the bump 112 is not limited to the above grinding, and may be removed by polishing.
According to the grinding and polishing operations, the surface of the sealing material 114 after removal and the exposed surface 112a of the bump 112 can be made the same surface. Further, the periphery of the bump 112 can be surrounded by the sealing material 114, and the force acting on the bump 112 when the electrode of the mounting substrate and the bump 112 are joined can be dispersed to the sealing material 114. Moreover, according to the said grinding, the thickness of the completed electronic component can be made uniform. In the case of polishing, when the above-described steps are performed on a wafer-like substrate, the processing can be performed in a lump, so that cost reduction can be achieved.
[0018]
The height of the bump 112 ground by the grinding tool 206 is such that the cross-sectional area of the bump 112 is the largest, that is, the height of the exposed surface 112a of the bump 112 exposed from the sealing material 114 is the largest. preferable. Specifically, as shown in FIG. 10, in the shape of the bump 112, the height of the bump 112 is generally ½ of the height h from the circuit forming surface 111a in the pedestal portion 112b of the bump 112. Is preferred.
In this way, as shown in FIG. 9, the electronic component 161 in which the circuit forming portion 113 of the semiconductor element 111 is covered with the sealing material 114 is formed with a part of the bump 112 of the semiconductor element 111 exposed. Is done. An example of the electronic component 161 is an LED (light emitting diode). Note that the method in which the sealing material 114 directly contacts the circuit forming portion 113 as described above cannot be applied to the SAW filter.
[0019]
As described above, according to the electronic component assembling method of the present embodiment and the electronic component assembled by the assembling method, the bump 112 is exposed in a state where the circuit forming portion 113 is covered with the sealing material 114. Therefore, even when the bump 112 is bonded to the electrode on the mounting substrate while applying ultrasonic vibration, for example, stress is not concentrated near the bonding portion between the bump 112 and the electrode of the semiconductor element 111, and the circuit The formation part 113 is not damaged. Therefore, the product quality can be stabilized.
[0020]
As shown in FIG. 2, the electronic component 161 manufactured as described above faces the exposed surface of the bump 112 on the substrate electrode 181 of the mounting substrate 180 via solder, conductive paste, or a conductive sheet. Then, the substrate electrode 181 and the bump 112 are electrically and mechanically joined to produce the electronic component mounted substrate 101.
Thus, according to the electronic component mounted substrate 101, since the circuit electrode 113 and the bump 112 are connected by solder or the like in a state where the circuit forming portion 113 is protected by the sealing material 114, the circuit forming portion The product quality can be stabilized without damaging 113. Further, a specially shaped package is not required as in the prior art, and a process of covering is not necessary. Therefore, it is possible to reduce the mounting cost including improvement of production tact.
[0021]
As shown in FIGS. 6 to 9, in the above description, each operation of forming the bump 112, supplying the sealing material 114, and exposing the bump 112 is performed on one semiconductor element 111. And as shown in FIG. 12, you may perform each said operation | movement with respect to each circuit formation part 113 formed in the grid | lattice form on the semiconductor wafer 170. FIG. Then, after that, the semiconductor wafer 170 may be diced corresponding to each circuit forming portion 113 and cut into each electronic component 161.
By processing in the wafer state in this way, a plurality of electronic components 161 can be produced at one time, and handling becomes easier as compared with the case of processing with individual semiconductor elements 111.
[0022]
A second embodiment;
In the first embodiment described above, as shown in FIG. 2, the exposed surface 112a of the bump 112 exposed to the sealing material 114 and the substrate electrode 181 of the mounting substrate 180 are connected via a conductive paste or the like. Configured. On the other hand, like the electronic component mounted substrate 102 shown in FIG. 3, after the bump 112 is exposed to the sealing material 114 and before mounting on the mounting substrate 180, at least the metal film 117 that contacts the exposed surface 112 a is formed. To do. The metal film 117 corresponds to an example of a conductive material and is made of, for example, copper or gold. The formation method of the metal film 117 is the same in the following wafer state.
[0023]
In the case of processing in a wafer state, as shown in FIG. 13, a metal film 117 is formed on the entire surface 114a of the sealing material 114 where the exposed surface 112a is exposed by sputtering, vapor deposition, or plating. . Thereafter, as shown in FIG. 14, a patterning resist is applied so that the bumps 112 requiring electrical connection are conducted, and after the patterning, unnecessary portions of the metal film 117 are removed by dry etching or wet etching. Next, solder is supplied on the patterned metal film 117 by, for example, a printing method, and after reflowing, an electrode is formed. Then, the semiconductor wafer 170 is diced corresponding to each circuit forming portion 113 and cut into respective electronic components.
[0024]
In both the case of manufacturing by individual semiconductor element 111 and the case of manufacturing by separating from the wafer state, the manufactured electronic component 162 makes the solder on the metal film 117 and the substrate electrode 181 face each other. Then, the solder on the metal film 117 is melted by reflow, the electronic component 162 and the mounting substrate 180 are electrically connected, and the electronic component 162 is mounted on the mounting substrate 180.
[0025]
In order to improve the adhesion of the metal film 117 to the exposed surface 112a and the sealing material 114 before the formation of the metal film 117, argon plasma, ammonium sulfite, or the like is applied to the exposed surface 112a and the surface of the sealing material 114. It is preferable to perform the sputtering, vapor deposition, or plating after the chemical polishing.
According to the second embodiment having the steps described above, the same effects as those of the first embodiment described above can be obtained, and further, the electrode on the polishing surface can be compared with the first embodiment described above. Thus, it is possible to realize a highly reliable configuration that is difficult to peel off against mechanical external stress.
[0026]
A third embodiment;
In the first and second embodiments described above, the circuit forming part 113 is protected only by the sealing material 114. In the third embodiment, a dedicated protective material is provided for the circuit forming portion 113 and sealing is performed with the sealing material 114 including the protective material. This will be described in detail below with reference to FIGS. 4 and 15 to 17. In the following description, a case where processing is performed in a wafer state is taken as an example, but processing may be performed for each individual semiconductor element 111 as a matter of course.
[0027]
As described in the first embodiment and the second embodiment, after the bump 112 is formed on the circuit forming portion 113 of the semiconductor wafer 170, as shown in FIG. In this embodiment, the protective material 131 made of acrylic resin is placed on and closely adhered to the circuit forming portion 113 to protect the circuit forming portion 113. In addition to acrylic resins, epoxy resins can be used.
Thereafter, in the same manner as in the first and second embodiments described above, in this embodiment, the protective material 131 is further covered so as to cover the bump 112, and the circuit of the semiconductor wafer 170 as shown in FIG. The sealing material 114 is supplied to the formation surface 111a, and then the sealing material 114 is removed so that a part of the bump 112 is exposed from the sealing material 114 as shown in FIG. In addition, since the process of removing a part of the sealing material 114 and the bump 112 is included in this way, the protective material 131 may interfere with the removing operation, and the circuit forming portion 113 may be damaged. . Further, as described above, since the bump 112 may be removed to the height of h / 2, the height of the protective material 131 from the circuit formation surface 111a is less than h / 2.
[0028]
In the next step, the semiconductor wafer 170 is diced and cut into individual electronic components 163 corresponding to the respective circuit forming portions 113.
Then, as shown in FIG. 4, the divided electronic component 163 is opposed to the mounting substrate 180, and the substrate electrode 181 and the bump 112 are electrically and mechanically connected via solder, conductive paste, conductive sheet, or the like. Join. Thus, the electronic component mounted substrate 103 is completed.
[0029]
As described above, according to the third embodiment, the same effects as those in the above-described embodiments can be obtained. In the third embodiment, the circuit forming portion 113 can be protected with higher reliability by providing the sealing material 114 so as to cover the protective material 131 as compared with the first embodiment described above. .
In the above description, the protective material 131 is taken as an example of a size that covers the entire circuit forming portion 113, but may be a size that covers a part of the circuit forming portion 113.
[0030]
4th Embodiment;
In the third embodiment described above, after the protective material 131 is provided in contact with the circuit forming portion 113, the entire surface of the circuit forming surface 111 a is sealed with the sealing material 114. In contrast, in the fourth embodiment, after the protective material 131 is provided in the circuit forming portion 113, only the protective material 131 is covered with the sealing member 132. This will be described in detail below with reference to FIG. 5 and FIGS. In the following description, a case where processing is performed for each individual semiconductor element 111 is taken as an example. However, processing may be performed in a wafer state and separated into individual electronic components by dicing.
[0031]
As shown in FIGS. 18 and 19, bumps 112 are formed on a part of the circuit formation surface 111a of the semiconductor element 111, and the protective material 131 is provided on the circuit formation portion 113 as in the third embodiment. In the next step, the sealing member 132 made of a silicon glass member is formed so as to surround the protective member 131 and has a recess 133 that has a shape corresponding to the protective member 131 and accommodates the protective member 131. The protective material 131 is sealed by being provided and fixed on the formation surface 111a. In addition, as the material of the sealing member 132, an epoxy material or an acrylic material can be used. Further, although the protective material 131 and the sealing member 132 are illustrated as being non-contact, the protective material 131 and the sealing member 132 are in close contact with each other. In this way, the electronic component 164 is completed.
Then, as shown in FIG. 20, the electronic component 164 is opposed to the mounting substrate 180, and the substrate electrode 181 of the mounting substrate 180 and the bump 112 of the electronic component 164 are connected via solder, conductive paste, conductive sheet, or the like. Join electrically and mechanically. As a result, the electronic component mounted substrate 103 is completed as shown in FIG.
[0032]
In the above description, the bump 112 is formed on the circuit formation surface 111a of the semiconductor element 111. However, as shown in FIG. 21, the bump 112 is formed on the substrate electrode 181 of the mounting substrate 180 so that the electronic component 164 side. The formation of the bump 112 can be omitted.
Further, in order to securely attach the electronic component 164 to the mounting substrate 180 as shown in FIG. 5 regardless of the installation location of the bump 112, the sealing member 132 is mounted on the mounting substrate during the mounting and after the mounting is completed. Do not interfere with 180. Therefore, the height of the sealing member 132 from the circuit forming surface 111a must be smaller than the gap 169 between the circuit forming surface 111a and the substrate surface 180a of the mounting substrate 180 after the mounting is completed.
[0033]
Regardless of the installation location of the bump 112, either the formation operation of the bump 112 or the attachment operation of the sealing member 132 may be performed first, but attention should be paid to the height of the sealing member 132 as described above. In consideration of the necessity of paying, the height of the bump 112 can be controlled relatively easily in the formation operation of the bump 112. Therefore, it is preferable to form the bump 112 after the sealing member 132 is installed.
[0034]
As described above, according to the fourth embodiment, the same effects as those of the above-described embodiments can be obtained. Furthermore, according to the fourth embodiment, the bump shape can be easily controlled since the bump 112 can be formed after the sealing member 132 is installed, as compared with the third embodiment. Further, since the part to be protected and the bump 112 are separated, the stress due to heat is not concentrated on the protected part, and the reliability of the parts is improved.
[0035]
In the fourth embodiment, the circuit forming unit 113 is covered with the protective material 131. However, the installation of the protective material 131 can be omitted. That is, the circuit forming unit 113 may be protected by sealing the circuit forming unit 113 only with the sealing member 132.
[0036]
Further, in each of the above-described embodiments, the method of mounting the electronic component on the mounting substrate 180 has been described by taking the flip chip method as an example. However, the electronic component is fixed to the mounting substrate 180 by die bonding and wire bonding is used. Electrical connection may be achieved.
[0037]
【The invention's effect】
As described above in detail, according to the electronic component assembling method of the first aspect of the present invention and the electronic component of the third aspect, after the circuit forming portion is covered with the sealing material, the protruding electrode is formed on the sealing material. By removing the sealing material until it is exposed, even when the protruding electrode is bonded to the electrode on the mounting substrate while applying, for example, ultrasonic vibration, stress is applied in the vicinity of the bonding portion between the protruding electrode and the semiconductor element. Don't concentrate. Therefore, the product formation can be stabilized without damaging the circuit forming portion. Further, a specially shaped package is not required as in the prior art, and a process of covering is not necessary. Therefore, it is possible to reduce the mounting cost including improvement of production tact.
[0038]
Further, by providing a protective material on the circuit forming portion before covering with the sealing material, the circuit forming portion can be further prevented from being damaged and the product quality can be stabilized.
[0039]
In addition, according to the electronic component assembly method of the second aspect of the present invention and the electronic component of the third aspect, a protective material is provided on the circuit forming portion, and the protective material is covered with a sealing material, thereby Even when the protruding electrode is bonded to the electrode while applying ultrasonic vibration, for example, stress does not concentrate in the vicinity of the bonding portion between the protruding electrode and the semiconductor element. Therefore, the product formation can be stabilized without damaging the circuit forming portion. Further, a specially shaped package is not required as in the prior art, and a process of covering is not necessary. Therefore, it is possible to reduce the mounting cost including improvement of production tact.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a step in an electronic component assembling method according to a first embodiment of the present invention, and is a diagram illustrating a state in which a sealing material is removed.
FIG. 2 is a diagram showing a state in which an electronic component assembled by the electronic component assembling method according to the first embodiment of the present invention is mounted on a mounting board.
FIG. 3 is a diagram showing a state in which an electronic component assembled by an electronic component assembling method according to a second embodiment of the present invention is mounted on a mounting board.
FIG. 4 is a diagram showing a state in which an electronic component assembled by an electronic component assembling method according to a third embodiment of the present invention is mounted on a mounting board.
FIG. 5 is a diagram showing a state in which an electronic component assembled by an electronic component assembling method according to a fourth embodiment of the present invention is mounted on a mounting board.
FIG. 6 is a diagram showing one step in the electronic component assembling method in each embodiment of the present invention, and is a diagram for explaining a state in which bumps are formed on a semiconductor element.
FIG. 7 is a view showing a state in which bumps are formed on a semiconductor element.
FIG. 8 is a diagram showing one step in the electronic component assembling method according to the first to third embodiments of the present invention, and is a diagram showing a state where a bump is covered and a sealing material is supplied.
FIG. 9 is a view showing one step in the electronic component assembling method according to the first to third embodiments of the present invention, and is a view showing a state in which the sealing material is removed until a part of the bump is exposed.
FIG. 10 is a diagram for explaining the removal amount when removing the sealing material from the height of the bump as shown in FIG. 1;
FIG. 11 is a diagram showing a state in which the sealing material is removed until a part of the bump is exposed when the electronic component assembling method according to the first to third embodiments of the present invention is performed on the wafer. It is.
12 is a view showing a state where the wafer shown in FIG. 11 is cut.
FIG. 13 is a view showing one step of the electronic component assembling method according to the second embodiment of the present invention, and is a view showing a state in which a metal film is formed on a sealing material.
14 is a view showing a state in which a part of the metal film shown in FIG. 13 is removed by etching.
FIG. 15 is a view showing one step of an electronic component assembling method according to the third embodiment of the present invention, and is a view showing a state in which a protective material is installed in a circuit forming portion.
16 is a view showing a state where a sealing material is supplied onto the wafer shown in FIG.
17 is a view showing a state where the sealing material shown in FIG. 16 is removed.
FIG. 18 is a side view including a partial cross section of an electronic component assembled by an electronic component assembling method according to a fourth embodiment of the present invention.
19 is a plan view of the electronic component shown in FIG.
20 is a diagram illustrating a state in which the electronic component illustrated in FIGS. 18 and 19 is mounted on a mounting board.
FIG. 21 is a diagram illustrating a state in which a modification of the electronic component illustrated in FIGS. 18 and 19 is mounted on a mounting substrate on which bumps are formed.
FIG. 22 is a diagram showing an electronic component mounted substrate assembled by flip chip mounting in a conventional electronic component assembling method.
FIG. 23 is a diagram showing an electronic component mounted substrate assembled by a conventional electronic component assembling method, and shows an electronic component mounted substrate when the electronic component is flip-chip mounted in a package.
FIG. 24 is a view showing an electronic component mounted substrate assembled by a conventional electronic component assembling method, and shows an electronic component mounted substrate when the electronic component is wire-bonded mounted in a package.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 111 ... Semiconductor element, 111a ... Circuit formation surface, 112 ... Bump, 112a ... Exposed surface, 113 ... Circuit formation part, 114 ... Sealing material, 117 ... Metal film, 131 ... Protection material, 132 ... Sealing member, 180 ... Mounting substrate.

Claims (4)

半導体素子の回路形成部を形成した回路形成面の一部である突起電極を形成する箇所を除いた上記回路形成部に接触して該回路形成部を覆い保護する保護材を設けた後、上記保護材に密着して上記保護材を密閉する密閉部材を設けることを特徴とする電子部品組立方法。After a protective material which in contact with the circuit formation portion excluding a portion forming a projecting electrode which is a part of a circuit forming surface formed with the circuit formation portion of the semiconductor device covering the said circuit formation portion protection, the An electronic component assembling method, comprising: a sealing member that is in close contact with the protective material and seals the protective material. 上記密閉部材を設けた後、上記回路形成面上に突起電極を形成する、請求項1記載の電子部品組立方法。  The electronic component assembling method according to claim 1, wherein a protruding electrode is formed on the circuit forming surface after the sealing member is provided. 上記半導体素子は、上記突起電極と電気的に接続される実装基板上に実装される、請求項2記載の電子部品組立方法。  The electronic component assembling method according to claim 2, wherein the semiconductor element is mounted on a mounting substrate electrically connected to the protruding electrode. 半導体素子の回路形成部を形成した回路形成面の一部である突起電極を形成する箇所を除いた上記回路形成部に接触して該回路形成部を覆い保護する保護材と、上記保護材に密着して上記保護材を密閉する密閉部材と、上記回路形成面の一部に形成された突起電極とを有する電子部品と、
上記突起電極と接続される基板電極を有する実装基板とを備え、
上記突起電極と上記基板電極とを接続して上記電子部品を上記実装基板に実装してなることを特徴とする電子部品実装済基板。
A protective material that covers and protects the circuit forming portion except for a portion where a protruding electrode, which is a part of a circuit forming surface on which the circuit forming portion of the semiconductor element is formed, is formed, and the protective material a sealing member for sealing the protective material in close contact with an electronic component having a projection electrode formed on a portion of the circuit forming surface,
A mounting substrate having a substrate electrode connected to the protruding electrode,
An electronic component mounted substrate, wherein the protruding electrode and the substrate electrode are connected and the electronic component is mounted on the mounting substrate.
JP2001372737A 2001-12-06 2001-12-06 Electronic component assembly method and electronic component mounted substrate Expired - Fee Related JP3843235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001372737A JP3843235B2 (en) 2001-12-06 2001-12-06 Electronic component assembly method and electronic component mounted substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001372737A JP3843235B2 (en) 2001-12-06 2001-12-06 Electronic component assembly method and electronic component mounted substrate

Publications (3)

Publication Number Publication Date
JP2003174117A JP2003174117A (en) 2003-06-20
JP2003174117A5 JP2003174117A5 (en) 2005-06-02
JP3843235B2 true JP3843235B2 (en) 2006-11-08

Family

ID=19181573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001372737A Expired - Fee Related JP3843235B2 (en) 2001-12-06 2001-12-06 Electronic component assembly method and electronic component mounted substrate

Country Status (1)

Country Link
JP (1) JP3843235B2 (en)

Also Published As

Publication number Publication date
JP2003174117A (en) 2003-06-20

Similar Documents

Publication Publication Date Title
US6476503B1 (en) Semiconductor device having columnar electrode and method of manufacturing same
US7413925B2 (en) Method for fabricating semiconductor package
TW501208B (en) Semiconductor device and manufacturing method of the same
US5909057A (en) Integrated heat spreader/stiffener with apertures for semiconductor package
JP3142723B2 (en) Semiconductor device and manufacturing method thereof
US7301243B2 (en) High-reliable semiconductor device using hermetic sealing of electrodes
JPH0837190A (en) Semiconductor device
WO2007083351A1 (en) Semiconductor device and method for manufacturing same
JP3622435B2 (en) Semiconductor device and manufacturing method thereof
JP2006261485A (en) Semiconductor device and manufacturing method therefor
JP2003060118A (en) Method for manufacturing semiconductor
JP2001044229A (en) Resin-sealed semiconductor device and its manufacture
JP2001338932A (en) Semiconductor device and method of manufacturing semiconductor device
JP3843235B2 (en) Electronic component assembly method and electronic component mounted substrate
WO1999009592A1 (en) Flip-chip semiconductor package and method for manufacturing the same
JP4937856B2 (en) Semiconductor device and manufacturing method thereof
JPH0951015A (en) Semiconductor device
JP3793715B2 (en) Sealed electronic component assembling method and sealed SAW filter
JP3580240B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP4620366B2 (en) Semiconductor device, semiconductor element manufacturing method, and semiconductor device manufacturing method
JP3454097B2 (en) Electronic component and method of manufacturing electronic component
JP3964515B2 (en) Semiconductor device cutting and separating method
KR100481424B1 (en) Method for manufacturing chip scale package
JP2003297977A (en) Method for producing electronic component
KR100648044B1 (en) Method for manufacturing semiconductor package

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040813

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060613

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees