JP3841587B2 - フィルタ試験装置 - Google Patents

フィルタ試験装置 Download PDF

Info

Publication number
JP3841587B2
JP3841587B2 JP13377199A JP13377199A JP3841587B2 JP 3841587 B2 JP3841587 B2 JP 3841587B2 JP 13377199 A JP13377199 A JP 13377199A JP 13377199 A JP13377199 A JP 13377199A JP 3841587 B2 JP3841587 B2 JP 3841587B2
Authority
JP
Japan
Prior art keywords
filter
gas flow
gas
downstream
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13377199A
Other languages
English (en)
Other versions
JP2000321194A (ja
Inventor
新太郎 石山
元雄 文沢
佐悦 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP13377199A priority Critical patent/JP3841587B2/ja
Publication of JP2000321194A publication Critical patent/JP2000321194A/ja
Application granted granted Critical
Publication of JP3841587B2 publication Critical patent/JP3841587B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、銀(Ag)、セシウム(Cs)、ヨウ素(I)等のFP(Fusion Product)や核燃料構成材料のカーボン(C)等を除去するフィルタの性能試験を行うフィルタ試験装置に関するものである。
【0002】
【従来の技術】
近時、原子炉からなる高温ガス炉で高温ガスを生成し、この高温ガスにより直接タービンを駆動して発電を行う高温発電システムが研究されている。この高温発電システムでは、原子炉内で発生する前記したFPの飛翔付着によりタービン機器が高レベルで汚染されるため、そのタービン機器の保守に多大な時間や経費、さらには危険性等の負担が強いられる。
【0003】
そこで、このようなFPをタービン機器の上流側で捕捉し、タービン機器への飛翔付着を防止するフィルタが研究開発されている。そして、このフィルタの性能試験を行うフィルタ試験装置も提案されている。
【0004】
このフィルタ試験装置は、高温ガスのガス流にFP等価の微粒子を乗せて試験用のフィルタを透過させ、そのフィルタにおける微粒子の捕捉率を測定するものである。
【0005】
【発明が解決しようとする課題】
ところが、このフィルタ試験装置における微粒子としては、FPの一種である銀を使用しているものの、この銀をシリンダからプランジャにより微量を押し出して高温ガス流に乗せるものであったため、超微粒子として押し出すことが困難で、粒子が片寄ったり集合したり、あるいはガス流配管壁面に付着したりし、さらには詰まりが発生して連続供給ができなくなったりして、良好なフィルタ試験装置を実現することができなかった。
【0006】
また、カーボン容器内に銀を入れて高周波誘導加熱により溶融蒸発させ、その蒸発した銀を冷たいガス流(窒素)に乗せることも行われているが、これでは蒸発した銀が直ちに結晶化して大きな粒子となり、やはり良好なフィルタ試験装置を実現することができなかった。
【0007】
以上の問題は、使用する粒子として銀以外の粒子を使用する場合でも同様であった。
【0008】
本発明の課題は、現実の高温ガス炉において発生する超粒子と等価な超微粒子乗せた高温ガス流を得られるようにし、以て良好なフィルタ性能試験が行えるようにしたフィルタ試験装置を提供することである。
【0009】
【課題を解決するための手段】
上記課題を解決するために、第1の発明は、所定圧力のガス流を発生する手段と、該ガス流を輸送する配管の途中に設けられ発生した超微粒子を前記ガス流にほぼ均等に乗せる超微粒子発生手段と、前記超微粒子発生手段の配管下流に配置され初段に試験用フィルタがその下流に後段フィルタがセットされたフィルタホルダと、前記超微粒子発生手段の上流の配管および前記超微粒子発生装置と前記フィルタホルダとの間の配管を所定の温度に加熱する第1の加熱手段とを具備し、
前記超微粒子発生手段が、銀、セシウム、ヨウ素、カーボン、その他の飛翔用材料を封入する坩堝手段と、該坩堝手段を加熱して前記飛翔用材料を溶融させる第2の加熱手段と、上流から輸送されてくる前記ガス流を前記坩堝手段内の飛翔用材料に吹き付けるノズル手段と、前記坩堝手段内において前記ガス流により吹き飛ばされた前記飛翔用材料の超微粒子を下流に送出するガイド手段とを有するよう構成した。
【0010】
第2の発明は、第1の発明において、前記坩堝手段が分解組立可能に構成されているようにした。
【0011】
第3の発明は、第1または第2の発明において、前記フィルタホルダが、上流側から下流側にかけて内径が大きくなり、該大きな内径が途中に形成された段部により前記上流側とほぼ同じ小さな内径に絞られほぼその内径のまま下流に連続するガス流通路を有し、前記段部の下流における前記段部で形成されたガス乱流が消滅しない領域に試験用フィルタをセットする第1フィルタセット部が形成され、該第1フィルタセット部の下流に後段フィルタをセットする第2フィルタセット部が形成されているよう構成した。
【0012】
第4の発明は、第3の発明において、前記段部の角部および隅部が、滑らかに形成されているよう構成した。
【0013】
第5の発明は、第3又は第4の発明において、前記第1フィルタセット部および前記第2フィルタセット部が、各々分解組立可能に形成されているよう構成した。
【0014】
第6の発明は、第1乃至第5の発明において、前記ガス流が、窒素ガス、ヘリウムガス、アルゴンガス、空気、燃焼ガス、その他のガスから成るガス流であるよう構成した。
【0015】
【発明の実施の形態】
[第1の実施形態]
図1は本発明のフィルタ試験装置の実施形態の全体を示すシステム図である。同図において、1はキャリアガスとしての窒素ガスを供給する膜圧窒素発生器等からなる窒素ガス供給装置、2は配管(例えば12.7mmφ、SUS316)、3は圧力調整装置、4はそれら配管2に装着した高周波誘導加熱コイル、5は窒素ガスに乗せるための銀粒子を発生させる銀粒子発生器、6は試験用のフィルタと別のフィルタをセットするためのフィルタホルダ、7は最終的に排気する窒素ガスを冷却するための2重管式水冷方式の冷却器である。
【0016】
このフィルタ試験装置では、窒素ガス供給装置1から0.8 Nm3/h程度の流量で窒素ガスが供給され、圧力調整装置3において0.1Kg/cm2程度に減圧調整されてから、配管2により銀粒子発生器5に吹き付けられる。高周波誘導加熱コイル4は、内部に冷却水を流通した銅製パイプのコイルであり、配管2に巻き付けてられており、そのコイル4に高周波電流を流すことにより渦電流発熱して、銀粒子発生器5の上流側および下流側の窒素ガスを約900℃程度に加熱する。銀粒子発生器5は、後記する加熱手段(506)で例えば900〜1200℃程度に加熱溶融させた銀Agに対して前記した窒素ガスを吹き付け、蒸発している銀粒子を弾き飛ばしてその窒素ガス流にほぼ均等に乗せるものである。ここで、発生する銀超微粒子の量は、その加熱温度、窒素ガスの量、そのガス流の吹き付け速度等に比例して増大する。フィルタホルダ6は加熱手段(606)により900℃程度に加熱されており、ここでは、その上流側に試験用フィルタをセットすると共に下流側に後段フィルタをセットして保持し、事後にそれらのフィルタを取り出して前段の試験用フィルタで捕捉した銀粒子量と、全フィルタで捕捉した全銀粒子量を比較(重量比、あるいは化学反応を利用した分析)することにより、前段の試験用フィルタの性能(捕捉率)を測定する。このフィルタホルダ6での圧力損失は0.1Kg/cm2程度であり、そこを通過した窒素ガスは冷却器7で70℃程度に冷却されてから、大気に排出される。
【0017】
図2は銀粒子発生器5の詳細を示す断面図である。501は銀Agを坩堝501aに入れた坩堝ブロック、502は坩堝501aに連続する穴502aをもつブロック、503はガス流の配管上流側に連続するノズル201の先端を坩堝501aの直上にガイドすると共に坩堝501aから弾き飛ばされた粒子を下流側配管202にガイドするガイドブロックである。また、504は坩堝501aを温度制御するためにその温度を測定するサーモカップル等の温度測定素子、505は銀粒子発生器5の全体を保温するセラミックス等からなる保温材、506は内部に冷却水が流通する銅製の高周波誘導加熱コイルである。なお、ブロック501と502との間は、ボルト(図示せず)とメタルOリング507によって水密的に結合されている。ここにおけるブロック501〜503としては、耐熱鋼が好ましい。
【0018】
この銀粒子発生器5では、坩堝501aに封入した銀Agが高周波誘導加熱コイル506により900〜1200℃(少量発生の場合ほぼ960℃)程度に加熱溶融されており、そこに900℃程度に加熱された窒素ガス流がノズル201から0.1Kg/cm2程度の圧力で直接吹き付けられることにより、蒸発している銀粒子が高温のまま飛び出し、窒素ガス流にほぼ均等に乗って配管202から下流に流出していく。このときの銀粒子の発生量は2×1013atom/s程度であり、その粒子の径は0.001〜10μm程度である。よって、例えば2週間連続運転するときは、坩堝501aには余裕をみて0.47cc程度の銀を封入しておけばよい。
【0019】
図3はフィルタホルダ6の詳細を示す断面図である。601はガス流の流入側ブロックであり、上端は高周波誘導加熱コイル4付きの配管2を経由して銀粒子発生器5に接続され、そのガス流通路601aは上部から下方にかけてその内径が例えば10度勾配で順次大きくなり、その下端は上部の内径の4〜5倍(例えば41.8 mm)に大きくなっている。602は乱流形成ブロックであり、流入側ブロック601のガス流通路601aに連続する大径のガス流通路602aが形成され、そのガス流通路602aの下部は段部602bにおいて前記ガス流通路601aの上部の内径と同程度の狭い内径(例えば10mm)のガス流通路602cとなるよう絞られている。この段部602bから下端までのガス流通路602cの長さは例えば20mm程度に短くなっている。なお、このガス流通路602aから602cに内径が変化する段部602bでは、角や隅部分や滑らかに形成されている。603は上部フィルタガイドブロック、604は下部フィルタガイドブロックである。上部フィルタガイドブロック603では、その上端にそのガス流通路603aより大きな径(ほぼ2倍)のフィルタセット部603bが形成され、そこに試験用フィルタ81がセットされて乱流形成ブロック602との間で保持されている。下部フィルタガイドブロック604では、その上端にそのガス流通路604aより大きな径(ほぼ2倍)のフィルタセット部604bが形成され、そこに下段フィルタ82がセットされて上部フィルタガイドブロック603との間で保持されている。これらのフィルタ81,82の外径もガス流通路603a,604aの例えばほぼ2倍となっている。なお、ブロック601と602の間、602と603の間、603と604との間は、各々ボルト(図示せず)およびメタルOリング605によって水密的に結合されている。また、このフィルタホルダ6の周囲には、銀粒子発生器5と同様に、内部に冷却水が流通する銅製の高周波誘導加熱コイル606が保温材(図示せず)を介して巻き付けられている(図1参照)。
【0020】
試験用フィルタ81の試験断面積はガス流通路602c,603aの断面積と同じで比較的大きい(内径10mm程度)ため、その窒素ガスの流速が中央部で速く周辺部が遅くなるような不均一分布、つまり層流となりやすく、適正なフィルタ試験を行うことができなくなる。これを解決するためには、ガス流通路に絞りを形成して乱流を発生させることが考えられるが、この絞りではその部分では乱流になるものの、元の径の戻った下流部分では層流に戻り、効果的でない。
【0021】
そこで本実施形態では、ガス流通路の内径をブロック601において4〜5倍程度に連続的に順次大きくしその大径部分をブロック602の下部近くまで同じ径で連続させ、そのブロック602の下部の段部602bで再度元の内径に戻すように形成して、その問題を解決した。ここでは、ガス流通路の内径が大きくなった部分でガス流の流速が一旦低下して安定した層流となり、段部602bで乱流となって高速化し、その後はもとの狭い内径の流路内を流れるので、乱流状態つまり流速分布がほぼ均一な状態が少なくともガス流通路602cから603aにかけて、さらにガス流通路604aまではしばらく継続し、層流になる以前にフィルタ81,82に流入するようになる。このとき、段部602bの角部や隅部が滑らかであるので、その流速分布はより均一化される。したがって、フィルタ81,82には流速分布が均一で銀粒子がほぼ均一乗った窒素ガスが流入するので、フィルタ81の有効フィルタ面積部分を均一に試験できる。
【0022】
前記したように、本試験装置を例えば2週間連続運転してから試験用フィルタ81と後段フィルタ82を取り外し、その試験用フィルタ81で捕捉した銀粒子の重量をD1とし、後段フィルタ82で捕捉した銀粒子の重量をD2とすると、D1/(D1+D2)により試験用フィルタ81の捕捉率を測定することができる。
【0023】
[その他の実施の形態]
なお、上記では試験用フィルタ81で捕捉されなかった銀粒子が後段のフィルタ82によって完全に捕捉されることを前提としているが、後段のフィルタ82で完全に捕捉できない場合には、後段フィルタを増加してフィルタ段数をn(≧3)段以上にし、D1/(D1+D2+・・・+Dn)(D2〜Dnは後段フィルタで各々捕捉した銀粒子の重量)により試験用フィルタ81の捕捉率を測定すればよい。また、各フィルタで捕捉した銀粒子量は、重量によらず、HNO3により溶解させて化学分析により測定することもできる。
【0024】
また、以上の説明では銀粒子をフィルタに運ぶキャリアガスとして窒素ガスを使用したが、アルゴンガス、ヘリウムガス、空気、燃焼ガスやその他の任意のガスを使用することができる。さらに、本発明のフィルタ試験装置は、原子炉からなる高温ガス炉の飛翔物(前記した銀以外にもヨウ素、セシウム、カーボン等がある。)を捕捉するフィルタの試験にとどまらず、その温度範囲は最高4000℃程度まで、圧力は最高20Kg/cm2程度までの条件での各種の飛翔物の捕捉用フィルタの試験に利用でき、例えば、トカマク炉等の核融合炉の飛翔物捕捉用フィルタ、原子力施設の飛翔物捕捉用フィルタ、石炭高温ガス化発電施設の飛翔物捕捉用フィルタ、火災や爆発事故での飛翔物捕捉用フィルタ、ガスタービンやジェットタービンでの混入飛翔物捕捉用フィルタ、人工衛星への宇宙空間からの飛翔物の捕捉用フィルタ等の試験用として利用できる。
【0025】
【発明の効果】
以上から第1の発明によれば、所望の飛翔物をほぼ均等に高温ガス流に乗せて試験用フィルタおよび後段フィルタに輸送することができ、また、溶融し蒸発した飛翔用材料に対して高温ガスを吹き付けるので、飛翔物を正確に超微粒子の形で飛翔させることでき、適正なフィルタ試験を行うことができるようになる。
【0026】
第3乃至第5の発明によれば、試験用フィルタに対して流れるガス流が乱流となりその速度分布がほぼ均等となるので、そのフィルタを性能試験をより適正に行うことができるようになる。
【0027】
第6の発明によれば、あらゆるガス流が使用できるので、各種用途用のフィルタの性能試験が可能となる。
【図面の簡単な説明】
【図1】 本発明の実施形態のフィルタ試験装置のシステム構成図である。
【図2】 銀粒子発生器の断面図である。
【図3】 フィルタホルダの断面図である。
【符号の説明】
1:窒素ガス供給装置、2:配管、3:圧力調整装置、4:高周波誘導加熱コイル、5:銀粒子発生器、501:坩堝ブロック、502:ブロック、503:ガイドブロック、6:フィルタホルダ、601:流入側ブロック、602:乱流形成ブロック、603:上部フィルタガイドブロック、604:下部フィルタガイドブロック、7:冷却器。

Claims (6)

  1. 所定圧力のガス流を発生する手段と、該ガス流を輸送する配管の途中に設けられ発生した超微粒子を前記ガス流にほぼ均等に乗せる超微粒子発生手段と、前記超微粒子発生手段の配管下流に配置され初段に試験用フィルタがその下流に後段フィルタがセットされたフィルタホルダと、前記超微粒子発生手段の上流の配管および前記超微粒子発生装置と前記フィルタホルダとの間の配管を所定の温度に加熱する第1の加熱手段とを具備し、
    前記超微粒子発生手段が、銀、セシウム、ヨウ素、カーボン、その他の飛翔用材料を封入する坩堝手段と、該坩堝手段を加熱して前記飛翔用材料を溶融させる第2の加熱手段と、上流から輸送されてくる前記ガス流を前記坩堝手段内の飛翔用材料に吹き付けるノズル手段と、前記坩堝手段内において前記ガス流により吹き飛ばされた前記飛翔用材料の超微粒子を下流に送出するガイド手段とを有することを特徴とするフィルタ試験装置。
  2. 前記坩堝手段が分解組立可能に構成されていることを特徴とする請求項1に記載のフィルタ試験装置。
  3. 前記フィルタホルダが、上流側から下流側にかけて内径が大きくなり、該大きな内径が途中に形成された段部により前記上流側とほぼ同じ小さな内径に絞られほぼその内径のまま下流に連続するガス流通路を有し、前記段部の下流における前記段部で形成されたガス乱流が消滅しない領域に試験用フィルタをセットする第1フィルタセット部が形成され、該第1フィルタセット部の下流に後段フィルタをセットする第2フィルタセット部が形成されていることを特徴とする請求項1または2に記載のフィルタ試験装置。
  4. 前記段部の角部および隅部が、滑らかに形成されていることを特徴とする請求項3に記載のフィルタ試験装置。
  5. 前記第1フィルタセット部および前記第2フィルタセット部が、各々分解組立可能に形成されていることを特徴とする請求項3又は4に記載のフィルタ試験装置。
  6. 前記ガス流が、窒素ガス、ヘリウムガス、アルゴンガス、空気、燃焼ガス、その他のガスから成るガス流であることを特徴とする請求項1乃至5に記載のフィルタ試験装置。
JP13377199A 1999-05-14 1999-05-14 フィルタ試験装置 Expired - Fee Related JP3841587B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13377199A JP3841587B2 (ja) 1999-05-14 1999-05-14 フィルタ試験装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13377199A JP3841587B2 (ja) 1999-05-14 1999-05-14 フィルタ試験装置

Publications (2)

Publication Number Publication Date
JP2000321194A JP2000321194A (ja) 2000-11-24
JP3841587B2 true JP3841587B2 (ja) 2006-11-01

Family

ID=15112597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13377199A Expired - Fee Related JP3841587B2 (ja) 1999-05-14 1999-05-14 フィルタ試験装置

Country Status (1)

Country Link
JP (1) JP3841587B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103969164B (zh) * 2013-12-24 2016-10-05 河北钢铁股份有限公司邯郸分公司 软熔带焦炭层透气性测定装置和测定方法

Also Published As

Publication number Publication date
JP2000321194A (ja) 2000-11-24

Similar Documents

Publication Publication Date Title
US6772961B2 (en) Methods and apparatus for spray forming, atomization and heat transfer
Vardelle et al. Experimental investigation of powder vaporization in thermal plasma jets
Yoshida et al. Integrated fabrication process for solid oxide fuel cells using novel plasma spraying
Bewlay et al. Modeling of spray deposition: measurements of particle size, gas velocity, particle velocity, and spray temperature in gas-atomized sprays
Suryanarayanan Plasma spraying
PT91753B (pt) Aparelho de pulverizacao atraves de um cone de chama de elevada velocidade e processo de formacao de materiais
WO1999062641A2 (en) Improved atomizing nozzle and method
CN107052352A (zh) 一种co2气体保护的金属粉末制备装置及方法
JPS61106703A (ja) 超微細急速固化金属粉末製造装置および方法
KR850001544A (ko) 용융된 금속 및 기타 액체물질의 다원소 분석 방법 및 그 장치
US5198017A (en) Apparatus and process for controlling the flow of a metal stream
JP3841587B2 (ja) フィルタ試験装置
US4806150A (en) Device and technique for in-process sampling and analysis of molten metals and other liquids presenting harsh sampling conditions
Russ et al. Mixing in plasma and low density jets
Arkhipov et al. Simulation of production of hollow silica particles in a plasma flow. Part 1. Dynamics of motion and heating of porous particles
JP3270118B2 (ja) 高周波プラズマによる球状化粒子の製造方法およびその装置
Russ et al. Unsteadiness and mixing in thermal plasma jets
US20060208399A1 (en) Pure particle generator
BRPI0312199B1 (pt) Dispositivo de deposição de pó
Bolot et al. Nozzle developments for thermal spray at very low pressure
Le et al. Effect of nozzle geometry and position on gas atomization
JP5329186B2 (ja) ガラスおよびガラスセラミック組成物メルトのスプレーフォーミング方法
Abukawa et al. Effect of powder injection of deposit efficiency in plasma spraying
Büscher et al. Production of hydrogen, nitrogen and argon pellets with the Moscow-Jülich pellet target
Smith Plasma Spray Deposition: A Need for Direct Process Control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050519

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100223