JP3840880B2 - Field winding type rotating electrical machine control device - Google Patents

Field winding type rotating electrical machine control device Download PDF

Info

Publication number
JP3840880B2
JP3840880B2 JP2000189259A JP2000189259A JP3840880B2 JP 3840880 B2 JP3840880 B2 JP 3840880B2 JP 2000189259 A JP2000189259 A JP 2000189259A JP 2000189259 A JP2000189259 A JP 2000189259A JP 3840880 B2 JP3840880 B2 JP 3840880B2
Authority
JP
Japan
Prior art keywords
short
circuit
field winding
field
winding type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000189259A
Other languages
Japanese (ja)
Other versions
JP2002010694A (en
Inventor
孝史 鳥井
淳 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000189259A priority Critical patent/JP3840880B2/en
Publication of JP2002010694A publication Critical patent/JP2002010694A/en
Application granted granted Critical
Publication of JP3840880B2 publication Critical patent/JP3840880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/102Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for limiting effects of transients
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、界磁巻線型回転電機の制御装置に関し、詳しくは界磁巻線型回転電機装置の過電圧防止を実現する好適な装置に関する。
【0002】
【従来の技術】
界磁巻線を有する界磁巻線型回転電機の制御装置では従来より、上記した過電圧検出時に、界磁巻線と直列接続された界磁電流制御スイッチを遮断して界電圧を抑止することが行われている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の界磁巻線型回転電機において、過電圧検出時に界磁電流を遮断乃至低減するべく界磁電流制御スイッチを遮断しても、界磁巻線に蓄積された大きな磁気エネルギーが界磁電流として界磁巻線と逆並列に接続されたフライホイルダイオードを通じて界磁巻線に流れ続けるために早急な界磁電流の遮断乃至低減が困難であるという問題があった。
【0004】
なお、回転電機と直流電源との間に介設されるインバータ部を構成する各スイッチング素子を遮断することにより上記インバータ部から出力される過電圧を規制することも考えられるが、インバータ部はこれらスイッチング素子と逆並列にフライホイルダイオードをもつため、回転電機の電機子巻線に生じたこの過電圧は、これらフライホイルダイオードを通じて直流電源に印加され、インバータ部で阻止することができない。
【0005】
本発明は上記問題点に鑑みなされたものであり、複雑な回路構成を採用することなく過電圧を良好に阻止可能な界磁巻線型回転電機の制御装置を提供することをその目的としている。
【0006】
【課題を解決するための手段】
請求項1記載の界磁巻線型回転電機の制御装置は、それぞれ複数のスイッチング素子により構成される上アーム及び下アームを有して界磁巻線型回転電機と直流電源との間に介設されるインバータ部と、前記界磁巻線に通電する界磁電流を制御して前記直流電源の電源電圧を所定の基準電圧値に制御する界磁電流制御部とを備え、前記界磁電流制御部は、前記界磁巻線と直列接続される界磁電流制御用の界磁電流制御スイッチと、前記界磁巻線と逆並列に接続されるフライホイルダイオードとを備える界磁巻線型回転電機の制御装置において、前記界磁電流制御スイッチが遮断されているにもかかわらず前記電源電圧が前記基準電圧値より高い所定の超過電圧値を超える場合に、前記インバータ部の前記上アーム又は前記下アームのどちらかの複数の前記スイッチング素子を時間的に重なって導通させることにより、前記界磁巻線型回転電機の電機子巻線を短絡する電機子巻線短絡制御部を備えす、前記電機子巻線短絡制御部は、前記短絡動作時に、前記インバータ部の前記上アームの複数の前記スイッチング素子を時間的に重なって導通させる上アーム短絡動作と、前記インバータ部の前記下アームの複数の前記スイッチング素子を時間的に重なって導通させる下アーム短絡動作とのうちの一方を所定期間実行した後、他方を所定期間実行することを特徴としている。
【0007】
すなわち、本構成によれば、過電圧検出時に界磁電流制御スイッチを遮断するに加えてインバータ部の上アーム又は下アームのどちらかを短絡動作させる。これにより、上記界磁電流制御スイッチの遮断後において界磁電流が前記フライホイルダイオードを通じて界磁巻線に流れ、回転電機が過電圧を発電したとしても、この過電圧は、インバータ部が回転電機の電機子巻線を実質的に短絡するために、電機子巻線、インバータ部のスイッチング素子、及びそれらを接続する配線の電気抵抗により消費され、直流電源側に出力されない。したがって、これら電機子巻線、インバータ部のスイッチング素子、及びそれらを接続する配線の許容温度上昇範囲内において、過電圧を確実に防止することができる。
本構成によれば更に、上アームと下アームの一方のみを用いて短絡動作する場合に比較して長時間短絡持続又は大短絡電流に耐えることができる。すなわち、この短絡回路中、ほとんどの場合、熱的保護が特に重要なインバータ部の電力用半導体スイッチング素子は短絡動作により一時的に温度上昇しても、その後の短絡動作を上アーム及び下アームのうちの他方で実施する間に通電が遮断されるため放熱を行うことができ、上記効果を奏することができる。
【0008】
請求項2記載の構成によれば請求項1記載の界磁巻線型回転電機の制御装置において更に、前記インバータ部又は前記回転電機の電流が所定の基準電流値を超える場合に前記インバータ部の前記スイッチング素子を制御して前記電流を制限する過電流保護部を有し、前記電機子巻線短絡制御部は、前記界磁電流制御スイッチが遮断されているにもかかわらず前記電源電圧が前記基準電圧値より高い所定の超過電圧値を超える場合に、前記過電流保護部に優先して前記短絡動作を実施することを特徴としている。
【0009】
これにより、過電圧が生じていない範囲ではインバータ部の遮断動作を伴う過電流保護動作を実行して各回路素子を保護することができ、過電圧が生じた場合には、インバータ部の一時的短絡動作により外部への過電圧の出力を防止することができる。
【0010】
請求項3記載の構成によれば請求項1又は2記載の界磁巻線型回転電機の制御装置において更に、前記電機子巻線短絡制御部は、前記短絡動作時に、前記インバータ部の前記上アームの複数の前記スイッチング素子を時間的に重なって導通させる上アーム短絡動作と、前記インバータ部の前記下アームの複数の前記スイッチング素子を時間的に重なって導通させる下アーム短絡動作とを交互に実行することを特徴としている。
【0011】
本構成によれば、上アームと下アームの一方のみを用いて短絡動作する場合に比較して長時間短絡持続又は大短絡電流に耐えることができる。すなわち、この短絡回路中、ほとんどの場合、熱的保護が特に重要なインバータ部の電力用半導体スイッチング素子は短絡動作により一時的に温度上昇しても、その後の短絡動作を上アーム及び下アームのうちの他方で実施する間に通電が遮断されるため放熱を行うことができ、上記効果を奏することができる。
【0012】
請求項4記載の構成によれば請求項1乃至3のいずれか記載の界磁巻線型回転電機の制御装置において更に、前記直流電源と並列接続された平滑コンデンサを有し、前記電機子巻線短絡制御部は、前記短絡動作時に前記平滑コンデンサの出力電圧が所定の許容範囲を超えない範囲で前記インバータ部の前記上アーム及び下アームのどちらかの前記複数のスイッチング素子を所定デューティ比で断続的に時間的に重なって導通させることを特徴としている。
【0013】
すなわち、本構成では、インバータ部の短絡動作を所定のデューティ比で間欠的に行うので、インバータ部の電力用半導体スイッチング素子や電機子巻線の単位時間当たりの発熱量を低減することができ、短絡電流のピーク値がインバータ部の電力用半導体スイッチング素子や電機子巻線にとって過大である場合でも、平均短絡電流をそれらの許容範囲以下に抑止しつつ短絡動作を実施することができる。
【0014】
なお、この場合、インバータ部が短絡動作を休止する期間に、電機子巻線はインバータ部のフライホイルダイオードを通じて直流電源側に過電圧を出力するが、電圧の立ち上がりの遅れや平滑コンデンサによるその平滑化により直流電源(特にこの場合はバッテリ)に印加される過電圧をこの直流電源の許容範囲に抑止することができ、直流電源を良好に過電圧保護することができる。
【0015】
【発明の実施の形態】
本発明の好適な態様を以下の実施例を参照して説明する。
【0016】
【実施例1】
この実施例の界磁巻線型回転電機の制御装置を図1を参照して説明する。
【0017】
(構成)
1は第一の直流電源、1aは第二の直流電源、2は界磁巻線型回転電機、3は平滑コンデンサ、4〜9は三相インバータ10を構成するMOSFET、10aはMOSFET4〜9を制御するゲート制御回路、11は界磁電流制御回路、21は短絡制御回路である。
【0018】
界磁電流制御回路11は、界磁電流制御用のトランジスタ12、前置トランジスタ13、界磁巻線型回転電機2の界磁巻線14、フライホイルダイオード15、抵抗器16〜19、ツェナダイオ−ド20を有している。
【0019】
短絡制御回路21は、比較器22及びAND回路23、既述のゲート制御回路10aを有している。
【0020】
三相インバータ10は、上アームを構成するMOSFET4〜6と下アーム7〜9とで構成されている。各MOSFET4〜9とそれぞれ逆並列にフライホイルダイオード(記号省略)が接続されている。この種の三相インバータ10は周知であり、詳細な説明は省略する。
【0021】
(動作)
この装置の動作を以下に説明する。
【0022】
界磁電流制御回路11は、第一の直流電源1の電圧を抵抗器17,18で抵抗分圧した後、ツェナダイオ−ド20を通じて前置トランジスタ13のベース電極に印加する。上記抵抗分圧がツェナダイオ−ド20の降伏電圧を超えれば過剰電圧は、ツェナダイオ−ド20と直列接続された抵抗器19に印加され、抵抗器19の電圧降下が所定値以上となれば、前置トランジスタ13がオンし、、抵抗器16から電流を吸収して界磁電流制御用のトランジスタ12をオフする。上記抵抗分圧がツェナダイオ−ド20の降伏電圧未満となれば、上記と逆の動作によりトランジスタ12がオンして、界磁巻線14に界磁電流が通電される。界磁巻線型回転電機におけるこの種の界磁電流制御回路自体はもはや周知であるので、これ以上の説明を省略する。
【0023】
界磁巻線型回転電機2は図示しない自動車のエンジンと機械的に結合されており、エンジン始動時には三相インバータ10を駆動して界磁巻線型回転電機2に三相交流電圧を印加し、界磁巻線型回転電機2を電動動作させる。
【0024】
エンジン始動完了後、回転機2は発電機として作動し、三相インバータ10のフライホイルダイオードにより三相全波整流された直流電力により第一の電源1が充電される。
【0025】
図示しない界磁巻線型回転電機2又は三相インバータ10が給電する大電気負荷(図示せず)が急激に遮断されると(一般的にはロードダンプという)、界磁巻線型回転電機2の電機子巻線電圧、三相インバータ10の出力電圧、第一の電源1の充電電圧はそれぞれ急激に上昇する。この結果、トランジスタ12はオフして、トランジスタ12を流れる界磁電流は遮断されるが、界磁巻線14にはフライホイルダイオード15が逆並列に接続されているため、界磁巻線14にはフライホイルダイオード15を通じて界磁電流が環流し、この界磁電流に応じて電機子巻線電圧は依然として高く維持されることになる。
【0026】
比較器22は、第一の電源1の電圧が、所定の第一しきい値電圧Vth1(ここでは、トランジスタ12のオフ電圧とする)よりも所定値だけ高い第二のしきい値電圧Vth2以上となる場合にハイレベル電位を出力する。この時、トランジスタ12も既にオフしているので、トランジスタ12のコレクタ電位と比較器22の出力との論理積出力を発生するAND回路22はハイレベル電位(短絡指令信号)をゲート制御回路10aに出力する。これを受けて、制御回路10aは、上アームのMOSFET4〜6をオフ、下アームのMOSFET7〜9をオンし、これにより回転機2の三相の電機子巻線が短絡されて過電圧が抑制される。
【0027】
なお、上記実施例では、上アームをオフ、下アームをオンすることで、回転機2の出力を抑制したが、上アームをオン、下アームをオフしても、同様の効果が得られる。
【0028】
【実施例2】
他の実施例を図1を参照して以下に説明する。
【0029】
上記実施例では、比較器22による過電圧の判定により、上記短絡動作を実施したが、この種の過電圧が高速走行時の大電気負荷の遮断に起因して生じることから、エンジン回転数と大電気負荷遮断を示す2つの信号に基づいて上記短絡動作を一定期間実施してもよい。これら2つの信号は過電圧が上記第二のしきい値電圧Vth2以上となった状態に相当するものとみなす。
【0030】
【実施例3】
他の実施例を図1を参照して以下に説明する。
【0031】
上記実施例では、比較器22による過電圧判定時に、下アームを構成するMOSFET7〜9を短絡したが、
MOSFET7〜9を所定期間短絡(この時、上アームを構成するMOSFET4〜6はオフ)した後、次に、
MOSFET4〜6を所定期間短絡(この時、上アームを構成するMOSFET7〜9はオフ)してもよく、更にこの上下アームの交互短絡動作を所定時間ごとに繰り返してもよい。このようにすれば、MOSFET4〜9の発熱を分散することができ、MOSFET4〜9の熱的安全性が向上する。
【0032】
【実施例4】
他の実施例を図1を参照して以下に説明する。
【0033】
上記実施例では、比較器22による過電圧判定時に、下アームを構成するMOSFET7〜9を短絡したが、
MOSFET7〜9又は4〜6のどちらかを所定のデューティ比で間欠的に短絡動作させてもよい。このようにすれば、MOSFET7〜9又は4〜6のどちらかが短絡動作を停止した瞬間から各部電圧が再上昇するが、上昇した電圧が許容できない過電圧に達するには時間がかかり、特に平滑コンデンサ3がそれを抑止するために、次の短絡動作の開始までに、各部電圧が過電圧に達するのを防止することができる。
【0034】
すなわち、本実施例による間欠的な短絡動作により、
短絡電流を抑止しつつ過電圧を許容範囲内に維持することができ、熱的安全性を向上することができる。
【0035】
【実施例5】
他の実施例を図2を参照して以下に説明する。
【0036】
この実施例では、実施例1で説明した比較器22による過電圧判定に基づく三相インバータ10の短絡動作に加えて、過電流時の三相インバータ10の遮断動作も行う。ただし、短絡動作は上記遮断動作に優先して行われる。
【0037】
31は過電流保護部であり、電流センサ32、整流回路33、比較器34、ノア回路35からなる。電流センサ32が検出した電機子電流は整流回路33で整流された後、比較器34で所定のしきい値電圧Vth3と比較され、整流電圧がしきい値電圧Vth3より大きい場合には、比較器34がローレベル電位を出力し、これにより、ノア回路35は、過電流が発生し、かつ、過電圧が発生していない(アンド回路23の出力がハイレベル電位でない)場合にのみ過電流保護指令信号S2をゲート制御回路10aに出力する。ゲート制御回路10aは、過電流保護指令S2が入力されると、三相インバータ10のすべてのMOSFET4〜9をオフする。これにより過電流が抑止される。しかし、アンド回路23が短絡指令信号S1を出力する場合には、ノア回路24は必ずローレベル電位となり、過電流保護指令S2と短絡指令信号S1とが同時にゲート制御回路10aに出力されることがなく、短絡動作指令S1が優先される。これにより、直流電源1の性能低下を抑止し、各部の絶縁劣化やそれに起因する性能劣化を防止することができる。
【図面の簡単な説明】
【図1】実施例1〜4の界磁巻線型回転電機及びその制御装置を示すブロック回路図である。
【図2】実施例5の界磁巻線型回転電機及びその制御装置を示すブロック回路図である。
【符号の説明】
1 直流電源
4〜9 MOSFET(電力用半導体素子)
10 三相インバータ(インバータ部)
10a ゲート制御回路(電機子巻線短絡制御部)
11 界磁電流制御部
12 界磁電流制御スイッチ
15 フライホイルダイオード
21 短絡制御回路(電機子巻線短絡制御部)
31 過電流保護部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for a field winding type rotating electrical machine, and more particularly to a suitable device for preventing overvoltage of a field winding type rotating electrical machine device.
[0002]
[Prior art]
Conventionally, in a control device for a field winding type rotating electrical machine having a field winding, the field current control switch connected in series with the field winding is blocked to suppress the field voltage when the overvoltage is detected. Has been done.
[0003]
[Problems to be solved by the invention]
However, in a conventional field winding type rotating electrical machine, even if the field current control switch is cut off to cut off or reduce the field current when an overvoltage is detected, the large magnetic energy accumulated in the field winding is As a result, there is a problem that it is difficult to cut off or reduce the field current quickly because it continues to flow to the field winding through the flywheel diode connected in antiparallel with the field winding.
[0004]
In addition, it is conceivable that the overvoltage output from the inverter unit is regulated by shutting off each switching element constituting the inverter unit interposed between the rotating electrical machine and the DC power source. Since the flywheel diode is provided in antiparallel with the element, this overvoltage generated in the armature winding of the rotating electrical machine is applied to the DC power supply through the flywheel diode and cannot be blocked by the inverter unit.
[0005]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a control device for a field winding type rotating electrical machine that can satisfactorily prevent overvoltage without adopting a complicated circuit configuration.
[0006]
[Means for Solving the Problems]
The field winding type rotating electrical machine control device according to claim 1 has an upper arm and a lower arm each composed of a plurality of switching elements, and is interposed between the field winding type rotating electrical machine and the DC power source. An inverter unit, and a field current control unit that controls a field current supplied to the field winding to control a power supply voltage of the DC power supply to a predetermined reference voltage value, and the field current control unit Is a field winding type rotary electric machine comprising a field current control switch for controlling a field current connected in series with the field winding, and a flywheel diode connected in antiparallel with the field winding. In the control device, when the power supply voltage exceeds a predetermined excess voltage value higher than the reference voltage value despite the field current control switch being cut off, the upper arm or the lower arm of the inverter unit Either By conducting overlap a plurality of the switching elements in time, to comprise an armature winding short circuit control unit for short-circuiting the armature winding of the field winding type rotary electric machine, said armature winding short circuit control unit The upper arm short-circuit operation for causing the plurality of switching elements of the upper arm of the inverter unit to overlap each other during the short-circuit operation and the plurality of switching elements of the lower arm of the inverter unit are temporally connected. after performing one of the predetermined period of the lower arm short-circuit operation to conduct overlaps it is characterized that you perform a predetermined period other.
[0007]
That is, according to this configuration, in addition to shutting off the field current control switch when an overvoltage is detected, either the upper arm or the lower arm of the inverter unit is short-circuited. As a result, even if the field current flows to the field winding through the flywheel diode after the field current control switch is cut off and the rotating electrical machine generates an overvoltage, the overvoltage is generated by the inverter unit of the rotating electrical machine. In order to substantially short-circuit the child winding, it is consumed by the electric resistance of the armature winding, the switching element of the inverter unit, and the wiring connecting them, and is not output to the DC power supply side. Therefore, overvoltage can be reliably prevented within the allowable temperature rise range of the armature winding, the switching element of the inverter unit, and the wiring connecting them.
Further, according to this configuration, it is possible to withstand a short-circuit duration or a large short-circuit current for a long time as compared with a case where a short-circuit operation is performed using only one of the upper arm and the lower arm. That is, in this short circuit, in most cases, even when the temperature of the power semiconductor switching element of the inverter part, in which thermal protection is particularly important, rises temporarily due to the short circuit operation, the subsequent short circuit operation is not performed by the upper arm and the lower arm. Since energization is interrupted while the other is performed, heat can be dissipated and the above effects can be achieved.
[0008]
According to the configuration of the second aspect, in the control device for the field winding type rotary electric machine according to the first aspect, when the current of the inverter unit or the rotary electric machine exceeds a predetermined reference current value, the inverter unit An overcurrent protection unit configured to control the switching element to limit the current; and the armature winding short-circuit control unit is configured such that the power supply voltage is the reference even though the field current control switch is cut off. When a predetermined excess voltage value higher than the voltage value is exceeded, the short circuit operation is performed in preference to the overcurrent protection unit.
[0009]
As a result, each circuit element can be protected by executing an overcurrent protection operation that includes a shut-off operation of the inverter section in a range where no overvoltage has occurred. If an overvoltage occurs, a temporary short circuit operation of the inverter section Therefore, the output of overvoltage to the outside can be prevented.
[0010]
According to the configuration of claim 3, in the control device for a field winding type rotary electric machine according to claim 1 or 2, the armature winding short-circuit control unit further includes the upper arm of the inverter unit during the short-circuit operation. and arm short operation on to conduct overlap a plurality of the switching elements in time of, before Symbol alternately lower arm short circuit operation to conduct a plurality of the switching elements of the lower arm of the inverter section overlap in time It is characterized by executing.
[0011]
According to this configuration, it is possible to withstand a short-circuit duration or a large short-circuit current for a long time compared to a case where a short-circuit operation is performed using only one of the upper arm and the lower arm. That is, in this short circuit, in most cases, even when the temperature of the power semiconductor switching element of the inverter part, in which thermal protection is particularly important, rises temporarily due to the short circuit operation, the subsequent short circuit operation is not performed by the upper arm and the lower arm. Since energization is interrupted while the other is performed, heat can be dissipated and the above effects can be achieved.
[0012]
According to the configuration of claim 4, the field winding type rotary electric machine control device according to any one of claims 1 to 3, further comprising a smoothing capacitor connected in parallel with the DC power source, and the armature winding The short circuit controller intermittently connects the plurality of switching elements of the upper arm and the lower arm of the inverter unit at a predetermined duty ratio within a range in which an output voltage of the smoothing capacitor does not exceed a predetermined allowable range during the short circuit operation. It is characterized by the fact that they are electrically connected in time.
[0013]
That is, in this configuration, the short-circuit operation of the inverter unit is intermittently performed at a predetermined duty ratio, so that the amount of heat generated per unit time of the power semiconductor switching element and armature winding of the inverter unit can be reduced, Even when the peak value of the short-circuit current is excessive for the power semiconductor switching element and the armature winding of the inverter unit, the short-circuit operation can be performed while suppressing the average short-circuit current below the allowable range.
[0014]
In this case, the armature winding outputs an overvoltage to the DC power source through the flywheel diode of the inverter unit during the period when the inverter unit stops the short-circuit operation, but the voltage rise is delayed or smoothed by a smoothing capacitor. Thus, the overvoltage applied to the DC power supply (in particular, the battery in this case) can be suppressed within the allowable range of the DC power supply, and the DC power supply can be well protected.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Preferred aspects of the invention are described with reference to the following examples.
[0016]
[Example 1]
A control device for the field winding type rotating electrical machine of this embodiment will be described with reference to FIG.
[0017]
(Constitution)
DESCRIPTION OF SYMBOLS 1 is 1st DC power supply, 1a is 2nd DC power supply, 2 is field winding type rotary electric machine, 3 is a smoothing capacitor, 4-9 is MOSFET which comprises the three-phase inverter 10, 10a controls MOSFET4-9 A gate control circuit, 11 is a field current control circuit, and 21 is a short-circuit control circuit.
[0018]
The field current control circuit 11 includes a field current control transistor 12, a pre-transistor 13, a field winding 14 of the field winding type rotating electrical machine 2, a flywheel diode 15, resistors 16 to 19, a Zener diode. 20.
[0019]
The short-circuit control circuit 21 includes a comparator 22, an AND circuit 23, and the gate control circuit 10a described above.
[0020]
The three-phase inverter 10 includes MOSFETs 4 to 6 and lower arms 7 to 9 that constitute an upper arm. A flywheel diode (symbol omitted) is connected in antiparallel with each of the MOSFETs 4-9. This type of three-phase inverter 10 is well known and will not be described in detail.
[0021]
(Operation)
The operation of this apparatus will be described below.
[0022]
The field current control circuit 11 divides the voltage of the first DC power supply 1 by resistors 17 and 18 and then applies the voltage to the base electrode of the pre-transistor 13 through the zener diode 20. If the resistance voltage division exceeds the breakdown voltage of the Zener diode 20, the excess voltage is applied to the resistor 19 connected in series with the Zener diode 20, and if the voltage drop of the resistor 19 exceeds a predetermined value, The transistor 13 is turned on, absorbs a current from the resistor 16, and turns off the field current control transistor 12. If the resistance voltage division is less than the breakdown voltage of the Zener diode 20, the transistor 12 is turned on by the reverse operation to apply a field current to the field winding. Since this type of field current control circuit itself in a field winding type rotating electrical machine is already well known, further explanation is omitted.
[0023]
The field winding type rotating electrical machine 2 is mechanically coupled to an automobile engine (not shown), and when starting the engine, the three phase inverter 10 is driven to apply a three phase AC voltage to the field winding type rotating electrical machine 2. The magnetic winding type rotating electrical machine 2 is electrically operated.
[0024]
After the engine start is completed, the rotating machine 2 operates as a generator, and the first power supply 1 is charged with the DC power that is three-phase full-wave rectified by the flywheel diode of the three-phase inverter 10.
[0025]
When a large electrical load (not shown) fed by the field winding type rotating electrical machine 2 or the three-phase inverter 10 (not shown) is suddenly cut off (generally referred to as a load dump), the field winding type rotating electrical machine 2 The armature winding voltage, the output voltage of the three-phase inverter 10, and the charging voltage of the first power supply 1 are rapidly increased. As a result, the transistor 12 is turned off and the field current flowing through the transistor 12 is cut off. However, since the flywheel diode 15 is connected in reverse parallel to the field winding 14, In this case, the field current circulates through the flywheel diode 15, and the armature winding voltage is maintained at a high level according to the field current.
[0026]
The comparator 22 has a voltage of the first power supply 1 equal to or higher than a second threshold voltage Vth2 that is higher than a predetermined first threshold voltage Vth1 (here, an off voltage of the transistor 12) by a predetermined value. In this case, a high level potential is output. At this time, since the transistor 12 is already turned off, the AND circuit 22 that generates a logical product output of the collector potential of the transistor 12 and the output of the comparator 22 supplies a high level potential (short-circuit command signal) to the gate control circuit 10a. Output. In response to this, the control circuit 10a turns off the upper arm MOSFETs 4 to 6 and turns on the lower arm MOSFETs 7 to 9, thereby short-circuiting the three-phase armature windings of the rotating machine 2 to suppress overvoltage. The
[0027]
In the above embodiment, the output of the rotating machine 2 is suppressed by turning off the upper arm and turning on the lower arm. However, the same effect can be obtained even when the upper arm is turned on and the lower arm is turned off.
[0028]
[Example 2]
Another embodiment will be described below with reference to FIG.
[0029]
In the above-described embodiment, the short-circuit operation is performed based on the determination of the overvoltage by the comparator 22, but since this type of overvoltage is caused by the interruption of the large electric load during high-speed traveling, the engine speed and the large electric The short-circuit operation may be performed for a certain period based on two signals indicating load interruption. These two signals are regarded as corresponding to a state in which the overvoltage is equal to or higher than the second threshold voltage Vth2.
[0030]
[Example 3]
Another embodiment will be described below with reference to FIG.
[0031]
In the above embodiment, the MOSFETs 7 to 9 constituting the lower arm are short-circuited when the comparator 22 determines the overvoltage.
After short-circuiting the MOSFETs 7 to 9 for a predetermined period (at this time, the MOSFETs 4 to 6 constituting the upper arm are turned off),
The MOSFETs 4 to 6 may be short-circuited for a predetermined period (at this time, the MOSFETs 7 to 9 constituting the upper arm are turned off), and the alternate short-circuit operation of the upper and lower arms may be repeated every predetermined time. In this way, the heat generation of the MOSFETs 4 to 9 can be dispersed, and the thermal safety of the MOSFETs 4 to 9 is improved.
[0032]
[Example 4]
Another embodiment will be described below with reference to FIG.
[0033]
In the above embodiment, the MOSFETs 7 to 9 constituting the lower arm are short-circuited when the comparator 22 determines the overvoltage.
Either MOSFET 7-9 or 4-6 may be intermittently short-circuited at a predetermined duty ratio. In this way, each of the voltages rises again from the moment when either of the MOSFETs 7 to 9 or 4 to 6 stops the short-circuit operation, but it takes time for the increased voltage to reach an unacceptable overvoltage. Since 3 suppresses it, it is possible to prevent each part voltage from reaching an overvoltage until the start of the next short-circuit operation.
[0034]
That is, by the intermittent short circuit operation according to the present embodiment,
The overvoltage can be maintained within the allowable range while suppressing the short-circuit current, and the thermal safety can be improved.
[0035]
[Example 5]
Another embodiment will be described below with reference to FIG.
[0036]
In this embodiment, in addition to the short-circuit operation of the three-phase inverter 10 based on the overvoltage determination by the comparator 22 described in the first embodiment, the cutoff operation of the three-phase inverter 10 during overcurrent is also performed. However, the short-circuiting operation is performed with priority over the above-described blocking operation.
[0037]
An overcurrent protection unit 31 includes a current sensor 32, a rectifier circuit 33, a comparator 34, and a NOR circuit 35. The armature current detected by the current sensor 32 is rectified by the rectifier circuit 33 and then compared with a predetermined threshold voltage Vth3 by the comparator 34. When the rectified voltage is larger than the threshold voltage Vth3, the comparator 34 outputs a low level potential, so that the NOR circuit 35 causes an overcurrent protection command only when an overcurrent occurs and no overvoltage occurs (the output of the AND circuit 23 is not a high level potential). The signal S2 is output to the gate control circuit 10a. When the overcurrent protection command S2 is input, the gate control circuit 10a turns off all the MOSFETs 4 to 9 of the three-phase inverter 10. Thereby, overcurrent is suppressed. However, when the AND circuit 23 outputs the short-circuit command signal S1, the NOR circuit 24 is always at a low level potential, and the overcurrent protection command S2 and the short-circuit command signal S1 may be simultaneously output to the gate control circuit 10a. The short-circuit operation command S1 is given priority. Thereby, the performance degradation of the DC power supply 1 can be suppressed, and the insulation degradation of each part and the performance degradation resulting from it can be prevented.
[Brief description of the drawings]
FIG. 1 is a block circuit diagram showing a field winding type rotating electrical machine and its control device according to Embodiments 1 to 4. FIG.
FIG. 2 is a block circuit diagram showing a field winding type rotary electric machine and a control device thereof according to a fifth embodiment.
[Explanation of symbols]
1 DC power supply 4-9 MOSFET (power semiconductor device)
10 Three-phase inverter (inverter part)
10a Gate control circuit (armature winding short-circuit control unit)
DESCRIPTION OF SYMBOLS 11 Field current control part 12 Field current control switch 15 Flywheel diode 21 Short circuit control circuit (armature winding short circuit control part)
31 Overcurrent protection unit

Claims (4)

それぞれ複数のスイッチング素子により構成される上アーム及び下アームを有して界磁巻線型回転電機と直流電源との間に介設されるインバータ部と、
前記界磁巻線に通電する界磁電流を制御して前記直流電源の電源電圧を所定の基準電圧値に制御する界磁電流制御部と、
を備え、
前記界磁電流制御部は、前記界磁巻線と直列接続される界磁電流制御用の界磁電流制御スイッチと、前記界磁巻線と逆並列に接続されるフライホイルダイオードとを備える界磁巻線型回転電機の制御装置において、
前記界磁電流制御スイッチが遮断されているにもかかわらず前記電源電圧が前記基準電圧値より高い所定の超過電圧値を超える場合に、前記インバータ部の前記上アーム及び前記下アームのどちらかの複数の前記スイッチング素子を時間的に重なって導通させることにより、前記界磁巻線型回転電機の電機子巻線を短絡する電機子巻線短絡制御部を備え
前記電機子巻線短絡制御部は、
前記短絡動作時に、前記インバータ部の前記上アームの複数の前記スイッチング素子を時間的に重なって導通させる上アーム短絡動作と、前記インバータ部の前記下アームの複数の前記スイッチング素子を時間的に重なって導通させる下アーム短絡動作とのうちの一方を所定期間実行した後、他方を所定期間実行することを特徴とする界磁巻線型回転電機の制御装置。
An inverter unit having an upper arm and a lower arm each composed of a plurality of switching elements and interposed between the field winding type rotary electric machine and the DC power source;
A field current control unit that controls a field current passed through the field winding to control a power supply voltage of the DC power supply to a predetermined reference voltage value;
With
The field current control unit includes a field current control switch for field current control connected in series with the field winding, and a flywheel diode connected in antiparallel with the field winding. In the control device of the magnetic winding type rotary electric machine,
When the power supply voltage exceeds a predetermined excess voltage value higher than the reference voltage value even though the field current control switch is cut off, one of the upper arm and the lower arm of the inverter unit An armature winding short-circuit control unit that short-circuits the armature winding of the field winding type rotating electrical machine by causing the plurality of switching elements to overlap with each other in time ,
The armature winding short-circuit controller is
During the short-circuit operation, the upper arm short-circuit operation in which the plurality of switching elements of the upper arm of the inverter unit overlap each other in time and the plurality of switching elements of the lower arm of the inverter unit overlap with each other in time. after performing one of the predetermined period of the lower arm short-circuit operation to conduct Te, the control unit of the field winding type rotary electric machine characterized that you perform a predetermined period other.
請求項1記載の界磁巻線型回転電機の制御装置において、
前記インバータ部又は前記回転電機の電流が所定の基準電流値を超える場合に前記インバータ部の前記スイッチング素子を制御して前記電流を制限する過電流保護部を有し、
前記電機子巻線短絡制御部は、前記界磁電流制御スイッチが遮断されているにもかかわらず前記電源電圧が前記基準電圧値より高い所定の超過電圧値を超える場合に、前記過電流保護部に優先して前記短絡動作を実施することを特徴とする界磁巻線型回転電機の制御装置。
In the control device for a field winding type rotary electric machine according to claim 1,
An overcurrent protection unit that controls the switching element of the inverter unit to limit the current when the current of the inverter unit or the rotating electrical machine exceeds a predetermined reference current value;
The armature winding short-circuit control unit is configured to detect the overcurrent protection unit when the power supply voltage exceeds a predetermined excess voltage value higher than the reference voltage value even though the field current control switch is cut off. A control device for a field winding type rotating electrical machine, wherein the short circuit operation is performed in preference to the above.
請求項1又は2記載の界磁巻線型回転電機の制御装置において、
前記電機子巻線短絡制御部は、
前記短絡動作時に、前記インバータ部の前記上アームの複数の前記スイッチング素子を時間的に重なって導通させる上アーム短絡動作と、
前記インバータ部の前記下アームの複数の前記スイッチング素子を時間的に重なって導通させる下アーム短絡動作と、
を交互に実行することを特徴とする界磁巻線型回転電機の制御装置。
In the control device for a field winding type rotary electric machine according to claim 1 or 2,
The armature winding short-circuit controller is
During the short-circuit operation, an upper arm short-circuit operation in which a plurality of the switching elements of the upper arm of the inverter unit are temporally overlapped with each other, and
A lower arm short-circuit operation in which a plurality of the switching elements of the lower arm of the inverter unit are temporally overlapped with each other, and
A control device for a field winding type rotating electrical machine, wherein the control is executed alternately.
請求項1乃至3のいずれか記載の界磁巻線型回転電機の制御装置において、
前記直流電源と並列接続された平滑コンデンサを有し、前記電機子巻線短絡制御部は、前記短絡動作時に前記平滑コンデンサの出力電圧が所定の許容範囲を超えない範囲で前記インバータ部の前記上アーム及び下アームのどちらかの前記複数のスイッチング素子を所定デューティ比で断続的に時間的に重なって導通させることを特徴とする界磁巻線型回転電機の制御装置。
In the control apparatus of the field winding type rotary electric machine according to any one of claims 1 to 3,
A smoothing capacitor connected in parallel with the DC power supply, and the armature winding short-circuit control unit is configured so that the output voltage of the smoothing capacitor does not exceed a predetermined allowable range during the short-circuit operation. A control apparatus for a field winding type rotating electrical machine, wherein the plurality of switching elements of either the arm or the lower arm are intermittently overlapped with each other at a predetermined duty ratio in time.
JP2000189259A 2000-06-23 2000-06-23 Field winding type rotating electrical machine control device Expired - Fee Related JP3840880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000189259A JP3840880B2 (en) 2000-06-23 2000-06-23 Field winding type rotating electrical machine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000189259A JP3840880B2 (en) 2000-06-23 2000-06-23 Field winding type rotating electrical machine control device

Publications (2)

Publication Number Publication Date
JP2002010694A JP2002010694A (en) 2002-01-11
JP3840880B2 true JP3840880B2 (en) 2006-11-01

Family

ID=18688909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000189259A Expired - Fee Related JP3840880B2 (en) 2000-06-23 2000-06-23 Field winding type rotating electrical machine control device

Country Status (1)

Country Link
JP (1) JP3840880B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088552A1 (en) 2011-12-15 2013-06-20 三菱電機株式会社 Power converter and control method for power converter

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4532875B2 (en) * 2003-10-14 2010-08-25 日立オートモティブシステムズ株式会社 Power converter
FR2874765B1 (en) * 2004-08-31 2007-02-09 Valeo Equip Electr Moteur CONTROL AND POWER MODULE FOR A ROTATING ELECTRIC MACHINE
JP5057661B2 (en) * 2004-10-26 2012-10-24 富士電機株式会社 Electric motor drive system
DE102005009341A1 (en) * 2004-11-04 2006-05-18 Diehl Ako Stiftung & Co. Kg Circuit arrangement and method for controlling an electric motor, in particular a washing machine
JP4143648B2 (en) * 2006-01-11 2008-09-03 三菱電機株式会社 Field winding AC rotating electrical machine
JP4675299B2 (en) * 2006-09-08 2011-04-20 三菱電機株式会社 Control device for rotating electrical machine for vehicle
JP5181666B2 (en) * 2006-12-28 2013-04-10 日産自動車株式会社 Field winding type motor and control circuit for field winding type generator
JP4926222B2 (en) * 2009-09-30 2012-05-09 三菱電機株式会社 Control device for vehicle power converter
JP5504850B2 (en) * 2009-12-01 2014-05-28 株式会社デンソー Vehicle generator
JP5585270B2 (en) * 2010-07-26 2014-09-10 株式会社デンソー Vehicle generator
JP5464367B2 (en) * 2010-09-17 2014-04-09 株式会社デンソー Rotating electric machine for vehicles
FR2975241B1 (en) 2011-05-10 2013-05-10 Valeo Equip Electr Moteur METHOD FOR CONTROLLING A ROTATING ELECTRIC MACHINE, CONTROL SYSTEM AND CORRESPONDING ROTATING ELECTRIC MACHINE
JP6277601B2 (en) * 2013-05-10 2018-02-14 株式会社デンソー Rotating electric machine for vehicles
DE102014106218B4 (en) 2013-05-09 2021-11-25 Denso Corporation Rotating electrical machine for a vehicle
DE102013214835A1 (en) 2013-07-30 2015-02-05 Robert Bosch Gmbh Surge protection for a multi-voltage vehicle electrical system
JP6123627B2 (en) * 2013-10-16 2017-05-10 株式会社デンソー Rotating electric machine for vehicles
JP6156523B2 (en) * 2016-01-11 2017-07-05 株式会社デンソー Flow sensor
JP6697181B2 (en) * 2016-06-15 2020-05-20 富士電機株式会社 Electric motor drive
DE112017005937T8 (en) * 2016-11-24 2019-10-24 Valeo Équipements Électriques Moteur A method of limiting avalanche energy at the end of motor operation for a starter-generator inverter by reducing current
JP6708165B2 (en) * 2017-05-12 2020-06-10 株式会社デンソー Controller for rotating electrical machine
WO2019106744A1 (en) * 2017-11-29 2019-06-06 マーレエレクトリックドライブズジャパン株式会社 Battery-charging device
WO2019220484A1 (en) * 2018-05-14 2019-11-21 三菱電機株式会社 Control device for ac rotary electric machine
FR3091053B1 (en) * 2018-12-20 2021-01-15 Valeo Equipements Electriques Moteur Service Pi Method of controlling a rotating electrical machine and corresponding control system
JP7424172B2 (en) * 2020-04-01 2024-01-30 富士電機株式会社 Motor drive device, motor drive method, and motor drive program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088552A1 (en) 2011-12-15 2013-06-20 三菱電機株式会社 Power converter and control method for power converter
US9444380B2 (en) 2011-12-15 2016-09-13 Mitsubishi Electric Corporation Power converter and control method for power converter

Also Published As

Publication number Publication date
JP2002010694A (en) 2002-01-11

Similar Documents

Publication Publication Date Title
JP3840880B2 (en) Field winding type rotating electrical machine control device
JP3572058B2 (en) Power supply
JP6046258B2 (en) Operating state switching device for inverter and method for setting operating state of inverter
JP5226915B2 (en) Controlled rectifier bridge circuit with overvoltage protection circuit
US20040246641A1 (en) Inverter control unit for motor driving and air-conditioner employing the same
EP1696554A2 (en) Voltage generating apparatus and motor control apparatus
JPH09219938A (en) Power generating equipment for automobile
JP3724344B2 (en) Electric motor control device
JP2007089358A (en) Control device of vehicle ac generator
US10715057B2 (en) Method for operating a current converter and current converter operating according to said method
WO2007032074A1 (en) Controller of ac generator for vehicles
JP5452654B2 (en) Control device for vehicle alternator
WO2009099144A1 (en) Battery charging circuit
JP2007221844A (en) Matrix converter device and protector thereof
JP3396955B2 (en) DC-AC converter
JP2013511249A (en) Power switch device for inverter
JP5529393B2 (en) Discharge device for power storage device applied to generator motor drive device
JP2003111203A (en) Drive gear for automotive dynamo-electric machine
US8901865B2 (en) Current limiting device for vehicle
JP4097361B2 (en) Battery charger
JPH10136674A (en) Power circuit of motor control apparatus
JPH089567A (en) Output control and output controller of ac generator for vehicle
JPH0648400U (en) Control device for vehicle alternator
JP6119531B2 (en) Rotating electric machine for vehicles
JP4172144B2 (en) Field winding type rotating electrical machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees