JP4143648B2 - Field winding AC rotating electrical machine - Google Patents

Field winding AC rotating electrical machine Download PDF

Info

Publication number
JP4143648B2
JP4143648B2 JP2006003743A JP2006003743A JP4143648B2 JP 4143648 B2 JP4143648 B2 JP 4143648B2 JP 2006003743 A JP2006003743 A JP 2006003743A JP 2006003743 A JP2006003743 A JP 2006003743A JP 4143648 B2 JP4143648 B2 JP 4143648B2
Authority
JP
Japan
Prior art keywords
field
voltage
current
field current
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006003743A
Other languages
Japanese (ja)
Other versions
JP2007189773A (en
Inventor
尚吾 松岡
淑人 浅尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006003743A priority Critical patent/JP4143648B2/en
Priority to FR0752618A priority patent/FR2918516B1/en
Publication of JP2007189773A publication Critical patent/JP2007189773A/en
Application granted granted Critical
Publication of JP4143648B2 publication Critical patent/JP4143648B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/45Special adaptation of control arrangements for generators for motor vehicles, e.g. car alternators

Description

この発明は、発電電流を整流する機能を有するブリッジ回路と界磁電流を制御し得る界磁回路を備えている界磁巻線式交流回転電機装置に関するものである。   The present invention relates to a field winding type AC rotating electrical machine apparatus including a bridge circuit having a function of rectifying a generated current and a field circuit capable of controlling a field current.

特許文献1の「直流−交流変換装置」では、従来からサイリスタ素子や、ブリッジ回路に追加する形でのトランジスタ手段によって、電機子巻線短絡を実施し発電出力を抑制する、あるいは過渡サージ電圧を吸収する手法を、全素子がスイッチング素子で構成されたブリッジ回路に適用し、発電電圧が所定の電圧値を超過時に上下アーム素子の一方の素子を全て導通させると共に他方アーム素子を全て遮断させる過電圧抑制方法を提案している。さらに前記全導通後、直流端電圧がバッテリ電圧より低くなった時に全導通を持続して、バッテリ断線時のロードダンプサージ電圧を吸収すると共にバッテリが再接続されるまで安全を確保する制御方法としている。   In the “DC-AC converter” of Patent Document 1, the armature winding is short-circuited by using a thyristor element or transistor means added to the bridge circuit to suppress the power generation output or the transient surge voltage is reduced. An overvoltage that applies the absorption method to a bridge circuit in which all elements are composed of switching elements, and when all of the upper and lower arm elements are turned on and the other arm element is shut off when the generated voltage exceeds a specified voltage value. A suppression method is proposed. Furthermore, after the full conduction, as a control method for ensuring the safety until the DC terminal voltage becomes lower than the battery voltage, the full conduction is maintained, the load dump surge voltage at the time of the battery disconnection is absorbed, and the battery is reconnected. Yes.

特許文献2の「車両用交流発電機、電圧制御装置および車両用交流発電機の発電制御方法」では、発電電圧が所定の電圧値を超過した時に、所定の時間、界磁電流を抑制する手法を提案している。さらに、整流用ブリッジ回路を構成するパワー半導体素子をパワーツェナーダイオードとし、前記界磁電流の抑制は、発電電圧が所定の電圧以上かつパワーツェナーダイオードの逆方向降伏電圧以下の場合に実施している。   According to “Vehicle AC generator, voltage control device and vehicle AC generator power generation control method” of Patent Document 2, when the generated voltage exceeds a predetermined voltage value, the field current is suppressed for a predetermined time. Has proposed. Further, the power semiconductor element constituting the rectifying bridge circuit is a power Zener diode, and the field current is suppressed when the generated voltage is not less than a predetermined voltage and not more than the reverse breakdown voltage of the power Zener diode. .

特許第3396955号明細書Japanese Patent No. 3396955 特開2002−191194号公報JP 2002-191194 A

特許文献1では、発電電流急変時のパルス状サージ電圧や、バッテリ接続線瞬断時のロードダンプサージ電圧を抑制し、バッテリやバッテリに並列接続される負荷への前記サージ電圧印加を抑止することを目的としているが、界磁駆動用半導体素子の短絡故障時や、界磁巻線端子部のバッテリ電位への接触事故時などに起こる過大励磁状態での連続的な発電運転に対するフェイルセーフに関して、検討がされていない。特に、近年数多く提案されているアイドルストップ車両などに適用される、電動機としても使用可能な電動発電機(MG)システムの場合は、エンジン始動時に大きな力行トルクを発生させる目的で最大界磁電流を大きく流し得る界磁巻線設計となっている場合が多く、故に発電時は界磁電流を大きく制限して使用することとなるため、界磁電流異常に対するフェイルセーフ機能の構築が肝要である。   In Patent Document 1, a pulsed surge voltage at the time of sudden change in generated current and a load dump surge voltage at the moment of a battery connection line interruption are suppressed, and the application of the surge voltage to a battery or a load connected in parallel to the battery is suppressed. However, with regard to fail-safe for continuous power generation operation in overexcited state that occurs at the time of short circuit failure of field drive semiconductor element or contact accident to battery potential of field winding terminal part, It has not been examined. In particular, in the case of a motor generator (MG) system that can be used as an electric motor, which is applied to idle stop vehicles that have been proposed in recent years, the maximum field current is generated for the purpose of generating a large power running torque when the engine is started. In many cases, the field winding design is such that a large amount of current can flow, and therefore, the field current is greatly limited during power generation. Therefore, it is important to construct a fail-safe function for field current abnormality.

前記した界磁回路系統の故障によって、過大励磁状態での発電運転時は、過剰な発電電力を直流電源に出力してしまい、直流電源が発電電流を受け入れられなくなると電圧が上昇する。仮に界磁電流が最大に流れる故障を前提とした場合、特許文献1の提案のように、直流電圧の過電圧を検知して電機子巻線を短絡すると、電機子巻線とそれを短絡している半導体素子には、その回転速度における最大発電電流と同等の循環電流が流れる。電機子巻線を短絡している期間は直流電源側に電力供給されないので、車両負荷消費によって徐々に電圧が低下する。しかし所定電圧未満になって電機子巻線の短絡を解除すると再度過大な電力が直流電源へ供給され、過電圧検出レベルまで電圧が上昇する。こうして直流電圧は過電圧検出レベル以下で制限されるが、界磁電流と電機子電流は継続して大電流が流れつづけることとなる。回転電機の熱設計観点から、力行時の発熱は短時間定格として扱われ、発電時の発熱は連続定格として取り扱われ、過大励磁状態での連続運転は想定外事象であり、熱的に成立しない。   Due to the failure of the field circuit system described above, during power generation operation in an excessively excited state, excessive generated power is output to the DC power source, and the voltage increases when the DC power source cannot accept the generated current. If it is assumed that the field current flows to the maximum, as in the proposal of Patent Document 1, if the overvoltage of the DC voltage is detected and the armature winding is short-circuited, the armature winding and the short-circuit are short-circuited. A circulating current equivalent to the maximum generated current at the rotation speed flows through the semiconductor element. During the period when the armature winding is short-circuited, power is not supplied to the DC power supply side, so the voltage gradually decreases due to vehicle load consumption. However, when the armature winding is short-circuited when the voltage drops below the predetermined voltage, excessive power is supplied again to the DC power supply, and the voltage rises to the overvoltage detection level. Thus, the DC voltage is limited below the overvoltage detection level, but a large current continues to flow in the field current and the armature current. From the viewpoint of the thermal design of rotating electrical machines, heat generation during powering is treated as a short-time rating, heat generation during power generation is treated as a continuous rating, and continuous operation in an overexcited state is an unexpected event and does not hold thermally. .

また、特許文献2のように、パワーツェナーダイオードで発電機の全波整流器を構成するとして、過電圧発生時に所定電圧でクランプする手法も従来から数多く提案されている。一般的にパワーツェナーダイオードの逆方向耐力は発電機の使用最高回転速度における定格負荷遮断での短時間電力吸収に耐えられるように設計されるが、運転者が異常発生に気づき、車両を安全な場所まで移動させるといった長時間運転には耐えられない。さらにパワーツェナーダイオードの逆方向電圧は通常使用電圧範囲よりも高く設定されているため、バッテリにとっては過大電圧での充電となってしまい、過充電あるいは過充電による破損を招く恐れがある。またバッテリに並列接続された車両負荷・装置に対しても高電圧が直接かつ長時間印加される恐れがあり、各負荷・装置の過電圧耐量を超過すると破損を招いてしまう。   In addition, as in Patent Document 2, many techniques have been proposed in which a full-wave rectifier of a generator is configured with a power Zener diode and clamped at a predetermined voltage when an overvoltage occurs. In general, the reverse proof strength of a power zener diode is designed to withstand short-term power absorption at the rated load cut-off at the maximum operating speed of the generator, but the driver notices the occurrence of an abnormality and makes the vehicle safe. It cannot withstand long driving such as moving to a place. Furthermore, since the reverse voltage of the power Zener diode is set higher than the normal operating voltage range, the battery is charged with an excessive voltage, which may cause overcharge or damage due to overcharge. In addition, a high voltage may be applied directly and for a long time to a vehicle load / device connected in parallel to the battery. If the overvoltage withstand capability of each load / device is exceeded, damage may be caused.

さらに、特許文献2の提案によれば、ツェナー電圧以下のパルス状サージ電圧発生を検知した場合に、界磁電流を抑制して発電出力を抑制することで、高電圧印加のダメージを小さくすると共に異常発熱に至らないよう研究されている。しかしながら機能実現に重要な界磁スイッチが破損し、もしくは界磁コイル端子の天絡・地絡故障などによる過大励磁状態での発電運転フェイルセーフに対しては機能できない。   Furthermore, according to the proposal of Patent Document 2, when the generation of a pulsed surge voltage equal to or lower than the Zener voltage is detected, the field current is suppressed to suppress the power generation output, thereby reducing the damage due to the high voltage application. Research is being conducted to prevent abnormal fever. However, the field switch important for realizing the function is damaged, or it cannot function for fail-safe operation during power generation in an overexcited state due to a ground coil fault or ground fault in the field coil terminal.

また、前記2つの特許文献のように出力電圧の異常上昇を検知して過電圧防止策を実施する場合は、電圧異常判定しきい値は通常使用電圧範囲よりもはるかに高く設定せざるを得ず、かつ実際に出力電圧が異常電圧まで上昇した後でないと対処動作できないため、異常発生直後の過渡時には応答遅れによる電圧上昇程度が大きい。一方で、近年の車両搭載システムは小型化・低コスト化のために過大電圧対策回路の低耐量化方向にあり、発電システムとしては、異常時の出力電圧上昇を極力早く、かつ極力低く抑える対処動作ができることが望ましい。   Also, when an abnormal increase in output voltage is detected as in the above two patent documents and an overvoltage prevention measure is implemented, the voltage abnormality determination threshold must be set much higher than the normal operating voltage range. In addition, since the coping operation can be performed only after the output voltage has actually increased to the abnormal voltage, the voltage increase due to the response delay is large during the transition immediately after the occurrence of the abnormality. On the other hand, recent vehicle-mounted systems are in the direction of lowering the tolerance of excessive voltage countermeasure circuits for miniaturization and cost reduction, and as a power generation system, countermeasures to suppress the output voltage rise at the time of abnormality as quickly as possible It is desirable to be able to operate.

この発明は、上記のような問題点を解消するためになされたもので、界磁電流が正常に制御できない場合を、界磁回路が異常として検知し、界磁回路異常を検知した時点で過大電圧発生有無に係らず、ブリッジ回路の全相の上アーム素子または全相の下アーム素子のうち、いずれか一方を全て導通状態にすることで、直流電圧の異常上昇の恐れに対して早いタイミングで直流電源側への発電出力を停止させる界磁巻線式交流回転電機装置を提供しようとするものである。   The present invention has been made to solve the above-described problems. When the field current cannot be controlled normally, the field circuit detects that the field circuit is abnormal and is excessive when the field circuit abnormality is detected. Regardless of whether or not voltage is generated, by setting all the upper arm elements of all phases or lower arm elements of all phases of the bridge circuit to the conductive state, it is possible to make an early timing against the possibility of an abnormal rise in DC voltage. Thus, it is an object of the present invention to provide a field winding type AC rotating electrical machine apparatus that stops the power generation output to the DC power source side.

この発明に係わる界磁巻線式交流回転電機装置は、電機子巻線と界磁巻線を有し、車両用発電機として機能し得る交流回転電機と、パワー半導体素子を直列接続して上下アームを構成した相ブリッジ回路を、必要数並列接続すると共に、一対の直流端が充放電可能な直流電源及び負荷の両端に接続され、直列接続された前記パワー半導体素子の接続点が前記交流回転電機の電機子巻線の各端に個別に接続され、交流−直流電力変換あるいは直流−交流電力変換するブリッジ回路と、前記ブリッジ回路を制御するブリッジ制御手段と、
界磁駆動用半導体素子と界磁電流還流素子を有し、前記界磁巻線に界磁電流を供給する界磁回路と、前記直流電源あるいは前記ブリッジ回路の直流端の直流電圧を検出する直流電圧検出手段と、前記直流電圧検出手段で検出した直流電圧を所定の目標電圧に制御するように前記界磁回路の界磁電流を制御する界磁電流制御手段と、並びに前記界磁電流が正常に制御できない場合に前記界磁回路が異常と判定する界磁回路異常判定手段とを備え、前記界磁回路異常判定手段が前記界磁回路を異常と判定した場合に、前記ブリッジ制御手段は、前記ブリッジ回路の全相の上アーム素子または全相の下アーム素子のうち、いずれか一方を全て導通状態にするものである。
The field winding type AC rotating electrical machine apparatus according to the present invention includes an armature winding and a field winding, and an AC rotating electrical machine that can function as a vehicle generator and a power semiconductor element connected in series to each other. The necessary number of phase bridge circuits constituting the arm are connected in parallel, and a pair of DC terminals are connected to both ends of a chargeable / dischargeable DC power source and a load, and the connection point of the power semiconductor elements connected in series is the AC rotation A bridge circuit that is individually connected to each end of the armature winding of the electric machine, performs AC-DC power conversion or DC-AC power conversion, and bridge control means that controls the bridge circuit;
A field circuit that has a field drive semiconductor element and a field current return element, supplies a field current to the field winding, and a DC that detects a DC voltage at the DC terminal of the DC power supply or the bridge circuit Voltage detection means; field current control means for controlling the field current of the field circuit so as to control the DC voltage detected by the DC voltage detection means to a predetermined target voltage; and the field current is normal Field circuit abnormality determining means for determining that the field circuit is abnormal when it cannot be controlled, and when the field circuit abnormality determining means determines that the field circuit is abnormal, the bridge control means, Either one of the upper arm elements of all phases or the lower arm elements of all phases of the bridge circuit is brought into conduction.

この発明の界磁巻線式交流回転電機装置によれば、界磁電流が正常に制御できない場合を、界磁回路が異常として検知し、界磁回路異常を検知した時点で過大電圧発生有無に係らず、ブリッジ回路の全相の上アーム素子または全相の下アーム素子のうち、いずれか一方を全て導通状態にすることで、直流電圧の異常上昇の恐れに対して早いタイミングで直流電源側への発電出力を停止させることができ、直流電源への過充電や、直流電源に並列接続される電気負荷への過大電圧印加を防止できる。   According to the field winding type AC rotating electrical machine apparatus of the present invention, when the field current cannot be controlled normally, the field circuit detects that the field circuit is abnormal, and when the field circuit abnormality is detected, whether or not an excessive voltage is generated. Regardless, any one of the upper arm elements or the lower arm elements of all the phases of the bridge circuit is made conductive, so that the DC power supply side can be operated at an early timing against the fear of an abnormal rise in DC voltage. It is possible to stop the power generation output to the DC power supply, and it is possible to prevent overcharging the DC power supply and applying an excessive voltage to an electric load connected in parallel to the DC power supply.

実施の形態1.
以下、図を参照して、この発明に係る実施の形態ついて説明する。なお、全ての実施の形態において、同一符号は同一又は相当部分を示し、重複する説明を省略することがある。図1はこの発明の実施の形態1である界磁巻線式交流回転電機装置を示す構成図である。電力変換装置1は、2個のN型MOSFET(パワー半導体素子)を直列接続した直列体を2個並列に接続した相ブリッジ回路を、3個並列に接続して三相のブリッジ回路6を構成し、各N型MOSFETのゲートはブリッジ制御手段7で駆動制御される。N型MOSFETを直列接続した直列体の接続点より上部は上アームを構成し、下部は下アームを構成している。なお、N型MOSFETを直列接続した直列体を2個並列に接続して相ブリッジ回路を構成したが、N型MOSFETを直列接続した直列体を1個で相ブリッジ回路を構成してもよい。また、ブリッジ回路は、交流回転電機の相数に応じて、相ブリッジ回路の並列数を設けるものであり、3相以外に、2相や6相等の多相ブリッジ回路であってもよい。
Embodiment 1 FIG.
Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In all the embodiments, the same reference numerals indicate the same or corresponding parts, and redundant description may be omitted. 1 is a block diagram showing a field winding type AC rotating electrical machine apparatus according to Embodiment 1 of the present invention. The power conversion apparatus 1 includes a three-phase bridge circuit 6 in which three phase bridge circuits in which two series bodies in which two N-type MOSFETs (power semiconductor elements) are connected in series are connected in parallel are connected in parallel. The gate of each N-type MOSFET is driven and controlled by the bridge control means 7. The upper part constitutes the upper arm and the lower part constitutes the lower arm from the connection point of the series body in which the N-type MOSFETs are connected in series. In addition, although the two phase bodies which connected N type MOSFET in series were connected in parallel and the phase bridge circuit was comprised, you may comprise a phase bridge circuit by one serial body which connected N type MOSFET in series. The bridge circuit is provided with a parallel number of phase bridge circuits according to the number of phases of the AC rotating electric machine, and may be a multiphase bridge circuit such as two phases or six phases in addition to the three phases.

界磁駆動回路8は2個のN型MOSFET(パワー半導体素子)の直列体(相ブリッジ回路)で構成され、各N型MOSFETのゲートは界磁電流制御手段9で駆動制御される。2個のN型MOSFETの直列体の接続点より上部のN型MOSFETは界磁駆動用半導体素子8aであり、下部のN型MOSFETは界磁電流還流(半導体)素子8bであり、2個のN型MOSFETの直列体の接続点(FH)と界磁巻線5の一端が接続され、界磁巻線5の他端は界磁電流還流素子8bの上記接続点と反対の端子(FL)に接続されている。そして、界磁回路は界磁駆動用半導体素子8aと界磁電流還流素子8bと界磁巻線5を有している。   The field drive circuit 8 is composed of a series body (phase bridge circuit) of two N-type MOSFETs (power semiconductor elements), and the gate of each N-type MOSFET is driven and controlled by a field current control means 9. The N-type MOSFET above the connection point of the series body of the two N-type MOSFETs is a field drive semiconductor element 8a, and the lower N-type MOSFET is a field current return (semiconductor) element 8b. A connection point (FH) of the series body of the N-type MOSFET and one end of the field winding 5 are connected, and the other end of the field winding 5 is a terminal (FL) opposite to the connection point of the field current return element 8b. It is connected to the. The field circuit includes a field drive semiconductor element 8 a, a field current return element 8 b, and a field winding 5.

ブリッジ回路6の一対の直流端P−Nは充放電可能な直流電源3(バッテリ)に接続され、ブリッジ回路6の三相出力端子(即ち、2個のN型MOSFETを直列接続した直列体の接続点)は交流回転電機2の電機子巻線4の各端に個別に接続される。界磁駆動回路8の一対の直流端はブリッジ回路6の直流端と共通に直流電源3に接続され、出力端子は交流回転電機2の界磁巻線5に接続される。直流電源3両端の直流電圧あるいはブリッジ回路6の直流端の直流電圧は直流電圧検出手段13で測定される。   A pair of DC terminals PN of the bridge circuit 6 are connected to a DC power supply 3 (battery) that can be charged and discharged, and a three-phase output terminal of the bridge circuit 6 (that is, a serial body in which two N-type MOSFETs are connected in series). Are connected individually to each end of the armature winding 4 of the AC rotating electric machine 2. A pair of DC terminals of the field drive circuit 8 are connected to the DC power source 3 in common with the DC terminal of the bridge circuit 6, and an output terminal is connected to the field winding 5 of the AC rotating electric machine 2. The DC voltage at both ends of the DC power supply 3 or the DC voltage at the DC end of the bridge circuit 6 is measured by the DC voltage detecting means 13.

図2は実施の形態1における界磁駆動回路の変形例を示す構成図である。界磁駆動回路8として図示するように、界磁巻線5をハイサイド駆動する場合は、図2(a),(b)に例示するように、界磁駆動回路8の上アーム素子はP型トランジスタやIGBT8aであってもよいし、下アーム素子は還流のみを目的としたダイオード8bであってもよい。また界磁巻線5をローサイド駆動する場合は、図2(c),(d)に示すように、界磁駆動回路8の下アーム素子はN型MOSFETやN型トランジスタ8aであってもよいし、上アーム素子は還流のみを目的としたダイオード8bであってもよい。直流電源3はバッテリとしたが、近年は瞬時大電流での充放電に適したキャパシタなども併用される場合があり、充放電可能な直流電源とし、その種別は問わない。   FIG. 2 is a configuration diagram showing a modification of the field drive circuit according to the first embodiment. As shown in the field drive circuit 8, when the field winding 5 is driven on the high side, the upper arm element of the field drive circuit 8 is P as shown in FIGS. 2 (a) and 2 (b). It may be a type transistor or IGBT 8a, and the lower arm element may be a diode 8b for the purpose of reflux only. When the field winding 5 is driven on the low side, as shown in FIGS. 2C and 2D, the lower arm element of the field drive circuit 8 may be an N-type MOSFET or an N-type transistor 8a. The upper arm element may be a diode 8b for the purpose of reflux only. Although the DC power supply 3 is a battery, in recent years, a capacitor suitable for charging / discharging with an instantaneous large current may be used in combination, and a DC power supply capable of charging / discharging is used regardless of the type.

次に、図1の界磁巻線式交流回転電機装置の動作について図3を参照にして説明する。図3は実施の形態1における界磁巻線式交流回転電機装置の動作を説明する制御ブロック図である。電力変換装置1は目標直流電圧値(Vtg)を、図示しない外部コントローラからの指令値として受け取り、電圧制御ループの目標直流電圧値として設定する。直流電源3の電圧値を直流電圧検出手段13にて読み取り、前記目標直流電圧値との差分を電圧偏差として求める。界磁電流制御手段9は前記電圧偏差を受け取り、界磁駆動回路8の界磁駆動用半導体素子8aをPWM(パルス幅変調)駆動制御するためのデューティ値(PW)を生成・更新する。例えば前記電圧偏差(Ve)が正であればデューティ値を大きく、負であればデューティ値を小さくする方向に生成する。界磁駆動回路8は前記デューティ値に応じた電圧パルス信号で駆動され、界磁巻線5に界磁電流(If)を流す。交流回転電機2はエンジンなどの回転動力で回転しており、電機子巻線4に誘起された交流電力はブリッジ回路6で直流電力に整流されて直流電源3を充電する。   Next, the operation of the field winding type AC rotating electrical machine apparatus of FIG. 1 will be described with reference to FIG. FIG. 3 is a control block diagram for explaining the operation of the field winding AC rotating electrical machine apparatus according to the first embodiment. The power converter 1 receives the target DC voltage value (Vtg) as a command value from an external controller (not shown) and sets it as the target DC voltage value of the voltage control loop. The voltage value of the DC power supply 3 is read by the DC voltage detection means 13 and the difference from the target DC voltage value is obtained as a voltage deviation. The field current control means 9 receives the voltage deviation and generates / updates a duty value (PW) for controlling the PWM (pulse width modulation) drive of the field drive semiconductor element 8a of the field drive circuit 8. For example, when the voltage deviation (Ve) is positive, the duty value is increased, and when the voltage deviation (Ve) is negative, the duty value is decreased. The field drive circuit 8 is driven by a voltage pulse signal corresponding to the duty value, and causes a field current (If) to flow through the field winding 5. The AC rotating electrical machine 2 is rotated by rotational power of an engine or the like, and AC power induced in the armature winding 4 is rectified to DC power by the bridge circuit 6 to charge the DC power supply 3.

界磁回路異常判定手段11は、界磁電流が正常に制御できない何らかの異常を判定した場合、ブリッジ回路6の全相の上アーム素子または全相の下アーム素子のうち、いずれか一方を全て導通状態にすることで、交流回転電機2の電機子巻線4を短絡する。電機子巻線4に誘起される電力は、電機子巻線4と三相を短絡したパワー半導体素子間に循環する電流と、電流経路上の各部抵抗成分によって熱に変換され、消費される。以上のようにして直流側への電力供給を停止させることで、三相出力電流が無制御状態で直流電源へ出力されることを回避する。   When the field circuit abnormality determination means 11 determines any abnormality in which the field current cannot be controlled normally, all of the upper arm elements of all phases or the lower arm elements of all phases of the bridge circuit 6 are conducted. By setting the state, the armature winding 4 of the AC rotating electrical machine 2 is short-circuited. The electric power induced in the armature winding 4 is converted to heat and consumed by the current circulating between the armature winding 4 and the power semiconductor element in which the three phases are short-circuited and the respective resistance components on the current path. By stopping the power supply to the DC side as described above, it is avoided that the three-phase output current is output to the DC power supply in an uncontrolled state.

このように、実施の形態1の構成によれば、界磁回路の故障などに起因する過大界磁電流での発電運転など、長時間にわたって過大に発電出力する恐れがある「界磁電流が正常に制御できない」場合を、界磁回路異常として検知し、界磁回路異常を検知した時点での過大電圧発生有無に係らず、ブリッジ回路の上下アームのいずれかをすべて短絡動作、すなわち交流回転電機の電機子巻線の短絡動作を行うことで、直流電圧の異常上昇に対して極めて早いタイミングで発電出力を停止させることができる。また、発電出力の無制御状態を回避することで、直流電源への過充電や、直流電源に並列接続される電気負荷への過大電圧印加や、車両搭載各機器給電線に過大電流が流れることを防止し、焼損など車両および車両搭載システムに大きな危害が加わることを防止できる。そのため、従来に比較してフェイルセーフ運転動作可能な継続時間を格段に延長可能とし、さらに異常検知が早く、異常発生直後の過渡電圧上昇を抑制し、車載システムへの過渡的な高電圧印加を緩和できる。   As described above, according to the configuration of the first embodiment, there is a risk of excessive power generation and output over a long period of time, such as power generation operation with an excessive field current caused by a field circuit failure or the like. `` Cannot be controlled to '') as a field circuit abnormality, and regardless of whether or not an excessive voltage is generated when the field circuit abnormality is detected, all of the upper and lower arms of the bridge circuit are short-circuited. By performing the short-circuit operation of the armature winding, it is possible to stop the power generation output at an extremely early timing with respect to the abnormal rise of the DC voltage. Also, by avoiding the uncontrolled state of the power generation output, overcharging the DC power supply, applying an excessive voltage to the electric load connected in parallel to the DC power supply, and causing an excessive current to flow through the power supply lines of each device mounted on the vehicle It is possible to prevent the vehicle and the vehicle mounting system from being seriously damaged such as burning. Therefore, compared with the conventional method, the duration in which the fail-safe operation can be operated can be extended significantly, the abnormality detection is quicker, the transient voltage rise immediately after the occurrence of the abnormality is suppressed, and the transient high voltage application to the in-vehicle system is applied. Can be relaxed.

以下、前記「界磁電流が正常に制御できない何らかの異常」に対して具体例をあげて実施の形態を説明する。
実施の形態2.
図4は実施の形態2における界磁回路異常判定手段の構成を示すブロック図である。図5は図4の電圧偏差異常判定しきい値特性を示す図である。界磁回路異常判定手段11は、目標直流電圧値(Vtg)と直流電圧検出値(Vdc)との電圧偏差(Ve)が、界磁回路異常しきい値(Vref1,Vref2)と比較され、界磁回路異常を判定する。
Hereinafter, an embodiment will be described with reference to a specific example for the “some abnormality that the field current cannot be controlled normally”.
Embodiment 2. FIG.
FIG. 4 is a block diagram showing the configuration of the field circuit abnormality determining means in the second embodiment. FIG. 5 is a diagram showing the voltage deviation abnormality determination threshold value characteristic of FIG. The field circuit abnormality determining means 11 compares the voltage deviation (Ve) between the target DC voltage value (Vtg) and the DC voltage detection value (Vdc) with the field circuit abnormality threshold values (Vref1, Vref2). Determine magnetic circuit abnormality.

図5に示すようにVref1は上限値を意味し、Vref2は下限値を意味し、説明上、比較結果=0を正常判定とし、比較結果=1を異常判定とする。通常、電圧偏差(Ve)=0となるべく帰還制御されているので、目標直流電圧値(Vtg)と直流電圧検出値(Vdc)はほぼ等しく、比較結果=0である。電圧偏差(Ve)がVref1を超過するか、あるいはVref2を下回るか、いずれかの状態となった場合、比較結果=1となり、界磁回路異常判定手段11は異常結果を出力する。なお、電圧偏差として扱う物理量単位は電圧値[V]でもよいし、目標値に対する検出値の割合でも同じく実現可能であり、特に限定しなくともよい。   As shown in FIG. 5, Vref1 means an upper limit value, Vref2 means a lower limit value, and for the sake of explanation, comparison result = 0 is judged as normal and comparison result = 1 is judged as abnormal. Usually, since feedback control is performed so that the voltage deviation (Ve) = 0, the target DC voltage value (Vtg) and the DC voltage detection value (Vdc) are substantially equal, and the comparison result = 0. When the voltage deviation (Ve) exceeds Vref1 or falls below Vref2, the comparison result = 1, and the field circuit abnormality determination unit 11 outputs the abnormality result. Note that the physical quantity unit handled as the voltage deviation may be a voltage value [V], or the ratio of the detected value with respect to the target value can be similarly realized, and is not particularly limited.

このように、界磁回路異常判定手段について、直流電圧検出手段で検出した直流電圧値と所定の目標電圧値との偏差が、所定のしきい値を超過した場合に異常と判定するように構成したので、従来のように直流電圧の絶対値で電圧異常を検知するのではなく、目標電圧値が様々に変更されるシステムであっても、直流電圧が正常に帰還制御できているかどうかを数少ない判定パラメータで容易に検知できる。例えば、あらかじめ電力変換装置の電圧制御ループ応答特性を把握しておけば、目標電圧値の最大変化幅に対する最大偏差が規定可能となり、最大偏差の正負2値だけでも異常検出が可能である。また、目標電圧値の変化速度を制御的に制限して制御ループが十分に応答できるようにすれば、最大偏差が極めて小さくでき、確実な異常検出が、容易な異常判定手段で実現できる。   As described above, the field circuit abnormality determining unit is configured to determine that the abnormality is present when the deviation between the DC voltage value detected by the DC voltage detecting unit and the predetermined target voltage value exceeds a predetermined threshold value. Therefore, rather than detecting the voltage abnormality with the absolute value of the DC voltage as in the past, even in a system where the target voltage value is variously changed, there are few cases where the DC voltage can be normally feedback controlled. It can be easily detected by the judgment parameter. For example, if the voltage control loop response characteristics of the power conversion device are known in advance, the maximum deviation with respect to the maximum change width of the target voltage value can be defined, and an abnormality can be detected only with the positive / negative binary value of the maximum deviation. Also, if the control voltage is controlled to limit the change rate of the target voltage value so that the control loop can respond sufficiently, the maximum deviation can be made extremely small, and reliable abnormality detection can be realized with easy abnormality determination means.

実施の形態3.
図6は実施の形態3における界磁巻線式交流回転電機装置の動作を説明する制御ブロック図である。電力変換装置1は目標直流電圧値(Vtg)を、図示しない外部コントローラからの指令値として受け取り、電圧制御ループの目標直流電圧値として設定する。直流電源3の電圧値を直流電圧検出手段13にて読み取り、目標直流電圧値(Vtg)との差分を電圧偏差(Ve)として求める。目標界磁電流演算手段12は電圧偏差(Ve)を受け取り、目標界磁電流値(Iftg)を生成し、界磁電流制御ループの目標界磁電流として設定する。界磁巻線5に流れる界磁電流値(If)を界磁電流検出手段10にて読み取り、目標界磁電流値(Iftg)との差分を電流偏差(Ife)として求める。
Embodiment 3 FIG.
FIG. 6 is a control block diagram for explaining the operation of the field winding AC rotating electrical machine apparatus according to the third embodiment. The power converter 1 receives the target DC voltage value (Vtg) as a command value from an external controller (not shown) and sets it as the target DC voltage value of the voltage control loop. The voltage value of the DC power supply 3 is read by the DC voltage detection means 13 and the difference from the target DC voltage value (Vtg) is obtained as a voltage deviation (Ve). The target field current calculation means 12 receives the voltage deviation (Ve), generates a target field current value (Iftg), and sets it as the target field current of the field current control loop. The field current value (If) flowing through the field winding 5 is read by the field current detection means 10 and the difference from the target field current value (Iftg) is obtained as a current deviation (Ife).

界磁電流制御手段9は、電流偏差(Ife)を受け取り、界磁駆動回路8の界磁駆動用半導体素子8aをPWM(パルス幅変調)駆動制御するデューティ値(PW)を生成・更新する。例えば電流偏差(Ife)が正であればデューティ値を大きく、負であればデューティ値を小さくする方向に生成する。界磁駆動回路8は前記デューティ値に応じた電圧パルス信号で駆動され、界磁巻線5に界磁電流(If)を流す。交流回転電機2はエンジンなどの回転動力で回転しており、電機子巻線4に誘起された交流電力はブリッジ回路6で直流電力に整流されて直流電源3を充電する。   The field current control means 9 receives the current deviation (Ife), and generates and updates the duty value (PW) for controlling the field drive semiconductor element 8a of the field drive circuit 8 by PWM (pulse width modulation). For example, when the current deviation (Ife) is positive, the duty value is increased, and when the current deviation (Ife) is negative, the duty value is decreased. The field drive circuit 8 is driven by a voltage pulse signal corresponding to the duty value, and causes a field current (If) to flow through the field winding 5. The AC rotating electrical machine 2 is rotated by rotational power of an engine or the like, and AC power induced in the armature winding 4 is rectified to DC power by the bridge circuit 6 to charge the DC power supply 3.

図7は実施の形態3における界磁回路異常判定手段の構成を示すブロック図である。図8は図7の電流偏差異常判定しきい値特性を示す図である。図7のように、実施の形態3における界磁回路異常判定手段11は、目標界磁電流値(Iftg)と界磁電流値(If)との電流偏差(Ife)が、所定の電流しきい値を超過した場合に界磁回路異常と判定する。図8に示すように、Iref3は上限値を意味し、Iref4は下限値を意味し、説明上、比較結果=0を正常判定とし、比較結果=1を異常判定とする。通常、電流偏差(Ife)=0となるべく帰還制御されているので、目標界磁電流値(Iftg)と界磁電流値(If)はほぼ等しく、比較結果=0である。   FIG. 7 is a block diagram showing the configuration of the field circuit abnormality determination means in the third embodiment. FIG. 8 is a diagram showing the current deviation abnormality determination threshold value characteristic of FIG. As shown in FIG. 7, the field circuit abnormality determining means 11 according to the third embodiment has a current deviation (Ife) between the target field current value (Iftg) and the field current value (If) of a predetermined current threshold. When the value is exceeded, it is determined that the field circuit is abnormal. As shown in FIG. 8, Iref3 means an upper limit value, Iref4 means a lower limit value, and for the sake of explanation, comparison result = 0 is judged as normal and comparison result = 1 is judged as abnormal. Usually, since feedback control is performed so that the current deviation (Ife) = 0, the target field current value (Iftg) and the field current value (If) are substantially equal, and the comparison result = 0.

電流偏差(Ife)がIref3を超過するか、あるいはIref4を下回るか、いずれかの状態となった場合、比較結果=1となり、界磁回路異常判定手段11に異常結果を出力する。なお、電流偏差として扱う物理量単位は電流値[A]でもよいし、目標値に対する検出値の割合でも同じく実現可能であり、特に限定しなくともよい。また、界磁電流検出手段10は界磁巻線5に流れる電流を検出する目的であるので、高電位側配線(FH)に位置しても、低電位側配線(FL)に位置してもよく、その検出方式はシャント抵抗などの接触方式や、ホールIC式電流センサなどの非接触方式でもよい。   When the current deviation (Ife) exceeds Iref3 or falls below Iref4, the comparison result = 1, and the abnormality result is output to the field circuit abnormality determination means 11. Note that the physical quantity unit treated as the current deviation may be the current value [A], or the ratio of the detected value with respect to the target value can be similarly realized, and is not particularly limited. The field current detecting means 10 is for the purpose of detecting the current flowing in the field winding 5, so that it can be located on the high potential side wiring (FH) or on the low potential side wiring (FL). The detection method may be a contact method such as a shunt resistor or a non-contact method such as a Hall IC current sensor.

このように、界磁回路異常判定手段について、界磁電流の目標電流と界磁電流との電流偏差が、所定のしきい値を超過した場合に、異常と判定するように構成したので、従来のように界磁電流の絶対値で界磁回路異常を検知するのではなく、目標電流が様々に変更されるシステムであっても、界磁電流が正常に帰還制御できているかどうかを数少ない判定パラメータで容易に検知できる。加えて、過大電圧発生有無に係わらず、ブリッジ回路の片アーム短絡動作を行うことで、直流電圧の異常上昇に対して早いタイミングで対処動作の開始が可能であり、異常発生直後の出力電圧上昇抑制に対して好適である。   As described above, the field circuit abnormality determination means is configured to determine an abnormality when the current deviation between the target current of the field current and the field current exceeds a predetermined threshold value. Rather than detecting the field circuit abnormality with the absolute value of the field current as in the case of the system, even if the target current is variously changed, there are few judgments whether the field current can be normally feedback controlled. Easy to detect with parameters. In addition, regardless of whether or not an excessive voltage has occurred, one-arm short-circuit operation of the bridge circuit can start countermeasures at an early timing for an abnormal rise in DC voltage, and the output voltage rises immediately after the occurrence of the abnormality Suitable for suppression.

実施の形態4.
図9は実施の形態4における界磁回路異常判定手段の構成を示すブロック図である。図10は実施の形態4におけるデューティ毎最大界磁電流値の基本特性を示す図である。界磁回路異常判定手段11は、界磁電流制御用のデューティ値(PW)と直流電圧値(Vdc)とからデューティ毎最大界磁電流値(Iref5)を求め、界磁電流検出値(If)と比較して界磁回路異常を判定する。
Embodiment 4 FIG.
FIG. 9 is a block diagram showing the configuration of the field circuit abnormality determining means in the fourth embodiment. FIG. 10 is a diagram illustrating basic characteristics of the maximum field current value for each duty according to the fourth embodiment. The field circuit abnormality determination means 11 obtains a maximum field current value (Iref5) for each duty from the field current control duty value (PW) and the DC voltage value (Vdc), and the field current detection value (If). To determine the field circuit abnormality.

デューティ毎最大界磁電流値特性の一例を示す。製造ばらつきなどを加味したうえで、低温時など界磁巻線がとりうる最小抵抗値をRfminとすると、デューティ毎最大界磁電流値の理論値は次の(1)式で求まる。
Ifr=V12/Rfmin×Duty ・・・ (1)
ただし、Ifr:デューティ毎最大界磁電流値基準値
12:基準電圧(固定値)
Duty:界磁巻線印加デューティ
An example of the maximum field current value characteristic for each duty is shown. Taking into account manufacturing variations and the like, if the minimum resistance value that the field winding can take, such as at low temperatures, is Rfmin, the theoretical value of the maximum field current value for each duty can be obtained by the following equation (1).
Ifr = V 12 / Rfmin × Duty (1)
However, Ifr: Maximum field current value reference value for each duty V 12 : Reference voltage (fixed value)
Duty: Field winding application duty

装置製造時などにあらかじめ、前記理論値を元に非線形性などを考慮して、図10に示すような基準特性を設定し、図示しない記憶手段に記憶させておく。実際の動作中には界磁電流制御用のデューティ値(PW)を用いて前記基準特性からデューティ毎最大界磁電流値基準値(Ifr)を求め、次の(2)式のように界磁巻線の給電源である直流電圧で補正し、デューティ毎最大界磁電流値(Iref5)を得る。
Iref5=Vdc/V12×Ifr ・・・ (2)
ただし、Iref5:デューティ毎最大界磁電流値
Ifr:デューティ毎最大界磁電流値基準値
Vdc:直流電圧検出値
12:基準電圧(固定値)
In consideration of nonlinearity and the like based on the theoretical value, a reference characteristic as shown in FIG. 10 is set in advance and stored in a storage means (not shown) at the time of manufacturing the apparatus. During actual operation, the field current control duty value (PW) is used to determine the maximum field current value reference value (Ifr) for each duty from the reference characteristics, and the field is expressed as in the following equation (2). Correction is performed with a DC voltage that is a power supply for the winding, and a maximum field current value (Iref5) for each duty is obtained.
Iref5 = Vdc / V 12 × Ifr ··· (2)
However, IREF5: duty every maximum field current value Ifr: duty every maximum field current value reference value Vdc: DC voltage detection value V 12: reference voltage (fixed value)

図9において、(1)(2)式より、界磁電流制御用のデューティ値(PW)と直流電圧値(Vdc)とからそのデューティ値(PW)時におけるデューティ毎最大界磁電流値(Iref5)を求め、これを界磁電流検出手段より検出した界磁電流値(If)と比較する。
説明上、比較結果=0を正常判定とし、比較結果=1を異常判定とする。通常、界磁電流値(If)はデューティ毎最大界磁電流値(Iref5)より小さく帰還制御されているので、比較結果=0である。しかし何らかの異常で界磁電流値(If)がデューティ毎最大界磁電流値(Iref5)より大きくなると、比較結果=1となり、界磁回路異常判定手段11は異常結果を出力する。
In FIG. 9, from the equations (1) and (2), the maximum field current value per duty (Iref5) at the duty value (PW) from the duty value (PW) for controlling the field current and the DC voltage value (Vdc). ) And is compared with the field current value (If) detected by the field current detecting means.
For the sake of explanation, the comparison result = 0 is determined as normal and the comparison result = 1 is determined as abnormal. Usually, the field current value (If) is feedback-controlled to be smaller than the maximum field current value for each duty (Iref5), so the comparison result = 0. However, if the field current value (If) becomes larger than the maximum field current value for each duty (Iref5) due to some abnormality, the comparison result = 1, and the field circuit abnormality determination means 11 outputs the abnormality result.

このように、界磁電流制御状態に応じて、超過した場合に異常と判定できる最大の界磁電流しきい値(デューティ毎最大界磁電流値)を持つことで、界磁駆動用半導体素子の故障を確実に検出できる。例えば界磁駆動用半導体素子のオン故障時は、発電出力があって直流電源が充電されて直流電圧が上昇し、PWMデューティ値を小さくするが、界磁電流は継続して流れてしまうため検知できる(すなわち、界磁電流が、そのPWMデューティ値におけるデューティ毎最大界磁電流値を超えるので、検知できる)。界磁回路の異常発生時には前記の電圧制御ループによってPWMデューティ値が変化するので、界磁電流が最大に張り付くような故障状態でなく、界磁巻線配線経路に界磁電流を制限するインピーダンスが存在しても、正常な制御範囲を逸脱したことを検知できる。   Thus, depending on the field current control state, having the maximum field current threshold (maximum field current value for each duty) that can be determined to be abnormal when exceeded, the field driving semiconductor element Failure can be detected reliably. For example, when a field drive semiconductor element is on-failed, there is a power generation output, the DC power supply is charged, the DC voltage rises, and the PWM duty value is reduced, but the field current continues to flow. (That is, it can be detected because the field current exceeds the maximum field current value per duty at that PWM duty value). When the field circuit abnormality occurs, the PWM duty value is changed by the voltage control loop. Therefore, the field current is not in a fault state where the field current sticks to the maximum. Even if it exists, it can be detected that it has deviated from the normal control range.

実施の形態5.
図11は実施の形態5における界磁回路異常判定手段の構成を示すブロック図である。図12は実施の形態5におけるオン故障時最小界磁電流値の基本特性を示す図である。界磁回路異常判定手段11は、直流電圧値(Vdc)からオン故障時最小界磁電流値(Iref6)を求め、界磁電流検出値(If)が、本来超過しない設定であるにもかかわらず、オン故障時最小界磁電流値(Iref6)を超えたときに界磁回路異常と判定する。
オン故障時最小界磁電流値特性の一例を示す。製造ばらつきなどを加味したうえで、高温時などの界磁巻線がとりうる最大抵抗値をRfmaxとすると、オン故障時最小界磁電流値の理論値は次の(3)式で求まる。
Ifmin=V12/Rfmax ・・・ (3)
ただし、Ifmin:オン故障時最小界磁電流値基準値
12:基準電圧(固定値)
Embodiment 5. FIG.
FIG. 11 is a block diagram showing the configuration of the field circuit abnormality determining means in the fifth embodiment. FIG. 12 is a diagram showing the basic characteristics of the minimum field current value at the time of on-failure in the fifth embodiment. The field circuit abnormality determination means 11 calculates the minimum field current value (Iref6) at the time of an on-failure from the DC voltage value (Vdc), and the field current detection value (If) is a setting that does not normally exceed. When the on-failure minimum field current value (Iref6) is exceeded, it is determined that the field circuit is abnormal.
An example of the minimum field current value characteristic at the time of an on-failure is shown. Taking into account manufacturing variations and the like, if the maximum resistance value that the field winding can take at high temperature and the like is Rfmax, the theoretical value of the minimum field current value at the on-failure can be obtained by the following equation (3).
Ifmin = V 12 / Rfmax (3)
However, Ifmin: On-failure minimum field current value reference value V 12 : Reference voltage (fixed value)

装置製造時などにあらかじめ、前記理論値を元に図12に示すような基準特性を設定し、図示しない記憶手段に記憶させておく。なお、界磁駆動用半導体素子8aはその導通率が所定の上限値Dlimitで制限されている。実際の動作中には次の(4)式のように界磁巻線の給電源である直流電圧で補正し、オン故障時最小界磁電流値(Iref6)を得る。
Iref6=Vdc/V12×Ifmin ・・・ (4)
ただし、Iref6:オン故障時最小界磁電流値
Ifmin:オン故障時最小界磁電流値基準値
Vdc:直流電圧検出値
12:基準電圧(固定値)
A reference characteristic as shown in FIG. 12 is set in advance based on the theoretical value at the time of manufacturing the apparatus, and stored in a storage means (not shown). Note that the conductivity of the field drive semiconductor element 8a is limited by a predetermined upper limit value Dlimit. During actual operation, correction is made with the DC voltage that is the power supply for the field winding as in the following equation (4) to obtain the minimum field current value (Iref6) at the on-failure.
Iref6 = Vdc / V 12 × Ifmin ··· (4)
However, IREF6: ON failure at the minimum field current value Ifmin: ON failure at the minimum field current value reference value Vdc: DC voltage detection value V 12: reference voltage (fixed value)

実施の形態5の実施時、界磁駆動回路8の界磁駆動用半導体素子8aを完全オンした場合は、オン故障と同等の電流が流れてしまうので、オン故障時最小界磁電流値(Iref6)を超過する。通常時には、オン故障時最小界磁電流値(Iref6)を超過しないように、界磁駆動用半導体素子8aの駆動デューティは、所定の上限値Dlimitを設けて制限し、完全オンさせないように工夫している。   When the field drive semiconductor element 8a of the field drive circuit 8 is completely turned on during the implementation of the fifth embodiment, a current equivalent to an on-failure flows, and thus the minimum field current value (Iref6 at the on-failure) ) Is exceeded. In normal operation, the drive duty of the field drive semiconductor element 8a is limited by a predetermined upper limit value Dlimit so that the minimum field current value (Iref6) at the time of an on-failure is not exceeded. ing.

このように、通常時には、オン故障時最小界磁電流値(Iref6)を超過しないように、界磁駆動用半導体素子8aの駆動デューティは、所定の上限値Dlimitを設けて制限されている。このような状況において、図11に示すように、界磁電流検出値が検出した界磁電流Ifが、記憶手段で記憶されたオン故障時最小界磁電流に基づく値Iref6を超過した場合は、界磁回路異常判定手段11の比較結果=1となり、界磁回路異常判定手段11は異常結果を出力する。   As described above, in normal times, the drive duty of the field drive semiconductor element 8a is limited by the predetermined upper limit value Dlimit so as not to exceed the minimum field current value (Iref6) at the time of ON failure. In such a situation, as shown in FIG. 11, when the field current If detected by the field current detection value exceeds the value Iref6 based on the on-failure minimum field current stored in the storage means, The comparison result of the field circuit abnormality determination unit 11 is equal to 1, and the field circuit abnormality determination unit 11 outputs the abnormality result.

界磁巻線の配線経路が正常で界磁駆動用半導体素子がオン故障した場合に流れうる最小の界磁電流しきい値を持つことで、界磁駆動用半導体素子のオン故障を確実に容易に検出できる。   By having the minimum field current threshold that can flow when the field winding wiring path is normal and the field drive semiconductor element is turned on, it is easy to turn on the field drive semiconductor element easily. Can be detected.

実施の形態6.
実施の形態5によれば、完全オンできないために持てる装置性能をフルに発揮できない欠点が生じる。しかし、課題として前述したように電動発電機装置の場合であれば、エンジン始動時に大きな力行トルクを発生させる目的で最大界磁電流を大きく流せる界磁巻線設計となっている場合が多く、故に発電時は界磁電流をかなり制限して使用している。したがって、定常的に連続動作する発電動作期間に対して、エンジン始動など力行トルク発生時などの極短時間だけ界磁回路異常判定手段11の動作を停止させて、駆動デューティの上限設定を解除して完全オン可能に機能付加すれば、装置性能を低下させることがない。
Embodiment 6 FIG.
According to the fifth embodiment, there is a disadvantage that the device performance that can be fully exhibited because the device cannot be completely turned on is generated. However, as described above, in the case of a motor generator device as a problem, it is often a field winding design that allows a large maximum field current to flow for the purpose of generating a large power running torque when starting the engine. During power generation, the field current is considerably limited. Therefore, the operation of the field circuit abnormality determination means 11 is stopped for a very short time, such as when the power running torque is generated such as engine start, during the power generation operation period in which the continuous operation is continuously performed, and the upper limit setting of the drive duty is released. If the function is added so that it can be completely turned on, the device performance will not be degraded.

実施の形態7.
実施の形態6では、力行時だけ界磁回路異常判定手段11の動作を停止させて完全オンさせているが、別な方法として、実施の形態7の方法もある。すなわち、力行時にはオン故障時最小界磁電流値にオフセット加算してしきい値を引き上げる方法もある。
Iref6’=Vdc/V12×Ifmin+Voffset ・・・ (5)
ただし、Voffset:オン故障時最小界磁電流値加算オフセット
Embodiment 7 FIG.
In the sixth embodiment, the operation of the field circuit abnormality determining means 11 is stopped and completely turned on only during powering, but there is another method of the seventh embodiment. That is, there is also a method of raising the threshold value by adding an offset to the minimum field current value at the time of on-failure during power running.
Iref6 '= Vdc / V 12 × Ifmin + Voffset ··· (5)
However, Voffset: minimum field current value addition offset at ON failure

マイクロコンピュータなどを使用せずに電子回路で処理を実現する場合など、実施の形態6のような例外処理は無用に回路規模を大きくしてしまう恐れがある。そのため、例えば実施の形態7によれば、完全オンする/しないを意味する5[V]または0[V]のオンオフ信号を、そのままオン故障時最小界磁電流値加算オフセット(Voffset)としてしきい値に加算するだけでも実現できる。   In the case where the processing is realized by an electronic circuit without using a microcomputer or the like, exception processing as in the sixth embodiment may unnecessarily increase the circuit scale. Therefore, according to the seventh embodiment, for example, the ON / OFF signal of 5 [V] or 0 [V], which means complete ON / OFF, is used as the threshold value as the on-failure minimum field current value addition offset (Voffset). This can be achieved by simply adding to the value.

このようにすれば、たとえ力行時に界磁駆動用半導体素子8aを完全オンさせても、オン故障時最小界磁電流値がオフセット分加算されてしきい値が大きくなっているので、界磁電流は、しきい値を超えることはない。つまり、力行時には、オン故障時最小界磁電流を利用した界磁回路異常判定を禁止したのと同等の機能を達成することができる。   In this way, even if the field drive semiconductor element 8a is completely turned on during powering, the minimum field current value at the time of an on-failure is added by an offset, and the threshold value is increased. Does not exceed the threshold. That is, at the time of power running, a function equivalent to prohibiting the field circuit abnormality determination using the minimum field current at the time of ON failure can be achieved.

実施の形態8.
図13は実施の形態8における界磁巻線式交流回転電機装置の動作を説明する制御ブロック図である。図14は実施の形態8における界磁回路異常判定手段を説明する図である。直流電圧の電圧制御ループ動作は、前記実施の形態3と同一であるため、説明は省略する。実施の形態3に比較して、さらに界磁巻線5の端子間電圧を検出する界磁巻線電圧検出手段14を備えている。界磁電流制御手段9の出力するオン/オフ信号と界磁巻線電圧検出手段14の出力Vfは界磁回路異常判定手段11に入力される。図14のとおり、実施の形態8における界磁回路異常判定手段11は、界磁電流制御用のデューティ値(PW)から得られるオンオフ出力設定と、界磁巻線5の端子間電圧(Vf)の高/低レベルの組み合わせ一致性を評価し、不一致の場合に界磁回路異常と判定する。
Embodiment 8 FIG.
FIG. 13 is a control block diagram for explaining the operation of the field winding AC rotating electrical machine apparatus according to the eighth embodiment. FIG. 14 is a diagram for explaining field circuit abnormality determining means in the eighth embodiment. Since the voltage control loop operation of the DC voltage is the same as that of the third embodiment, description thereof is omitted. As compared with the third embodiment, field winding voltage detecting means 14 for detecting a voltage between terminals of the field winding 5 is further provided. The on / off signal output from the field current control means 9 and the output Vf from the field winding voltage detection means 14 are input to the field circuit abnormality determination means 11. As shown in FIG. 14, the field circuit abnormality determination means 11 in the eighth embodiment includes an on / off output setting obtained from the field current control duty value (PW) and the terminal voltage (Vf) of the field winding 5. The combinational coincidence at the high / low level is evaluated, and it is determined that the field circuit is abnormal when there is a mismatch.

このように、界磁電流制御手段9が出力するオン/オフ信号のうち、オン期間には界磁駆動用半導体素子8aが導通(オン)し、界磁巻線5にほぼ電源電圧である高レベル電圧が印加される。一方オフ期間には界磁駆動用半導体素子8aが遮断(オフ)し、界磁電流還流素子8bの電圧降下分である低レベル電圧が印加される。すなわち、界磁巻線5の端子間電圧レベルは、界磁駆動用半導体素子8aのオン/オフ動作を反映したものである。したがって、界磁電流制御手段9の出力するオン/オフ信号と、界磁駆動用半導体素子8aのオン/オフ動作を反映した端子間電圧の高/低レベル論理の一致判定を実施することで、界磁駆動用半導体素子8aのオン故障を確実に容易に検出できる。   In this way, among the on / off signals output by the field current control means 9, the field drive semiconductor element 8a is turned on during the on period, and the field winding 5 has a high power supply voltage that is substantially equal to the power supply voltage. A level voltage is applied. On the other hand, in the off period, the field drive semiconductor element 8a is cut off (off), and a low level voltage corresponding to the voltage drop of the field current return element 8b is applied. That is, the voltage level between the terminals of the field winding 5 reflects the on / off operation of the field drive semiconductor element 8a. Therefore, by performing the coincidence determination between the on / off signal output from the field current control means 9 and the high / low level logic of the inter-terminal voltage reflecting the on / off operation of the field drive semiconductor element 8a, An ON failure of the field drive semiconductor element 8a can be reliably and easily detected.

図15は実施の形態8における他の界磁回路異常判定手段を説明する図である。界磁駆動用半導体素子8aのオン故障を検出する目的であることから、図15のように、界磁駆動用半導体素子8aのオフ出力設定時の界磁巻線端子電圧一致性のみを評価し、界磁駆動用半導体素子8aのオン出力設定時には直前の状態を維持するように簡略化してもよい。   FIG. 15 is a diagram for explaining another field circuit abnormality determining means in the eighth embodiment. Since the purpose is to detect an on-failure of the field drive semiconductor element 8a, only the field winding terminal voltage coincidence when the field drive semiconductor element 8a is set to the off output is evaluated as shown in FIG. The field driving semiconductor element 8a may be simplified so as to maintain the previous state when the ON output is set.

実施の形態9.
図16は実施の形態9におけるブリッジ制御手段の構成を示すブロック図である。図17は実施の形態9におけるブリッジ制御を実施したときの直流電圧特性を示す図である。
界磁回路異常判定手段11が正常と判定している場合、ブリッジ制御手段7は、前記電圧制御ループまたは前記電流制御ループによって生成される、通常時ゲート駆動パターンをブリッジ回路6へ出力する。界磁回路異常判定手段11が異常と判定している場合、ブリッジ制御手段7は、直流電源3あるいはブリッジ回路6の直流端の直流電圧が所定の上限しきい値(Vref10)を上回った時にブリッジ回路6の全相の上アーム素子または全相の下アーム素子のうちいずれか一方を全てオン状態にして電機子巻線短絡を実施し、その直流電圧が所定の下限しきい値(Vref11)を下回るまでその状態を維持し、その直流電圧が下限しきい値(Vref11)を下回った時にブリッジ回路6の全オン状態を解除して、その直流電圧が上限のしきい値(Vref10)を上回るまでその状態を維持する。
Embodiment 9 FIG.
FIG. 16 is a block diagram showing the configuration of the bridge control means in the ninth embodiment. FIG. 17 is a diagram illustrating a DC voltage characteristic when the bridge control according to the ninth embodiment is performed.
When the field circuit abnormality determining unit 11 determines that the field circuit abnormality is normal, the bridge control unit 7 outputs the normal-time gate drive pattern generated by the voltage control loop or the current control loop to the bridge circuit 6. When the field circuit abnormality determining means 11 determines that there is an abnormality, the bridge control means 7 bridges when the DC voltage at the DC end of the DC power supply 3 or the bridge circuit 6 exceeds a predetermined upper threshold (Vref10). Either one of the upper arm elements of all phases or the lower arm elements of all phases of the circuit 6 is turned on, and the armature winding is short-circuited. The DC voltage is set to a predetermined lower threshold (Vref11). The state is maintained until it falls below, and when the DC voltage falls below the lower threshold (Vref11), the all-on state of the bridge circuit 6 is canceled and the DC voltage exceeds the upper threshold (Vref10). Maintain that state.

その結果、図17に例示するように、電機子巻線短絡をしている期間の直流電源は放電のみとなるため電圧をVref11まで低下させ、電機子巻線短絡を解除すると過大界磁電流状態での発電電力を出力するため、放電よりも急な勾配で充電し、直流電圧はVref10まで上昇する。これを繰り返すことで直流電源の過充電や過放電を防止する。   As a result, as illustrated in FIG. 17, the DC power supply during the period when the armature winding is short-circuited is only discharged, so the voltage is reduced to Vref11, and when the armature winding short-circuit is released, the over-field current state In order to output the generated power at, charging is performed with a steeper slope than discharging, and the DC voltage rises to Vref10. By repeating this, overcharge and overdischarge of the DC power supply are prevented.

このように、長時間にわたり全相片アーム短絡を実施した場合、直流電源は放電のみとなるため徐々に電圧を低下させ、解除した場合、過大界磁電流での発電出力で充電されるため電圧を上昇させる。所定の直流電圧しきい値で全相片アーム短絡を実施、解除を繰り返し、直流電源を所定電圧に制御可能となり、過充電や過放電を防止できる。さらに、異常発生後に運転者が安全な地点まで車両を移動させるに十分な時間を許容でき、車両の安全性を向上させることができる。   In this way, when all-phase single-arm short-circuiting is carried out for a long time, the DC power supply is only discharged, so the voltage is gradually reduced, and when it is released, the voltage is charged because it is charged with the power generation output with excessive field current. Raise. All-phase single-arm short-circuiting is repeatedly performed and released at a predetermined DC voltage threshold, and the DC power supply can be controlled to a predetermined voltage, thereby preventing overcharge and overdischarge. Furthermore, it is possible to allow a sufficient time for the driver to move the vehicle to a safe point after the occurrence of an abnormality, thereby improving the safety of the vehicle.

実施の形態10
次に、界磁駆動用半導体素子のオン抵抗温度特性や界磁巻線の抵抗温度係数を無視すると、界磁巻線抵抗値はほぼ固定値であるため、界磁電流値は次の(6)式で求まり、直流電圧で決まる値として扱うことが可能である。
If=Vdc/Rf ・・・ (6)
ただし、If:界磁電流値
Vdc:直流電圧
Rf:界磁巻線抵抗
Embodiment 10
Next, ignoring the on-resistance temperature characteristics of the field drive semiconductor element and the resistance temperature coefficient of the field winding, the field winding resistance value is almost a fixed value. ) And can be handled as a value determined by the DC voltage.
If = Vdc / Rf (6)
However, If: Field current value Vdc: DC voltage Rf: Field winding resistance

さらに、界磁駆動用半導体素子温度は、界磁電流Ifによる界磁駆動用半導体素子の損失と、界磁駆動用半導体素子と図示しない冷却手段の熱抵抗と、前記冷却手段の放熱係数に相関し、次の(7)式で表せる。
Tf=If×Ron×Rth×Khs ・・・ (7)
ただし、Tf:界磁駆動用半導体素子温度
Ron:界磁駆動用半導体素子の導通抵抗
Rth:界磁駆動用半導体素子と冷却手段の熱抵抗
Khs:冷却手段の放熱係数
Further, the temperature of the field drive semiconductor element is correlated to the loss of the field drive semiconductor element due to the field current If, the thermal resistance of the field drive semiconductor element and the cooling means (not shown), and the heat dissipation coefficient of the cooling means. And can be expressed by the following equation (7).
Tf = If 2 × Ron × Rth × Khs (7)
Tf: field drive semiconductor element temperature Ron: conduction resistance of field drive semiconductor element Rth: thermal resistance of field drive semiconductor element and cooling means Khs: heat dissipation coefficient of cooling means

本来、放熱係数(Khs)は固定値ではなく、周囲温度環境や、冷却手段の方式、冷媒の流速・流量などによって大きく左右されるため推測は困難であるが、逆に(7)式の各変数値を所定に決定すれば、(6)式と(7)式から、直流電圧(Vdc)によって界磁駆動用半導体素子温度(Tf)の上昇勾配が抑制可能であることがわかる。すなわち、電機子巻線短絡実施によって直流電圧(Vdc)を低下させると、界磁電流(If)が減少するので界磁駆動用半導体素子温度(Tf)の上昇を抑制でき、電機子巻線短絡制御を実施しない従来構成に比較して、はるかに長い所定の時間、電力変換装置の発煙または発火を防止できる。   Originally, the heat dissipation coefficient (Khs) is not a fixed value, and is largely influenced by the ambient temperature environment, the cooling method, the flow rate / flow rate of the refrigerant, etc., but it is difficult to estimate. If the variable value is determined to be predetermined, it can be seen from the equations (6) and (7) that the rising gradient of the field drive semiconductor element temperature (Tf) can be suppressed by the DC voltage (Vdc). That is, when the DC voltage (Vdc) is lowered by performing the armature winding short circuit, the field current (If) is decreased, so that the increase of the semiconductor element temperature (Tf) for driving the field can be suppressed, and the armature winding short circuit. Compared with the conventional configuration in which the control is not performed, it is possible to prevent the power conversion device from being smoked or ignited for a much longer predetermined time.

全相片アーム短絡を実施、解除を繰り返して直流電圧を所定の電圧に維持した場合でも、その電圧で決まる界磁電流が流れ続けるが、電力変換装置の界磁駆動用半導体素子が熱的に所定時間耐え得る界磁電流に制御ができるため、少なくとも無制御での時間よりもはるかに長い所定の時間、発煙や発火を防止できる。そのため、直流電源あるいはブリッジ回路の直流端の直流電圧における所定の上限しきい値と所定の下限しきい値の平均値を、界磁駆動用半導体素子温度が、所定の時間、所定温度以内に収まるように設定するとよい。   Even when all-phase single-arm short-circuiting is performed and release is repeated to maintain the DC voltage at a predetermined voltage, the field current determined by the voltage continues to flow, but the field drive semiconductor element of the power converter is thermally predetermined. Since it is possible to control the field current that can withstand time, it is possible to prevent smoke and ignition at least for a predetermined time much longer than the time without control. Therefore, the field drive semiconductor element temperature falls within the predetermined temperature within the predetermined time for the average value of the predetermined upper limit threshold value and the predetermined lower limit threshold value in the DC voltage at the DC end of the DC power supply or the bridge circuit. It is good to set as follows.

実施の形態11.
実施の形態10では、界磁駆動用半導体素子の温度上昇の抑制に着目したが、実施の形態11では、界磁駆動用半導体素子以外の部品の温度上昇の抑制に着目した。(7)式の各変数値決定に際して、直流電圧(Vdc)を制御して、界磁電流(If)を減少させることによって、交流回転電機の鎖交磁束量が減り、電機子巻線に流れる電流も減少するため、ブリッジ回路6の発熱も減少する。ブリッジ回路6と界磁駆動回路8は装置の主要発熱源であり、両者の発熱を低減できるので、装置の環境温度上昇を緩和できる。一方、界磁駆動用半導体素子以外の部品各々の許容温度と前記部品各々の自己発熱および放熱係数によって、装置の環境温度上昇の影響度が異なる。その中で発煙・発火の可能性の高いものに対して、(7)式の各変数値を決定すれば、実施の形態9に対して、さらに長い所定の時間、電力変換装置の発煙または発火を防止できる。
Embodiment 11 FIG.
In the tenth embodiment, attention is paid to the suppression of the temperature rise of the field drive semiconductor element. In the eleventh embodiment, attention is paid to the suppression of the temperature rise of components other than the field drive semiconductor element. In determining each variable value in equation (7), the DC voltage (Vdc) is controlled to reduce the field current (If), thereby reducing the amount of interlinkage magnetic flux of the AC rotating electric machine and flowing to the armature winding. Since the current also decreases, the heat generation of the bridge circuit 6 also decreases. The bridge circuit 6 and the field drive circuit 8 are the main heat generation sources of the apparatus, and since the heat generation of both can be reduced, an increase in the environmental temperature of the apparatus can be mitigated. On the other hand, the degree of influence of an increase in the environmental temperature of the apparatus differs depending on the allowable temperature of each component other than the field drive semiconductor element and the self-heating and heat dissipation coefficient of each component. If each variable value of the equation (7) is determined for those that are highly likely to emit smoke or ignite, smoke or ignition of the power converter for a longer predetermined time than in the ninth embodiment. Can be prevented.

一般に電力変換装置の界磁駆動用半導体素子やブリッジ回路のパワー半導体素子は、冷却装置に効率的に放熱すべく接続構成されており、発煙や発火に対する熱的余裕があって、電力変換装置に接続される交流回転電機部品やハーネス、そして電力変換装置に搭載されるブリッジ回路を除くその他部品は効率的な放熱手段がなく、熱的余裕がない場合が多い。界磁駆動回路の界磁駆動用半導体素子以外の部品温度を抑制することに主眼をおいて、所定の直流電圧に制御することにより、界磁駆動用半導体素子以外の部品温度が熱的に所定時間耐え得る電機子電流および界磁電流に制御ができるため、少なくとも無制御での時間よりもはるかに長い所定の時間、発煙や発火を防止できる。   In general, the field drive semiconductor element of the power converter and the power semiconductor element of the bridge circuit are connected to the cooling device so as to efficiently dissipate the heat, and there is a thermal allowance against smoke and ignition, so that the power converter In many cases, AC rotating electrical machine parts and harnesses to be connected, and other parts other than the bridge circuit mounted on the power converter have no efficient heat dissipation means and no thermal margin. Focusing on suppressing the temperature of components other than the field drive semiconductor element of the field drive circuit, by controlling to a predetermined DC voltage, the component temperature other than the field drive semiconductor element is thermally predetermined. Since the armature current and the field current that can withstand time can be controlled, it is possible to prevent smoke and ignition for a predetermined time much longer than the time of at least no control.

そのため、直流電源あるいはブリッジ回路の直流端の直流電圧における所定の上限しきい値と所定の下限しきい値の平均値は、電力変換装置内部部品であって界磁駆動用半導体素子以外の部品温度が、所定の時間、所定温度以内に収まるように設定するとよい。   Therefore, the average value of the predetermined upper threshold and the predetermined lower threshold in the DC voltage at the DC terminal of the DC power supply or the bridge circuit is the internal temperature of the power converter and the temperature of the components other than the field drive semiconductor element May be set so as to be within a predetermined temperature for a predetermined time.

実施の形態12.
実施の形態10では、界磁駆動用半導体素子の温度上昇の抑制に着目したが、実施の形態12では、車両のエンジン制御システムを停止させない、かつ車両電気負荷投入による直流電源の電源電圧変動で車両のエンジン制御システムを停止させないように最低限の電源電圧を確保することに着目した。具体的には実施の形態9の下限しきい値(Vref11)を車両のエンジン制御システムの最低許容電圧とすることである。
Embodiment 12 FIG.
In the tenth embodiment, attention is paid to the suppression of the temperature rise of the field drive semiconductor element. However, in the twelfth embodiment, the vehicle engine control system is not stopped, and the power supply voltage fluctuation of the DC power supply caused by the vehicle electric load is applied. We paid attention to securing a minimum power supply voltage so as not to stop the engine control system of the vehicle. Specifically, the lower limit threshold value (Vref11) of the ninth embodiment is set to the minimum allowable voltage of the vehicle engine control system.

このようにすれば、全相片アーム短絡を実施、解除を繰り返して、直流電圧{下限しきい値(Vref11))を車両のエンジン制御システムが動作可能な最低電圧よりも高い電圧に維持することで、界磁巻線に印加される電圧を抑えて発電量を抑制すると共に、エンジン制御システムが動作不能または動作不安定になってエンジンが停止することを確実に回避する。   In this way, all-phase single-arm short-circuiting is performed and released repeatedly to maintain the DC voltage {lower limit threshold (Vref11)) at a voltage higher than the lowest voltage at which the vehicle engine control system can operate. In addition to restraining the voltage applied to the field windings and restraining the amount of power generation, the engine control system is reliably prevented from becoming inoperable or unstable and stopping the engine.

実施の形態13.
実施の形態12と比較して、着眼点の相違は、エンジンが所定の回転速度未満の場合に、エアコンやヘッドライトなどの大きな電気負荷投入による電源電圧低下で車両のエンジン制御システム最低許容電圧を下回らないようにすることと、エンジンの燃料供給系統や点火系統への供給電力不足などに起因するエンジンの回転安定性低下でのエンストを回避することにある。具体的には実施の形態9における下限しきい値(Vref11)を、車両のエンジン制御システム最低許容電圧に1[V]〜2[V]加算した電圧とする。
Embodiment 13 FIG.
Compared to the twelfth embodiment, when the engine is less than a predetermined rotational speed, the minimum allowable voltage for the engine control system of the vehicle is reduced due to a power supply voltage drop caused by a large electric load such as an air conditioner or a headlight. It is to prevent the engine from becoming lower and to avoid engine stall due to a decrease in rotational stability of the engine due to insufficient power supply to the fuel supply system and ignition system of the engine. Specifically, the lower limit threshold value (Vref11) in the ninth embodiment is a voltage obtained by adding 1 [V] to 2 [V] to the minimum allowable engine control system voltage of the vehicle.

直流電圧が車両のエンジン制御システム最低許容電圧に近い場合に、エアコンやヘッドライトなどの消費電力の大きな電気負荷投入による電源電圧低下で車両のエンジン制御システム最低許容電圧を下回らないようにし、界磁巻線に印加される電圧を抑えて発電量を抑制すると共に、エンジン制御システムが動作不能または動作不安定になってエンジンが停止することを確実に回避する。   When the DC voltage is close to the vehicle engine control system minimum allowable voltage, the power supply voltage drop caused by turning on an electric load that consumes a large amount of power, such as an air conditioner or headlight, will not drop below the vehicle engine control system minimum allowable voltage. The voltage applied to the windings is suppressed to reduce the amount of power generation, and the engine control system is reliably prevented from becoming inoperable or unstable to stop the engine.

そのため、直流電源あるいはブリッジ回路の直流端の直流電圧における所定の下限しきい値(Vref11)は、エンジンが所定の回転速度未満の場合には、前記下限しきい値よりもさらに高い電圧に変更設定可能とするとよい。   Therefore, the predetermined lower threshold value (Vref11) in the DC voltage at the DC terminal of the DC power supply or the bridge circuit is changed to a voltage higher than the lower threshold value when the engine is less than the predetermined rotational speed. It should be possible.

実施の形態14.
図18は実施の形態14におけるブリッジ制御手段の構成を示すブロック図である。界磁回路異常判定手段11が正常と判定している場合、ブリッジ制御手段7は、電圧制御ループまたは電流制御ループによって生成される、通常時ゲート駆動パターンをブリッジ回路6へ出力する。界磁回路異常判定手段11が異常と判定している場合、ブリッジ制御手段7は、界磁電流が所定の上限しきい値(Iref12)を上回った時にブリッジ回路6の全相の上アーム素子または全相の下アーム素子のうちいずれか一方を全てオン状態にして電機子巻線短絡を実施し、界磁電流が所定の下限しきい値(Iref13)を下回るまでその状態を維持し、界磁電流が下限しきい値(Iref13)を下回った時にブリッジ回路6の全オン状態を解除して界磁電流が上限しきい値(Vref12)を上回るまでその状態を維持する。
Embodiment 14 FIG.
FIG. 18 is a block diagram showing the configuration of the bridge control means in the fourteenth embodiment. When the field circuit abnormality determining unit 11 determines that the field circuit is normal, the bridge control unit 7 outputs the normal-time gate drive pattern generated by the voltage control loop or the current control loop to the bridge circuit 6. When the field circuit abnormality determining unit 11 determines that the abnormality is present, the bridge control unit 7 determines that the upper arm element of all the phases of the bridge circuit 6 or the bridge circuit 6 when the field current exceeds a predetermined upper limit threshold value (Iref12). Any one of the lower arm elements of all phases is turned on, and the armature winding is short-circuited. This state is maintained until the field current falls below a predetermined lower threshold (Iref13). When the current falls below the lower threshold value (Iref13), the bridge circuit 6 is released from the on state and is maintained until the field current exceeds the upper threshold value (Vref12).

その結果、実施の形態9の図17に例示したと同様に、電機子巻線短絡をしている期間の直流電源は放電のみとなるため電圧を低下させ、すなわち界磁巻線の電源電圧が低下することから界磁電流を減少させ、電機子巻線短絡を解除すると発電電力を出力するため、直流電源を充電して直流電圧が上昇し、すなわち界磁巻線の電源電圧が上昇して、界磁電流を増加させる。これを繰り返すことで直流電源の過充電や過放電を防止する。   As a result, as illustrated in FIG. 17 of the ninth embodiment, since the DC power supply during the period when the armature winding is short-circuited is only discharged, the voltage is lowered, that is, the power supply voltage of the field winding is reduced. When the armature winding short-circuit is released, the generated current is output when the armature winding short circuit is released, so the DC power supply is charged and the DC voltage rises, that is, the field winding power supply voltage rises. , Increase the field current. By repeating this, overcharge and overdischarge of the DC power supply are prevented.

このようにして、所定の界磁電流値で全相片アーム短絡を実施、解除を繰り返し、直流電源の過充電や過放電を防止する。界磁巻線への給電電源が直流電源であって、界磁駆動用半導体素子がオン故障した場合、界磁電流値は直流電源電圧の電圧値におよそ比例するので、逆に界磁電流値を制御すれば直流電源電圧を制御することが可能である。この方法は、電力変換装置の発電電力を直接受けて充電される第一の直流電源と、エンジン制御システムや界磁巻線への給電に用いる第二の直流電源があって、第一の直流電源からDC/DCコンバータなどを介して第二の直流電源を充電するような車両システムであっても適用可能である。   In this way, all-phase single-arm short-circuiting is performed with a predetermined field current value, and release is repeated to prevent overcharging and overdischarging of the DC power supply. If the power supply to the field winding is a DC power supply and the field drive semiconductor element fails to turn on, the field current value is approximately proportional to the voltage value of the DC power supply voltage. By controlling this, it is possible to control the DC power supply voltage. This method includes a first DC power source that is directly charged by receiving power generated by the power converter, and a second DC power source that is used to supply power to the engine control system and the field winding. The present invention can also be applied to a vehicle system in which the second DC power supply is charged from the power supply via a DC / DC converter or the like.

実施の形態14と同様に実施するが、その上限しきい値(Iref12)については、界磁巻線に所定時間通電可能に設計している力行時の最大電流値を上限しきい値としていることである。このようにすると、界磁駆動用半導体素子がオン故障した場合、所定時間通電可能な定格電流である力行時の最大界磁電流以下で全相片アーム短絡を実施、解除を繰り返すので、直流電源の過充電や過放電を防止すると共に、電力変換装置が熱的に所定時間耐え得る電機子電流および界磁電流に制御ができるため、少なくとも無制御での時間よりもはるかに長い所定の時間、発煙や発火を防止できる。   Although it is implemented in the same manner as in the fourteenth embodiment, the maximum threshold value (Iref12) is set to the maximum threshold value during power running designed to allow the field winding to be energized for a predetermined time. It is. In this way, when the field drive semiconductor element fails to turn on, all-phase single-arm short-circuiting is performed below the maximum field current during powering, which is the rated current that can be energized for a predetermined time, and the release is repeated. Suppresses overcharge and overdischarge and controls the armature current and field current that the power converter can withstand for a predetermined time thermally, so it emits smoke for a predetermined time much longer than the time of at least no control And prevent fire.

実施の形態14と同様に実施するが、その上限しきい値(Iref12)については、界磁巻線に連続通電可能に設計している発電時の最大電流値をしきい値としていることである。このようにすれば、界磁駆動用半導体素子がオン故障した場合、連続通電可能な定格電流である発電時の最大界磁電流以下で全相片アーム短絡を実施、解除を繰り返すので、直流電源の過充電や過放電を防止すると共に、電力変換装置が熱的に問題の無い電機子電流および界磁電流に制御ができるため、確実に発煙や発火を防止できる。   The upper limit threshold (Iref12) is the same as in the fourteenth embodiment, but the maximum current value during power generation designed to allow continuous energization of the field winding is the threshold. . In this way, when the field drive semiconductor element fails to turn on, all-phase single-arm short-circuiting is repeated below the maximum field current during power generation, which is the rated current that allows continuous energization, and the release is repeated. In addition to preventing overcharge and overdischarge, the power conversion device can be controlled to armature current and field current that are not thermally problematic, so that smoke and fire can be reliably prevented.

実施の形態15.
電力変換装置1は、警告灯(図示していない)の点灯・消灯のための出力手段を持ち、警報灯は車両の運転者が認識可能にメータパネルに配置されており、界磁回路異常判定手段11が異常を判定した場合に、警告灯を点灯することで、運転者に対して避難運転およびシステムの停止を促す。それと同時に、前述してきた電機子巻線短絡制御や、オンオフ断続制御を実施して直流電源の過充電や過放電を抑止し、車両の発火など車両乗車員への危険を回避する。このように、全相上アームまたは全相下アームのパワー半導体を全てオン状態にするか、または全てオンオフ状態を断続するように駆動して、フェイルセーフ動作を実行しながら、乗車員に対して故障を警告し、乗車員による車両システム停止を促す。
Embodiment 15 FIG.
The power conversion device 1 has an output means for turning on / off a warning light (not shown), and the warning light is arranged on the meter panel so that the driver of the vehicle can recognize, and the field circuit abnormality determination When the means 11 determines an abnormality, the warning light is turned on to prompt the driver to evacuate and stop the system. At the same time, the above-described armature winding short-circuit control and on / off intermittent control are performed to suppress overcharge and overdischarge of the DC power supply, thereby avoiding danger to vehicle occupants such as vehicle ignition. In this way, all the power semiconductors of the upper arm or lower arm of all phases are turned on or all the on / off states are intermittently driven to perform the fail safe operation, while It warns of malfunctions and encourages passengers to stop the vehicle system.

実施の形態16.
図19は実施の形態16における電力変換装置一体型交流回転電機を示す断面図である。全ての制御的手段は回路基板15に構成されており、ブリッジ回路6を含み交流回転電機2の電力変換装置として機能する。電力変換装置は交流回転電機と一体的に搭載され、従来のオルタネータと同様に、交流回転電機の回転子が回転することによって発生する冷却風を電力変換装置の冷却媒体として兼用する。
Embodiment 16 FIG.
FIG. 19 is a sectional view showing a power converter integrated AC rotating electric machine according to the sixteenth embodiment. All the control means are configured on the circuit board 15 and include the bridge circuit 6 and function as a power conversion device for the AC rotating electrical machine 2. The power converter is mounted integrally with the AC rotating electric machine, and similarly to the conventional alternator, the cooling air generated by the rotation of the rotor of the AC rotating electric machine is also used as a cooling medium for the power converter.

ブリッジ回路を含む電力変換装置は、交流回転電機に一体的に搭載され、交流回転電機の冷却用媒体(たとえば強制冷却風)を冷却用媒体として兼用し、電力変換装置への強制冷却を可能とすることで、専用の冷却手段追加が不要で、かつ異常発熱による発煙や発火の危険性を大きく低減する。さらに長時間にわたるフェイルセーフ動作を可能にするので、異常発生時の警報信号を確認したユーザが、車両をしかるべき地点まで移動させるための十分な時間を確保でき、車両の安全性が格段に向上できる。   The power conversion device including the bridge circuit is integrally mounted on the AC rotating electric machine, and the cooling medium (for example, forced cooling air) of the AC rotating electric machine is also used as the cooling medium, and the power converter can be forcibly cooled. This eliminates the need for special cooling means and greatly reduces the risk of smoke and fire due to abnormal heat generation. In addition, it enables fail-safe operation over a long period of time, so that users who have confirmed the alarm signal when an abnormality occurs can secure enough time to move the vehicle to the appropriate point, greatly improving vehicle safety. it can.

この発明の実施の形態1である界磁巻線式交流回転電機装置を示す構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the field winding type AC rotary electric machine apparatus which is Embodiment 1 of this invention. 実施の形態1における界磁駆動回路の変形例を示す構成図である。FIG. 6 is a configuration diagram showing a modification of the field drive circuit in the first embodiment. 実施の形態1における界磁巻線式交流回転電機装置の動作を説明する制御ブロック図である。FIG. 3 is a control block diagram for explaining the operation of the field winding AC rotating electrical machine apparatus in the first embodiment. 実施の形態2における界磁回路異常判定手段の構成を示すブロック図である。It is a block diagram which shows the structure of the field circuit abnormality determination means in Embodiment 2. 図4の電圧偏差異常判定しきい値特性を示す図である。FIG. 5 is a diagram illustrating a threshold voltage error determination threshold value characteristic of FIG. 4. 実施の形態3における界磁巻線式交流回転電機装置の動作を説明する制御ブロック図である。FIG. 10 is a control block diagram for explaining the operation of a field winding AC rotating electrical machine apparatus in a third embodiment. 実施の形態3における界磁回路異常判定手段の構成を示すブロック図である。It is a block diagram which shows the structure of the field circuit abnormality determination means in Embodiment 3. 図7の電流偏差異常判定しきい値特性を示す図である。It is a figure which shows the current deviation abnormality determination threshold value characteristic of FIG. 実施の形態4における界磁回路異常判定手段の構成を示すブロック図である。It is a block diagram which shows the structure of the field circuit abnormality determination means in Embodiment 4.

実施の形態4におけるデューティ毎最大界磁電流値の基本特性を示す図である。It is a figure which shows the basic characteristic of the maximum field current value for every duty in Embodiment 4. FIG. 実施の形態5における界磁回路異常判定手段の構成を示すブロック図である。It is a block diagram which shows the structure of the field circuit abnormality determination means in Embodiment 5. 実施の形態5におけるオン故障時最小界磁電流値の基本特性を示す図である。It is a figure which shows the basic characteristic of the minimum field current value at the time of an on failure in Embodiment 5. 実施の形態8における界磁巻線式交流回転電機装置の動作を説明する制御ブロック図である。FIG. 20 is a control block diagram for explaining the operation of a field winding AC rotating electrical machine apparatus in an eighth embodiment. 実施の形態8における界磁回路異常判定手段を説明する図である。It is a figure explaining the field circuit abnormality determination means in Embodiment 8. 実施の形態8における他の界磁回路異常判定手段を説明する図である。It is a figure explaining the other field circuit abnormality determination means in Embodiment 8. 実施の形態9におけるブリッジ制御手段の構成を示すブロック図である。FIG. 20 is a block diagram showing a configuration of bridge control means in the ninth embodiment. 実施の形態9におけるブリッジ制御を実施したときの直流電圧特性を示す図である。It is a figure which shows a DC voltage characteristic when bridge control in Embodiment 9 is implemented. 実施の形態14におけるブリッジ制御手段の構成を示すブロック図である。FIG. 25 is a block diagram showing a configuration of bridge control means in the fourteenth embodiment. 実施の形態16における電力変換装置一体型交流回転電機を示す断面図である。FIG. 38 is a cross-sectional view showing a power conversion device-integrated AC rotating electric machine in a sixteenth embodiment.

符号の説明Explanation of symbols

1 電力変換装置 2 交流回転電機
3 直流電源 4 電機子巻線
5 界磁巻線 6ブリッジ回路
7 ブリッジ制御手段 8 界磁駆動回路
8a 界磁駆動用半導体素子 8b 界磁電流還流素子
9 界磁電流制御手段 10 界磁電流検出手段
11 界磁回路異常判定手段 12:目標界磁電流演算手段
13 直流電圧検出手段 14:界磁巻線電圧検出手段
15 回路基板
DESCRIPTION OF SYMBOLS 1 Power converter 2 AC rotary electric machine 3 DC power supply 4 Armature winding 5 Field winding 6 Bridge circuit 7 Bridge control means 8 Field drive circuit 8a Field drive semiconductor element 8b Field current return element 9 Field current Control means 10 Field current detection means 11 Field circuit abnormality determination means 12: Target field current calculation means 13 DC voltage detection means 14: Field winding voltage detection means 15 Circuit board

Claims (16)

電機子巻線と界磁巻線を有し、車両用発電機として機能し得る交流回転電機と、
パワー半導体素子を直列接続して上下アームを構成した相ブリッジ回路を、必要数並列接続すると共に、一対の直流端が充放電可能な直流電源及び負荷の両端に接続され、直列接続された前記パワー半導体素子の接続点が前記交流回転電機の電機子巻線の各端に個別に接続され、交流−直流電力変換あるいは直流−交流電力変換するブリッジ回路と、
前記ブリッジ回路を制御するブリッジ制御手段と、
界磁駆動用半導体素子と界磁電流還流素子を有し、前記界磁巻線に界磁電流を供給する界磁回路と、
前記直流電源あるいは前記ブリッジ回路の直流端の直流電圧を検出する直流電圧検出手段と、
前記直流電圧検出手段で検出した直流電圧を所定の目標電圧に制御するように前記界磁回路の界磁電流を制御する界磁電流制御手段と、並びに
前記界磁電流が正常に制御できない場合に前記界磁回路が異常と判定する界磁回路異常判定手段とを備え、
前記界磁回路異常判定手段が前記界磁回路を異常と判定した場合に、前記ブリッジ制御手段は、前記ブリッジ回路の全相の上アーム素子または全相の下アーム素子のうち、いずれか一方を全て導通状態にすることを特徴とする界磁巻線式交流回転電機装置。
An AC rotating electric machine having an armature winding and a field winding, and capable of functioning as a vehicle generator;
The power bridges are connected in series with the necessary number of phase bridge circuits configured by connecting power semiconductor elements in series to form upper and lower arms, and a pair of DC terminals are connected to both ends of a chargeable / dischargeable DC power source and a load. A connection point of the semiconductor element is individually connected to each end of the armature winding of the AC rotating electric machine, and a bridge circuit for AC-DC power conversion or DC-AC power conversion,
Bridge control means for controlling the bridge circuit;
A field circuit that has a field drive semiconductor element and a field current return element, and supplies a field current to the field winding;
DC voltage detecting means for detecting a DC voltage at the DC terminal of the DC power supply or the bridge circuit;
The field current control means for controlling the field current of the field circuit so as to control the DC voltage detected by the DC voltage detection means to a predetermined target voltage, and when the field current cannot be normally controlled. Field circuit abnormality determining means for determining that the field circuit is abnormal,
When the field circuit abnormality determining means determines that the field circuit is abnormal, the bridge control means selects either one of the upper arm elements of all phases or the lower arm elements of all phases of the bridge circuit. A field winding AC rotating electrical machine device characterized in that all are in a conductive state.
前記界磁回路異常判定手段は、前記直流電圧検出手段で検出した直流電圧と前記所定の目標電圧との偏差が、所定のしきい値を超過した場合に、界磁回路異常と判定するようにしたことを特徴とする請求項1記載の界磁巻線式交流回転電機装置。   The field circuit abnormality determining means determines that a field circuit abnormality occurs when a deviation between the DC voltage detected by the DC voltage detecting means and the predetermined target voltage exceeds a predetermined threshold. 2. The field winding AC rotating electrical machine apparatus according to claim 1, wherein 界磁電流の目標電流を生成する目標界磁電流演算手段と、
界磁電流を検出する界磁電流検出手段を備え、
前記界磁回路異常判定手段は、前記目標電流と前記界磁電流との電流偏差が、所定のしきい値を超過した場合に、界磁回路異常と判定するようにしたことを特徴とする請求項1記載の界磁巻線式交流回転電機装置。
A target field current calculating means for generating a target current of the field current;
Field current detection means for detecting the field current is provided,
The field circuit abnormality determining means determines that a field circuit abnormality has occurred when a current deviation between the target current and the field current exceeds a predetermined threshold value. Item 1. The field winding AC rotating electrical machine device according to Item 1.
界磁電流を検出する界磁電流検出手段と、
前記界磁電流制御手段は前記界磁駆動用半導体素子をPWM制御しており、PWM制御時のデューティに応じて界磁巻線に流れうる最大電流と同じかあるいはそれ以上の電流をデューティ毎最大界磁電流として記憶する記憶手段とを備え、
前記界磁電流異常判定手段は、前記界磁電流検出手段で検出された界磁電流が、PWM制御時のデューティに応じて決まる前記デューティ毎最大界磁電流に基づく値を超過した場合に、界磁回路異常と判定するようにしたことを特徴とする請求項1記載の界磁巻線式交流回転電機装置。
A field current detection means for detecting a field current;
The field current control means PWM-controls the field driving semiconductor element, and the current equal to or greater than the maximum current that can flow in the field winding according to the duty at the time of PWM control is maximum for each duty. Storage means for storing as field current,
When the field current detected by the field current detection unit exceeds a value based on the maximum field current for each duty determined according to the duty during PWM control, the field current abnormality determination unit 2. The field winding AC rotating electrical machine apparatus according to claim 1, wherein a magnetic circuit abnormality is determined.
前記界磁駆動用半導体素子の導通率が所定の上限値で制限されていると共に、
界磁電流を検出する界磁電流検出手段と、
前記界磁駆動用半導体素子がオン故障となった場合に界磁巻線に流れうる最小限の電流と同じかあるいはそれ以下の電流をオン故障時最小界磁電流として記憶する記憶手段を備え、前記界磁回路異常判定手段は、前記界磁電流検出値が検出した界磁電流が、前記記憶手段で記憶されたオン故障時最小界磁電流に基づく値を超過した場合に、界磁回路異常と判定するようにしたことを特徴とする請求項1記載の界磁巻線式交流回転電機装置。
The conductivity of the field drive semiconductor element is limited by a predetermined upper limit,
A field current detection means for detecting a field current;
Storage means for storing a current equal to or less than a minimum current that can flow through the field winding when the field drive semiconductor element is turned on as a minimum field current at the time of an on failure; When the field current detected by the field current detection value exceeds the value based on the on-failure minimum field current stored in the storage means, the field circuit abnormality determination means 2. The field winding AC rotating electrical machine apparatus according to claim 1, wherein
前記交流回転電機を力行動作させる場合に、
前記界磁回路異常判定手段は、オン故障時最小界磁電流を利用した界磁回路異常判定を禁止するようにしたことを特徴とする請求項5記載の界磁巻線式交流回転電機装置。
When powering the AC rotating electric machine,
6. The field winding type AC rotating electrical machine apparatus according to claim 5, wherein the field circuit abnormality determining means prohibits a field circuit abnormality determination using a minimum field current at the time of an on-failure.
界磁巻線の端子間電圧を検出する界磁巻線電圧検出手段を備え、
前記界磁回路異常判定手段は、前記界磁電流制御手段の出力するオン又はオフ信号と、前記界磁巻線電圧検出手段によって検出された端子間電圧の高又は低レベルの論理が不一致である場合に、界磁回路異常と判定するようにしたことを特徴とする請求項1記載の界磁巻線式交流回転電機装置。
Field winding voltage detection means for detecting the voltage between the terminals of the field winding is provided,
In the field circuit abnormality determining means, the ON or OFF signal output from the field current control means and the high or low level logic of the inter-terminal voltage detected by the field winding voltage detecting means do not match. 2. The field winding AC rotating electrical machine apparatus according to claim 1, wherein a field circuit abnormality is determined.
前記直流電源あるいは前記ブリッジ回路の直流端の直流電圧における所定の上限しきい値と所定の下限しきい値を記憶する記憶手段を備え、
前記界磁回路異常判定手段によって異常と判定された場合、前記ブリッジ制御手段は、前記直流電圧検出手段で検出する直流電圧が前記上限しきい値を上回った時に前記ブリッジ回路の全相の上アーム素子または全相の下アーム素子のうちいずれか一方を全てオン状態にしてその直流電圧が前記下限しきい値を下回るまでその状態を維持し、その直流電圧が前記下限しきい値を下回った時に前記ブリッジ回路の全オン状態を解除してその直流電圧が前記上限しきい値を上回るまでその状態を維持するようにしたことを特徴とする請求項1〜請求項7のいずれか1項に記載の界磁巻線式交流回転電機装置。
Storage means for storing a predetermined upper threshold value and a predetermined lower threshold value in the DC voltage at the DC terminal of the DC power supply or the bridge circuit;
When it is determined that the field circuit abnormality determination unit is abnormal, the bridge control unit is configured to detect the upper arm of all phases of the bridge circuit when the DC voltage detected by the DC voltage detection unit exceeds the upper limit threshold value. When either the element or the lower arm element of all phases is turned on and the state is maintained until the DC voltage falls below the lower threshold, the DC voltage falls below the lower threshold. 8. The bridge circuit according to any one of claims 1 to 7, wherein the all-on state of the bridge circuit is canceled and the state is maintained until the DC voltage exceeds the upper limit threshold value. Field winding type AC rotating electrical machine device.
前記直流電源あるいは前記ブリッジ回路の直流端の直流電圧における所定の上限しきい値と所定の下限しきい値の平均値は、前記界磁駆動用半導体素子の温度が、所定の時間、所定温度以内に収まるように設定することを特徴とする請求項8記載の界磁巻線式交流回転電機装置。   The average value of the predetermined upper threshold and the predetermined lower threshold in the DC voltage at the DC terminal of the DC power supply or the bridge circuit is that the temperature of the field drive semiconductor element is within a predetermined temperature for a predetermined time. 9. The field winding type AC rotating electrical machine apparatus according to claim 8, wherein the field winding type AC rotating electrical machine device is set so as to fall within a range. 前記直流電源あるいは前記ブリッジ回路の直流端の直流電圧における所定の上限しきい値と所定の下限しきい値の平均値は、ブリッジ回路を含む電力変換装置の内部部品であって前記界磁駆動用半導体素子以外の部品温度が、所定の時間、所定温度以内に収まるように設定することを特徴とする請求項8記載の界磁巻線式交流回転電機装置。   The average value of the predetermined upper limit threshold value and the predetermined lower limit threshold value in the DC voltage at the DC terminal of the DC power supply or the bridge circuit is an internal component of the power converter including the bridge circuit and is used for the field drive 9. The field winding AC rotating electrical machine apparatus according to claim 8, wherein the temperature of components other than the semiconductor element is set so as to be within a predetermined temperature for a predetermined time. 前記直流電源あるいは前記ブリッジ回路の直流端の直流電圧における所定の前記下限しきい値は、車両のエンジン制御システムが動作可能な最低電圧と同じか、あるいは前記最低電圧よりも高い電圧に設定するようにしたことを特徴とする請求項8記載の界磁巻線式交流回転電機装置。   The predetermined lower limit threshold value in the DC voltage at the DC terminal of the DC power supply or the bridge circuit is set to be equal to or higher than the lowest voltage at which the vehicle engine control system can operate. 9. The field winding AC rotating electrical machine apparatus according to claim 8, wherein 前記直流電源あるいは前記ブリッジ回路の直流端の直流電圧における所定の前記下限しきい値は、エンジンが所定の回転速度未満の場合には、前記下限しきい値よりもさらに高い電圧に変更設定可能とすることを特徴とする請求項11記載の界磁巻線式交流回転電機装置。   The predetermined lower threshold in the DC voltage at the DC terminal of the DC power supply or the bridge circuit can be changed and set to a voltage higher than the lower threshold when the engine is less than a predetermined rotational speed. The field winding AC rotating electrical machine apparatus according to claim 11. 界磁電流を検出する界磁電流検出手段と、
界磁電流の所定の上限しきい値と所定の下限しきい値を記憶する記憶手段とを備え、
前記界磁回路異常判定手段によって異常と判定された場合、前記ブリッジ制御手段は、前記界磁電流検出手段で検出された界磁電流が前記上限しきい値を上回った時に前記ブリッジ回路の全相の上アーム素子または全相の下アーム素子のうちいずれか一方を全てオン状態にしてその界磁電流が前記下限しきい値を下回るまでその状態を維持し、その界磁電流が前記下限しきい値を下回った時に前記ブリッジ回路の全オン状態を解除してその界磁電流が前記上限しきい値を上回るまでその状態を維持するようにしたことを特徴とする請求項1〜請求項7のいずれか1項に記載の界磁巻線式交流回転電機装置。
A field current detection means for detecting a field current;
Storage means for storing a predetermined upper threshold value and a predetermined lower threshold value of the field current,
When it is determined that the field circuit abnormality determination unit is abnormal, the bridge control unit is configured to detect all phases of the bridge circuit when the field current detected by the field current detection unit exceeds the upper limit threshold value. Either one of the upper arm element or the lower arm element of all phases is turned on and maintained until the field current falls below the lower threshold, and the field current is reduced to the lower threshold. 8. The state according to claim 1, wherein when the value is below the value, the all-on state of the bridge circuit is released and the state is maintained until the field current exceeds the upper limit threshold value. The field winding type AC rotating electrical machine apparatus according to any one of the above.
界磁電流の所定の前記上限しきい値は、前記交流回転電機を電動機として動作させる場合に設定する最大界磁電流相当あるいはそれ以下に設定するようにしたことを特徴とする請求項13記載の界磁巻線式交流回転電機装置。   14. The predetermined upper limit threshold value of a field current is set to be equivalent to or less than a maximum field current set when the AC rotating electric machine is operated as an electric motor. Field winding AC rotating electrical machine. 界磁電流の所定の前記上限しきい値は、前記交流回転電機を発電機として動作させる場合に設定する最大界磁電流相当あるいはそれ以下に設定するようにしたことを特徴とする請求項13記載の界磁巻線式交流回転電機装置。   14. The predetermined upper limit threshold value of a field current is set to be equal to or less than a maximum field current set when the AC rotating electric machine is operated as a generator. Field winding type AC rotating electrical machine device. 前記界磁回路異常判定手段が前記界磁回路を異常と判定した場合に、車両の乗務員に対して警報信号を出し、前記ブリッジ回路の全相の上アーム素子または全相の下アーム素子のうちいずれか一方に対して、全てオン状態にするか、または全てオンオフ状態を断続するようにしたことを特徴とする請求項1〜請求項15のいずれか1項に記載の界磁巻線式交流回転電機装置。   When the field circuit abnormality determining means determines that the field circuit is abnormal, an alarm signal is issued to a vehicle crew member, and the upper arm element of all phases or the lower arm element of all phases of the bridge circuit The field winding AC according to any one of claims 1 to 15, wherein either one is turned on or all the on / off states are intermittent. Rotating electrical machine device.
JP2006003743A 2006-01-11 2006-01-11 Field winding AC rotating electrical machine Expired - Fee Related JP4143648B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006003743A JP4143648B2 (en) 2006-01-11 2006-01-11 Field winding AC rotating electrical machine
FR0752618A FR2918516B1 (en) 2006-01-11 2007-01-10 APPARATUS FOR ROTATIONAL ELECTRICAL MACHINE WITH FIELD WINDING TYPE AC RECEIVER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006003743A JP4143648B2 (en) 2006-01-11 2006-01-11 Field winding AC rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2007189773A JP2007189773A (en) 2007-07-26
JP4143648B2 true JP4143648B2 (en) 2008-09-03

Family

ID=38344563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006003743A Expired - Fee Related JP4143648B2 (en) 2006-01-11 2006-01-11 Field winding AC rotating electrical machine

Country Status (2)

Country Link
JP (1) JP4143648B2 (en)
FR (1) FR2918516B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4849421B2 (en) * 2008-09-26 2012-01-11 三菱電機株式会社 Generator motor control device and vehicle system including the same
JP2010119214A (en) * 2008-11-13 2010-05-27 Toyo Electric Mfg Co Ltd Inverter device
DE102011051447A1 (en) 2010-06-30 2012-01-05 Denso Corporation Rotating electrical machine that is improved to perform a load protection
JP5008752B2 (en) 2010-07-07 2012-08-22 三菱電機株式会社 Control device for vehicle alternator
DE102011051642A1 (en) 2010-07-09 2012-03-29 Denso Corporation Rotating electrical machine with improved load-dump protection
FR2990579B1 (en) * 2012-05-11 2015-11-13 Peugeot Citroen Automobiles Sa METHOD FOR CONTROLLING A GENERATOR OF A MOTOR VEHICLE
DE102015222773A1 (en) * 2015-11-18 2017-05-18 Robert Bosch Gmbh Method for detecting a fault in a generator unit
JP6708165B2 (en) * 2017-05-12 2020-06-10 株式会社デンソー Controller for rotating electrical machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3840880B2 (en) * 2000-06-23 2006-11-01 株式会社デンソー Field winding type rotating electrical machine control device
JP4532875B2 (en) * 2003-10-14 2010-08-25 日立オートモティブシステムズ株式会社 Power converter

Also Published As

Publication number Publication date
JP2007189773A (en) 2007-07-26
FR2918516B1 (en) 2016-12-23
FR2918516A1 (en) 2009-01-09

Similar Documents

Publication Publication Date Title
JP4143648B2 (en) Field winding AC rotating electrical machine
US9154051B2 (en) Operating state circuit for an inverter and method for setting operating states of an inverter
US6437957B1 (en) System and method for providing surge, short, and reverse polarity connection protection
US6815933B2 (en) Voltage regulator for alternator and method of controlling power generation of alternator
US10110154B2 (en) Controller and a method to drive an inverter circuit for a permanent-magnet synchronous motor
US8928291B2 (en) Electric rotary machine for motor vehicle
JP2008511277A (en) Voltage controller with overvoltage protection
US7583062B2 (en) Method and system for protecting voltage regulator driver circuitry during field coil short circuit condition
US8841795B2 (en) On-vehicle generator provided with overvoltage detecting circuit
US5617011A (en) Method and system for limiting generator field voltage in the event of regulator failure in an automotive vehicle
JP5452654B2 (en) Control device for vehicle alternator
JP2008182879A (en) Field-winding motor and control circuit for field-winding generator
US9397601B2 (en) Power generation control unit determining maximum excitation current of power generator mounted on vehicle
JP4965686B2 (en) Control device for vehicle alternator
JP2006340599A (en) Control unit of rotary electric machine for vehicles
JP6756277B2 (en) Rotating electric machine unit
KR20150116843A (en) Method for operating an energy supply unit for an on-board power system of a motorvehicle
JP4347845B2 (en) Winding field type rotating electrical machine control device
JP4965687B2 (en) Control device for vehicle alternator
JP3975126B2 (en) Control device for rotating electrical machine for vehicle
JP3193089B2 (en) Alternator control device
US11342870B2 (en) Power generation controller for vehicle AC power generator
JP2003284320A (en) On-vehicle dc-dc converter
KR920008363Y1 (en) Voltage regulator
JPH07231503A (en) Retarder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4143648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees