JP3840793B2 - Production method of steel containing B - Google Patents

Production method of steel containing B Download PDF

Info

Publication number
JP3840793B2
JP3840793B2 JP08870598A JP8870598A JP3840793B2 JP 3840793 B2 JP3840793 B2 JP 3840793B2 JP 08870598 A JP08870598 A JP 08870598A JP 8870598 A JP8870598 A JP 8870598A JP 3840793 B2 JP3840793 B2 JP 3840793B2
Authority
JP
Japan
Prior art keywords
steel
molten steel
temperature
oxide
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08870598A
Other languages
Japanese (ja)
Other versions
JPH11286711A (en
Inventor
隆之 西
光裕 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP08870598A priority Critical patent/JP3840793B2/en
Publication of JPH11286711A publication Critical patent/JPH11286711A/en
Application granted granted Critical
Publication of JP3840793B2 publication Critical patent/JP3840793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、含B鋼の製造方法に関する。
【0002】
【従来の技術】
硼素(以下、元素記号のBで示す)は、鋼の焼き入れ性を改善したり、中性子線吸収性能を有することから、特殊鋼およびステンレス鋼の重要な添加元素として用いられる。
【0003】
Bを鋼に製鋼段階で調整するには、Bを含有するスクラップ原料を多配合したり、合金鉄すなわちFe−Bを添加する方法が用いられている。
特開平6−279828号公報には、スラグからFe、Mn、Cr等の有価金属をAl、Si等の還元剤を用いて脱酸工程で回収する方法が示されている。この方法は、酸化精錬工程でスラグに酸化物の形態で移行したFe、Mn、Cr等の金属元素を還元するために、スラグ量を渦流センサーで、有価金属量を炭素還元により求めて、これらの結果から還元剤量を推算する方法であり、収率よく回収する方法は開示されていない。
【0004】
また、特開平9−95755号公報には、B入りオーステナイト系ステンレス鋼の製造法に関して、ステンレス鋼にBを0.05〜5.0重量%を添加して、造塊時の溶鋼過熱度を30℃から130℃の範囲で鋳造することにより、Bをボライドとして鋼に分散、析出させる方法が開示されているが、B酸化物を収率よく溶鋼中に添加する方法を開示したものではない。
【0005】
【発明が解決しようとする課題】
本発明は、Bを含有する一般鋼、特殊鋼およびステンレス鋼を溶製するに際し、高価な合金鉄に頼らず、安価な酸化物を原料に85%以上の高収率で溶鋼中に添加する製造方法を提供することにある。
【0006】
【課題を解決するための手段】
溶鋼中にはBを合金鉄ではなく、酸化物で代替するには、以下の(1)から(3)の課題を解決する必要がある。
【0007】
(1) 酸化物を還元する還元剤は、酸化物の添加・還元による冷却作用を熱補償できるだけの反応熱をもつものを選択する。
(2) 還元速度が十分に早く、合金鉄添加並みの処理時間で終了する。
【0008】
(3) 高い収率で還元でき、溶鋼濃度の調整の制度も良好である。
本発明者等は、かかる目的を達成すべく種々検討を重ね、以下の(A) 〜(E) の知見を得た。
【0009】
(A) 最も一般的な還元剤のひとつであるAlを用いれば、高い還元能力とAl燃焼で生じる酸化熱による熱補償の両立を図れる。
(B) 酸化物の還元速度を適正な速度にするには、通常の溶鋼の攪拌状態であれば、溶鋼の温度管理をすることが必要である。
【0010】
(C) 酸化物の収率の低下は、添加時の飛散、蒸発およびスラグへの移行ロスによるものであり、これらを防止する観点からも温度管理をすることが必要である。
【0011】
(D) 温度管理の指標として、鋼種に固有な液相線温度(固相と液相の境界温度)と酸化物を添加時の温度および添加終了時における溶鋼温度との差△Tを基に管理すると酸化物の収率を管理できる。
【0012】
(E) Bは、比較的酸素と親和力の大きい元素であるので、それ自身が脱酸反応に関与することから、その濃度制御には、溶鋼中の金属比[B]/[Al]を制御することが有効である。
【0013】
ところで、特開平7−41822号公報には、金属酸化物としてSiO、AlおよびCaOを添加し、SiOをSiに還元することにより、粗大な凝集物(2/3CaO・Al)を生成し、溶鋼中の全酸素濃度を低減させる方法が開示されている。しかし、同公報の発明の要旨は、Alにより前記金属酸化物のSiOが還元されると、粗大な凝集物(2/3CaO・Al)の生成を促進できるという触媒的な作用を見出したことにあり、Siを溶鋼に添加する方法を示したものではなく、金属酸化物の一例としてVを例示しているに過ぎない。また、開示された反応メカニズムから推定すると、前記SiOが還元された金属Siは、大半が凝集物に付着除去され、溶鋼中には、ほとんど止まらないと判断できる。
【0014】
本発明は、以上の知見に基づいてなされたもので、その要旨は以下の通りである。
(1) 溶鋼の出鋼時から2次精錬を行う期間中に、AlおよびB酸化物を溶鋼に添加して目的とする所定の溶鋼中の[B]濃度を得る含B鋼の製造方法であって、AlおよびB酸化物を添加する際の温度条件として、添加前温度、添加後の温度、2次精錬後の各温度が前記溶鋼の液相線温度より50℃〜300℃高い温度であり、かつ前記溶鋼中の[B]濃度と溶鋼中の[Al]濃度の比[B]/[Al]を0.2〜20にすることを特徴とする含B鋼の製造方法。
【0015】
【発明の実施の形態】
本発明で使用するB酸化物は、B酸化物と不可避的不純物からなる天然または人工的に存在する化合物を意味し、特に限定しないが、例えば、無水硼砂等がある。好適酸化物としては、B酸化物ではB(無水硼酸)あるいはHBO(硼酸)であり、これらの酸化物はB純分当りで通常の合金鉄よりも10〜30%安価であるばかりでなく、酸素を除くB純分が95%以上でCやSといった不純物も少なく製鋼原料として極めて適している。好適形態としては、フレーク状もしくは塊状の飛散しにくい形態がよく、ブリケット加工されたものおよび缶等に圧縮封入したものがよい。
【0016】
酸化物を還元する還元剤としてAlを選択する。このAlの形態は、通常製鋼用に使われる金属AlあるいはAl−Fe合金でよく、特に限定されない。
本発明における還元剤および酸化物の添加時期は、例えば、一次精錬後の転炉、電気炉等の出鋼時または/および2次精錬後、例えば、VOD脱炭後、または、RH真空脱ガス処理後の脱酸処理時である。2次精錬後の添加は、[B]/[Al]を制御するための微調整的なものである。
【0017】
また、B酸化物を溶鋼に添加して目的とする所定の溶鋼中の[B]濃度を得るに際し、AlおよびB酸化物を添加する際の温度条件として、添加前温度、添加後の温度、2次精錬後の各温度が全て前記溶鋼の液相線温度より50〜300℃高い温度であることが必要であるが、この理由は、可能な限り長い時間、適正な温度を確保し、有効な反応時間を長くとることにより、収率を高くすることができるからである。
【0018】
還元剤および酸化物の添加方法は、ホッパーやクレーンからの投入等の常法でよい。
B酸化物からの溶鋼への収率η(%)は下記(1) 式で定義され、酸化物から必要元素M(以下、Bを示す)が還元され、溶鋼中に溶解し、溶鋼中の[M]濃度(重量%)になったものに、溶鋼量W(kg)を乗じて得られるMの重量すなわち回収重量(kg)を、溶鋼中に投入した酸化物中に含まれるMの重量すなわち原料重量(kg)で除したものである。
【0019】
【数1】

Figure 0003840793
【0020】
上記収率が予想できれば、必要[M]濃度から、添加酸化物量WMxOy(kg)が決定でき、下記(2) 式から、添加Al量WAl(kg)を決定できる。
【0021】
【数2】
Figure 0003840793
【0022】
以下に限定理由について述べる。
図1に、AlおよびB酸化物を一括添加した時の添加前の温度を液相線温度からの温度差△T(℃)とし、温度差△T(℃)とB酸化物の収率η(%)との関係を示す。
【0023】
図1は、以下の2水準の溶鋼中の[B]濃度、[B]/[Al]を選択して試験結果をまとめて示すグラフである。
(1) [B]=0.040〜0.060%、[B]/[Al]=0.5〜1.0
(2) [B]=0.90〜1.10%、[B]/[Al]=4〜6
図1に示すように、△Tが50℃〜300℃の温度差の範囲で、AlおよびB酸化物を一括添加すれば、目標収率の85%以上の値が得られている。なお、添加処理後および2次精錬後の温度差も上記範囲に入ることが必要である。
【0024】
B酸化物の収率低下の原因は、△Tが50℃未満では、還元速度が遅くなり、B酸化物では、300℃を越えると、スラグへの分配比がそれぞれ増大し、酸化物の蒸発も生じ易くなるからである。好ましい範囲は、B酸化物では、100℃〜250℃である。
【0025】
図2に、B添加鋼における[B]/[Al]と収率との関係を示す。
なお、図2は、溶鋼中の[B]濃度を0.01〜3.0%の範囲で求めたものである。
【0026】
図2に示すように、収率は[B]/[Al]を20より低くすると、約95%が得られる。しかし、0.2未満でその効果は飽和しており、溶鋼中の[Al]濃度の過剰な添加になりコスト悪化を招くため、0.2以上でよい。一方、[B]/[Al]が20を越えると収率は85%未満に低下する。この収率の低下原因は、目標の溶鋼中の[B]濃度に対して、溶鋼中の[Al]濃度が小さいと還元速度が遅くなり、かつスラグへの分配比も増大してスラグへの残存量が増加するからである。
【0027】
以上から、臨界的な[B]/[Al]比は、下記の(3)式に示す通りである。
0.2≦[B]/[Al]≦20 (3)
好ましい範囲は、1≦[B]/[Al]≦12である。
【0028】
なお、転炉または電気炉等からの流出スラグは、一般にスラグ中の(FeO+MnO)濃度が10%以上の高濃度であり、添加したAlが消費されるおそれがあり、常法の流出スラグ抑制法あるいはスラグ還元法を適用すると、溶鋼中の[Al]濃度の制御性が良くなるので本発明を実施する上で好ましい。
【0029】
酸化物を用いて還元利用する方法は、製鋼コストの低減にとどまらず、前述のように、これら酸化物は通常の合金鉄よりも不純物が少なく、合金鉄を使用する場合に不可避的に入る炭素Cを含まず、SやPも低く高純度鋼の製造に適した方法である。
【0030】
本発明の対象となる鋼種は、一般鋼、特殊鋼およびステンレス鋼のうち、BまたはBおよびVを含有する鋼で特に限定されないが、好適鋼の組成例(重量%)を以下に示す。
【0031】
[V]:0.01〜2.0%
[B]:0.001〜3.0%
[C]:0.001〜0.3%
[Si]:0.01〜1.0%
[Mn]:0.05〜3.0%
[Cr]:0〜30%
[Ni]:0〜15%
【0032】
【実施例】
(実施例1)
電気炉ーVOD炉プロセスを用いて、溶鋼中の[B]濃度が0.9〜1.1%、[Cr]が19%、「Ni」が9.5%、[Si]が0.4%、[Mn]が1%、[Al]が0.2%以下の組成を有し、Al脱酸を必要とする中性子線遮蔽材用B含有オーステナイト系ステンレス鋼40tを溶製した。
【0033】
電気炉から未脱酸で出鋼し、除滓した後VOD炉に搬送して酸素吹精による脱炭を行った。その後、常法にしたがって生石灰、蛍石等の造滓剤を添加した。この造滓剤を添加した後のVOD脱炭後に、B(無水硼酸)を添加するとともに、酸化物を還元しかつ溶鋼を脱酸するためのAlを添加した。
【0034】
さらに添加精度を向上させる目的で、このVOD還元工程の真空攪拌後にAlを再添加し、微調整を行い、[B]/[Al]が9〜16の適正な範囲になるように制御した。その後、常法にしたがって鋳造し、鋼塊を得た。
【0035】
表1に、本発明例1〜5および比較例1〜3の結果を示す。
【0036】
【表1】
Figure 0003840793
【0037】
本発明例1〜3では、VOD脱炭後の添加前の溶鋼温度が1586℃および1608℃の範囲にあった。この鋼種の液相線温度が1361℃であるから、△Tは、VOD脱炭後の添加前で225℃〜247℃の範囲に制御できた。その結果、酸化物収率は85%以上の値を得た。
【0038】
本発明例4〜5では、VOD還元工程の真空攪拌後にAlを再添加し、添加微調整を行い、[B]/[Al]を9〜11の範囲に制御することにより、収率は95%以上となった。
【0039】
比較例1および2に示したように、VOD脱炭後の添加前の溶鋼温度が液相線温度とのが△T300℃を超えたり、VOD還元処理後温度と液相線温度との差が50℃未満の場合には、いずれもB酸化物の収率が85%未満と悪化した。
【0040】
【発明の効果】
本発明により、Bを含有する一般鋼、特殊鋼およびステンレス鋼を溶製するに際し、高価な合金鉄に頼らず、安価な酸化物を85%以上の高収率で使用できる。
【図面の簡単な説明】
【図1】 B添加鋼における液相線温度との溶鋼の温度差△TとB酸化物の収率との関係を示すグラフである。
【図2】B添加鋼における溶鋼中の[B]/[Al]とB酸化物の収率との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing steel containing B.
[0002]
[Prior art]
Boron (hereinafter referred to as element symbol B) is used as an important additive element in special steel and stainless steel because it improves the hardenability of steel and has neutron absorption capability.
[0003]
In order to adjust B to steel in the steelmaking stage, a method of adding a large amount of scrap raw materials containing B or adding alloy iron, that is, Fe-B, is used.
Japanese Patent Application Laid-Open No. 6-279828 discloses a method for recovering valuable metals such as Fe, Mn and Cr from slag in a deoxidation step using a reducing agent such as Al and Si. In this method, in order to reduce metal elements such as Fe, Mn, Cr, etc. that have been transferred to the slag in the form of oxides in the oxidative refining process, the slag amount is obtained by an eddy current sensor and the valuable metal amount is obtained by carbon reduction. From this result, the amount of reducing agent is estimated, and a method for recovering with good yield is not disclosed.
[0004]
JP-A-9-95755 discloses a method for producing B-containing austenitic stainless steel by adding 0.05 to 5.0% by weight of B to the stainless steel, and the degree of superheat of the molten steel during ingot formation. Although a method of dispersing and precipitating B as a boride in steel by casting in the range of 30 ° C. to 130 ° C. is disclosed, it does not disclose a method of adding B oxide in molten steel in a high yield. .
[0005]
[Problems to be solved by the invention]
In the present invention, when melting general steel, special steel and stainless steel containing B, an inexpensive oxide is added to the raw steel in a high yield of 85% or more without relying on expensive alloy iron. It is to provide a manufacturing method.
[0006]
[Means for Solving the Problems]
In order to replace B in the molten steel with an oxide instead of an iron alloy, it is necessary to solve the following problems (1) to (3).
[0007]
(1) A reducing agent that reduces oxides is selected so as to have a heat of reaction sufficient to compensate for the cooling effect due to the addition and reduction of oxides.
(2) The reduction rate is sufficiently high and finishes with a processing time comparable to that of addition of iron alloy.
[0008]
(3) It can be reduced with a high yield, and the system for adjusting the molten steel concentration is also good.
The inventors of the present invention have made various studies in order to achieve this object, and have obtained the following findings (A) to (E).
[0009]
(A) If Al, which is one of the most common reducing agents, is used, it is possible to achieve both high reducing ability and heat compensation by oxidation heat generated by Al combustion.
(B) In order to set the reduction rate of the oxide to an appropriate rate, it is necessary to control the temperature of the molten steel as long as it is a normal stirring state of the molten steel.
[0010]
(C) The decrease in the yield of the oxide is due to scattering at the time of addition, evaporation and loss of transition to slag, and it is necessary to control the temperature from the viewpoint of preventing these.
[0011]
(D) As an index of temperature control, based on the difference ΔT between the liquidus temperature (boundary temperature between the solid phase and the liquid phase) inherent to the steel type and the temperature at the time of adding the oxide and the molten steel temperature at the end of the addition. If managed, the yield of oxide can be controlled.
[0012]
(E) Since B is an element having a relatively large affinity for oxygen, it itself participates in the deoxidation reaction. Therefore, the concentration ratio is controlled by controlling the metal ratio [B] / [Al] in the molten steel. It is effective to do.
[0013]
By the way, in JP-A-7-41822, SiO 2 , Al and CaO are added as metal oxides, and SiO 2 is reduced to Si, whereby coarse aggregates (2 / 3CaO · Al 2 O 3 ). And a method for reducing the total oxygen concentration in the molten steel is disclosed. However, the gist of the invention of the publication is that the catalytic action of promoting the formation of coarse aggregates (2 / 3CaO.Al 2 O 3 ) when the metal oxide SiO 2 is reduced by Al. However, it does not show a method of adding Si to molten steel, but merely illustrates V 2 O 5 as an example of a metal oxide. Further, when estimated from the disclosed reaction mechanism, it can be determined that most of the metal Si in which the SiO 2 is reduced is adhered to and removed from the aggregate and hardly stops in the molten steel.
[0014]
The present invention has been made based on the above findings, and the gist thereof is as follows.
(1) A method for producing B-containing steel, in which Al and B oxides are added to molten steel during the period of secondary refining from the time when molten steel is produced to obtain the desired [B] concentration in the molten steel. As temperature conditions for adding Al and B oxides, the temperature before addition, the temperature after addition, and the temperature after secondary refining are temperatures higher by 50 ° C. to 300 ° C. than the liquidus temperature of the molten steel. And a ratio [B] / [Al] of the [B] concentration in the molten steel to the [Al] concentration in the molten steel is set to 0.2 to 20, wherein the method for producing B-containing steel is characterized.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The B oxide used in the present invention means a natural or artificial compound composed of B oxide and inevitable impurities, and is not particularly limited, and examples thereof include anhydrous borax. Preferred oxides are B 2 O 3 (boric anhydride) or H 3 BO 3 (boric acid) for B oxides, and these oxides are 10 to 30% less expensive than ordinary alloy iron per B pure fraction. In addition, the B pure content excluding oxygen is 95% or more, and there are few impurities such as C and S, making it extremely suitable as a steelmaking raw material. As a preferred form, a flake-like or lump-like form that is difficult to scatter is preferable, and a briquette-formed one and a one that is compressed and enclosed in a can or the like are preferred.
[0016]
Al is selected as the reducing agent for reducing the oxide. The form of Al may be metal Al or Al—Fe alloy usually used for steel making, and is not particularly limited.
The timing of addition of the reducing agent and oxide in the present invention is, for example, at the time of steelmaking in a converter, electric furnace or the like after primary refining or / and after secondary refining, for example, after VOD decarburization, or RH vacuum degassing At the time of deoxidation after the treatment. The addition after the secondary refining is a fine adjustment for controlling [B] / [Al].
[0017]
In addition, when obtaining the [B] concentration in a desired predetermined molten steel by adding B oxide to the molten steel, the temperature conditions when adding Al and B oxide are the temperature before addition, the temperature after addition, Each temperature after secondary refining is required to be 50 to 300 ° C. higher than the liquidus temperature of the molten steel. The reason for this is to ensure an appropriate temperature for as long as possible and to be effective. This is because the yield can be increased by taking a long reaction time.
[0018]
The addition method of a reducing agent and an oxide may be a conventional method such as charging from a hopper or a crane.
The yield η (%) from the B oxide to the molten steel is defined by the following formula (1). The necessary element M (hereinafter referred to as B) is reduced from the oxide and dissolved in the molten steel. The weight of M obtained by multiplying [M] concentration (% by weight) by the molten steel amount W s (kg), that is, the recovered weight (kg), is the amount of M contained in the oxide introduced into the molten steel. It is divided by weight, that is, raw material weight (kg).
[0019]
[Expression 1]
Figure 0003840793
[0020]
If the yield can be predicted, the added oxide amount W MxOy (kg) can be determined from the necessary [M] concentration, and the added Al amount W Al (kg) can be determined from the following equation (2).
[0021]
[Expression 2]
Figure 0003840793
[0022]
The reason for limitation will be described below.
In FIG. 1, the temperature before the addition of Al and B oxides at once is defined as the temperature difference ΔT (° C.) from the liquidus temperature, and the temperature difference ΔT (° C.) and the yield of B oxide η (%).
[0023]
FIG. 1 is a graph collectively showing test results by selecting [B] concentration and [B] / [Al] in the following two levels of molten steel.
(1) [B] = 0.040-0.060%, [B] / [Al] = 0.5-1.0
(2) [B] = 0.90-1.10%, [B] / [Al] = 4-6
As shown in FIG. 1, a value of 85% or more of the target yield is obtained when Al and B oxides are added together within a temperature difference of ΔT of 50 ° C. to 300 ° C. Note that the temperature difference after the addition treatment and after the secondary refining needs to be within the above range.
[0024]
The reason for the decrease in the yield of B oxide is that the reduction rate is slow when ΔT is less than 50 ° C., and the distribution ratio to slag increases when the oxide of B exceeds 300 ° C. It is because it becomes easy to produce. A preferable range is 100 ° C. to 250 ° C. for the B oxide.
[0025]
FIG. 2 shows the relationship between [B] / [Al] and yield in the B-added steel.
In addition, FIG. 2 calculates | requires [B] density | concentration in molten steel in 0.01 to 3.0% of range.
[0026]
As shown in FIG. 2, when the [B] / [Al] is lower than 20, the yield is about 95%. However, if it is less than 0.2, the effect is saturated and excessive addition of [Al] concentration in the molten steel causes cost deterioration, so 0.2 or more is sufficient. On the other hand, when [B] / [Al] exceeds 20, the yield decreases to less than 85%. The reason for the decrease in the yield is that when the [Al] concentration in the molten steel is small relative to the [B] concentration in the target molten steel, the reduction rate is slowed, and the distribution ratio to the slag is increased, leading to the slag. This is because the remaining amount increases.
[0027]
From the above, the critical [B] / [Al] ratio is as shown in the following equation (3).
0.2 ≦ [B] / [Al] ≦ 20 (3)
A preferred range is 1 ≦ [B] / [Al] ≦ 12.
[0028]
In addition, slag slag from converters or electric furnaces generally has a high concentration of (FeO + MnO) in the slag of 10% or more, and there is a possibility that the added Al may be consumed. Alternatively, it is preferable to apply the slag reduction method because the controllability of the [Al] concentration in the molten steel is improved.
[0029]
The reduction method using oxides is not limited to the reduction of steelmaking costs, and as mentioned above, these oxides have fewer impurities than ordinary alloy irons, and are unavoidable when using alloy irons. It is a method that does not contain C, is low in S and P, and is suitable for producing high-purity steel.
[0030]
The steel type that is the subject of the present invention is not particularly limited to steel containing B or B and V among general steel, special steel, and stainless steel, but a composition example (% by weight) of a suitable steel is shown below.
[0031]
[V]: 0.01 to 2.0%
[B]: 0.001 to 3.0%
[C]: 0.001 to 0.3%
[Si]: 0.01 to 1.0%
[Mn]: 0.05 to 3.0%
[Cr]: 0 to 30%
[Ni]: 0 to 15%
[0032]
【Example】
Example 1
Using the electric furnace-VOD furnace process, the [B] concentration in the molten steel is 0.9 to 1.1%, [Cr] is 19%, "Ni" is 9.5%, and [Si] is 0.4. %, [Mn] is 1%, and [Al] is 0.2% or less, and B-containing austenitic stainless steel 40t for neutron shielding material that requires Al deoxidation was melted.
[0033]
The steel was undeoxidized from the electric furnace, removed and then transferred to a VOD furnace for decarburization by oxygen blowing. Thereafter, a fossilizing agent such as quicklime and fluorite was added according to a conventional method. After VOD decarburization after the addition of this iron making agent, B 2 O 3 (boric anhydride) was added, and Al for reducing oxides and deoxidizing molten steel was added.
[0034]
In order to further improve the accuracy of addition, Al was added again after vacuum stirring in this VOD reduction step, fine adjustment was performed, and control was performed so that [B] / [Al] was in an appropriate range of 9-16. Then, it casted in accordance with the conventional method and obtained the steel ingot.
[0035]
Table 1 shows the results of Invention Examples 1 to 5 and Comparative Examples 1 to 3.
[0036]
[Table 1]
Figure 0003840793
[0037]
In Invention Examples 1 to 3, the molten steel temperature before addition after VOD decarburization was in the range of 1586 ° C and 1608 ° C. Since the liquidus temperature of this steel type is 1361 ° C., ΔT can be controlled in the range of 225 ° C. to 247 ° C. before addition after VOD decarburization. As a result, the oxide yield was 85% or more.
[0038]
In Invention Examples 4-5, Al was re-added after vacuum stirring in the VOD reduction step, fine adjustment was performed, and [B] / [Al] was controlled in the range of 9-11, yield was 95. It became more than%.
[0039]
As shown in Comparative Examples 1 and 2, the temperature of the molten steel before addition after VOD decarburization exceeds ΔT300 ° C, or the difference between the temperature after VOD reduction and the liquidus temperature is In all cases where the temperature was less than 50 ° C., the yield of B oxide deteriorated to less than 85%.
[0040]
【The invention's effect】
According to the present invention, when melting general steel, special steel and stainless steel containing B, inexpensive oxides can be used in a high yield of 85% or more without relying on expensive alloy iron.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the temperature difference ΔT of molten steel and the liquidus temperature of B-added steel and the yield of B oxide.
FIG. 2 is a graph showing the relationship between [B] / [Al] in molten steel and the yield of B oxide in B-added steel.

Claims (1)

溶鋼の出鋼時から2次精錬を行う期間中に、AlおよびB酸化物を溶鋼に添加して目的とする所定の溶鋼中の[B]濃度を得る含B鋼の製造方法であって、AlおよびB酸化物を添加する際の温度条件として、添加前温度、添加後の温度、2次精錬後の各温度が前記溶鋼の液相線温度より50℃〜300℃高い温度であり、かつ前記溶鋼中の[B]濃度と溶鋼中の[Al]濃度の比[B]/[Al]を0.2〜20にすることを特徴とする含B鋼の製造方法。  A method for producing B-containing steel, in which Al and B oxides are added to molten steel during a period of secondary refining from the time when molten steel is produced, to obtain a target [B] concentration in the molten steel, As temperature conditions for adding Al and B oxides, the temperature before addition, the temperature after addition, and the temperature after secondary refining are temperatures higher by 50 ° C. to 300 ° C. than the liquidus temperature of the molten steel, and A method for producing B-containing steel, wherein the ratio [B] / [Al] of the [B] concentration in the molten steel and the [Al] concentration in the molten steel is 0.2-20.
JP08870598A 1998-04-01 1998-04-01 Production method of steel containing B Expired - Fee Related JP3840793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08870598A JP3840793B2 (en) 1998-04-01 1998-04-01 Production method of steel containing B

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08870598A JP3840793B2 (en) 1998-04-01 1998-04-01 Production method of steel containing B

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006172975A Division JP4274203B2 (en) 2006-06-22 2006-06-22 Method for producing V-containing steel

Publications (2)

Publication Number Publication Date
JPH11286711A JPH11286711A (en) 1999-10-19
JP3840793B2 true JP3840793B2 (en) 2006-11-01

Family

ID=13950311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08870598A Expired - Fee Related JP3840793B2 (en) 1998-04-01 1998-04-01 Production method of steel containing B

Country Status (1)

Country Link
JP (1) JP3840793B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5687590B2 (en) * 2011-09-27 2015-03-18 日本冶金工業株式会社 Method for producing boron-containing stainless steel
CN115852233B (en) * 2022-12-07 2024-04-02 江苏永钢集团有限公司 Method for controlling gear steel boron element

Also Published As

Publication number Publication date
JPH11286711A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
CN110184548B (en) Method for refining solidification structure of high manganese steel continuous casting billet
JP5687590B2 (en) Method for producing boron-containing stainless steel
CN106086598A (en) A kind of high cleanliness austenite is without the smelting process of magnetic Retaining Ring Steel
CN112553406B (en) Steel plate and control method of content of B element in steel
JP3840793B2 (en) Production method of steel containing B
CA2133918C (en) Method and device for producing stainless steel
CN108315645A (en) A kind of abrasion-resistant stee and its production technology
JP4653629B2 (en) Method for producing Ti-containing chromium-containing molten steel
JP4274203B2 (en) Method for producing V-containing steel
US5425797A (en) Blended charge for steel production
RU2269578C1 (en) Rail steel melting method in electric arc furnace
JP3580096B2 (en) Melting method of low Mn steel
JP3836249B2 (en) Method for melting high ferritic stainless steel with high Al content that suppresses refractory melting of refining vessel
JP4106724B2 (en) Method for preventing powdered reduced slag
JP3036373B2 (en) Manufacturing method of oxide dispersion steel
CN115161562B (en) Tellurium treated aluminum killed steel and method for producing the same
JP3837790B2 (en) Method for producing oxide-dispersed steel
JP2000044298A (en) Method for preventing powdering of reduction slag
JP3717625B2 (en) Electric arc furnace slag reduction method
JPH10245620A (en) Method for refining titanium and sulfur containing stainless steel
JP4063452B2 (en) Stainless steel desulfurization method
SU1002392A1 (en) Reducer
RU2364632C2 (en) Steel production method
US2971834A (en) Process in selective reduction of chrome ore
JP2000212635A (en) Melting of high carbon steel for wire rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees