JP3839590B2 - Nonaqueous electrolyte secondary battery electrode - Google Patents

Nonaqueous electrolyte secondary battery electrode Download PDF

Info

Publication number
JP3839590B2
JP3839590B2 JP20720998A JP20720998A JP3839590B2 JP 3839590 B2 JP3839590 B2 JP 3839590B2 JP 20720998 A JP20720998 A JP 20720998A JP 20720998 A JP20720998 A JP 20720998A JP 3839590 B2 JP3839590 B2 JP 3839590B2
Authority
JP
Japan
Prior art keywords
solvent
boiling point
active material
binder
battery electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20720998A
Other languages
Japanese (ja)
Other versions
JP2000021389A (en
Inventor
茂夫 黒瀬
一夫 片井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP20720998A priority Critical patent/JP3839590B2/en
Publication of JP2000021389A publication Critical patent/JP2000021389A/en
Application granted granted Critical
Publication of JP3839590B2 publication Critical patent/JP3839590B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質電池用電極に関し、活物質、導電剤、および結合剤からなる電極活物質層を集電体上に塗布した非水電解質電池用電極に関する。
【0002】
【従来の技術】
近年の電子分野の発展はめざましく、ビデオカメラ、液晶カメラ、携帯電話、ラップトップコンピューター、ワープロ等の各種機器が開発されている。それに対応して、これら電子機器の電源に使用される電池においては、小型化、軽量化、高エネルギー密度化への要求が高まっている。
【0003】
従来、これらの電子機器には鉛電池やニッケルカドミウム電池が使用されていたが、これらの電池は小型化、軽量化、高エネルギー密度化の要求に対して十分に応えることができない。
【0004】
そこで、非水溶媒に、リチウム塩を溶解させた非水電解液を用いる非水電解液電池が提案されている。この非水電解液電池としては、リチウムやリチウム合金もしくはリチウムイオンをドープ、脱ドープすることが可能な炭素材料を負極材料として用い、リチウムコバルト複合酸化物を正極材料として用いたものがすでに実用化されている。
【0005】
この種の非水電解液電池は、作動電圧が3〜4Vと高いため、高エネルギー密度化が可能であり、自己放電も少なく、サイクル特性にも優れているという利点を有している。
【0006】
また、この非水電解液電池では、さらなる小型化、軽量化、高エネルギー密度化を実現するために、活物質等の研究開発が盛んになされ、正極活物質としてはリチウムニッケル複合酸化物やリチウムニッケルコバルト複合酸化物のようなNiを含有するリチウム複合酸化物も提案されている。
【0007】
【発明が解決しようとする課題】
本発明者等は、ニッケル系のリチウム複合酸化物、導電材、および結合剤を有機溶剤中に分散させてなる塗料は、リチウムコバルト複合酸化物系の塗料に比較して、空気中の水分を吸収しやすく、塗料安定性が極めて不十分であり、さらには水分を吸収した塗料で電極を作製した場合には、それによって電池の充放電容量が低下するといった問題が生じることを見出した。
【0008】
そこで、本発明はこのような従来の実情に鑑みて提案されたものであり、塗料安定性の向上が図れるとともに、電池の高容量化が可能となる非水電解質電池用電極を提供することを目的とする。
【0009】
【課題を解決するための手段】
上述の目的を達成するために本発明は、少なくともLixNiyMzO(但し、xは0.8<x<1.2、y+zは0.8<y+z<1.5、zは0≦z<0.35である。MはCo、Mg、Ca、Sr、Al、Mn、Feの1種以上)なる組成の活物質、導電材、および結合剤からなる電極活物質層を集電体上に塗布した非水電解質電池用電極であって、該電極が、活物質、導電剤および結合剤を、沸点150℃以上の高沸点溶剤と沸点150℃未満の低沸点溶剤の混合溶剤中に分散させてなる塗料を集電体上に塗布、乾燥、プレスすることにより得られたものであり、前記、沸点150℃以上の高沸点溶剤が、シクロヘキサノンおよびN−メチル−2−ピロリドンの混合溶剤であり、前記、沸点150℃以上の高沸点溶剤の全溶剤中に占める重量割合が50重量%以上であり、前記、沸点150℃以上の高沸点溶剤中に占める前記シクロヘキサノンの重量割合が50〜90重量%であることを特徴とする非水電解質電池用電極によって達成される。
【0010】
さらに、本発明では、結合剤をフッ素ゴムとすることによって好ましいものとすることができる。
【0011】
【発明の実施の形態】
本発明の具体的な実施の形態について説明する。
本発明に使用されるLi複合酸化物は、LixNiyz2(0.8<x<1.5、0.8<y+z<1.2、0≦z<0.35、MはCo、Al、Mn、Mg、Feの1種以上)であらわされるものである。
【0012】
このようなLi複合酸化物の製造方法としては、LiM3+2(ここで、M3+は、Ni3+を主体として、Co、Mn、Al、Fe等を含有する)焼成時に揮散する陰イオンを、それぞれ含むアルカリ性水溶性Li化合物と塩基性金属塩とを水媒体中で反応させて得られたスラリーを乾燥した後、焼成する以下のようなものを例示することができる。
【0013】
ここで、塩基性金属塩(M2+(OH)2-nx(An-x・mH2O)におけるM2+には、Niを主体としてCo、Mn、Al、Feを所定量混合含有し、An-が硝酸イオン、塩素イオン、臭素イオン、酢酸イオン、炭酸イオン等のn価(n=1〜3)のアニオンで表わされる化合物より選択される塩基性金属塩、および水酸化Li、炭酸Liまたはこれらの水和物などの中から1種または複数から選択されるLi化合物を水中で、反応液の濃度としては、5〜25wt%の範囲で、また反応温度は室温〜100℃の範囲内で反応を行いスラリーを得、組成物の形状の均一性を向上させるために噴霧乾燥を行う。
【0014】
この乾燥物を空気や酸素あるいはオゾン等を含む酸化力を有したガス雰囲気下で、約700〜1000℃の温度領域で、約0.1〜20時間加熱処理して焼成することにより、Li複合酸化物を得ることができる。
ここで使用される塩基性金属塩は、M2+の水溶液に、M2+に対して、約0.7〜0.95当量、好ましくは約0.8〜0.95当量のアルカリを約80℃以下の反応条件下で加えて反応させた後、40℃〜70℃で0.1〜10時間熟成し、水洗により副生物を取り除くことにより製造することができる。ここで用いるアルカリとしては、水酸化ナトリウム等の水酸化アルカリ金属、水酸化カルシウム等の水酸化アルカリ土類金属、アミン類等である。
【0015】
また、Li複合酸化物の別の製造方法としては、以下のような塩基性炭酸金属と水溶性Li化合物を使用するものを例示することができる。
ここで、塩基性炭酸金属は、硝酸塩、硫酸塩、金属塩化物等の水溶性金属化合物(この水溶性金属化合物は、Niを主体として、さらに別の水溶性金属化合物を、所定量のCo、Mn、Al、Fe等が配合できるよう混合したもの)と、炭酸アルカリ、重炭酸アルカリ、炭酸アンモニウム及び重炭酸アンモニウムからなる群から選ばれる化合物を水中で反応させて得られる沈殿物や、さらにこの反応系に水酸化ナトリウムとを組み合わせて水中で反応させて得られる沈澱物を濾過、乾燥することによって得られる(良好な沈殿を生成させるには、炭酸根が若干過剰となるように使用するのが良く、沈殿の比表面積を制御するために攪拌条件を制御することも重要である)。
【0016】
このようにして得られた塩基性炭酸金属に、炭酸Li、水酸化Li等の水溶性Li化合物の粉末を、金属とLiが実質的に1:1モルになる比率で混合し、粉末のまま、先ず不活性ガス又は酸素含有ガスの存在下で、300〜500℃に加熱すると、塩基性炭酸金属の分解のみが進行し、結晶構造中の炭酸ガスが離脱する。
この段階で炭酸ガスの発生を実質的に終了させた後(塩基性炭酸金属がすべて微細な孔を多数有する酸化金属になった後)、さらに昇温すると、溶融した水溶性Li化合物は酸化金属の微細孔中に侵入し、極めて密接な接触状態になり、ここで酸素ガス又は酸素富化空気の存在下で700〜900℃の温度で焼成すると、Niは2価から3価になり、Li複合酸化物が生成する。ここで用いる塩基性炭酸金属は、比表面積が大きな(100m2/g以上)ものほど、ガス放出と予備焼成後の微細孔生成が効率化されるために好ましい。
【0017】
電極作製用塗料に使用される溶剤としては、沸点150℃以上の高沸点溶剤と沸点150℃未満の低沸点溶剤の混合溶剤が使用される。
【0018】
沸点150℃以上の高沸点溶剤としては、シクロヘキサノンおよびN−メチル−2−ピロリドンの混合物が用いられる。混合比率は、シクロヘキサノン/N−メチル−2−ピロリドン=90/10〜50/50である。
【0019】
沸点150℃未満の低沸点溶剤としては、メチルエチルケトン、メチルイソブチルケトン、トルエン、アセトン、メタノール、エタノール、1−プロパノール、2−プロパノール、等をあげることができるが、中でもメチルエチルケトン、メチルイソブチルケトン、トルエンが好ましい。
【0020】
特開平4−249860号公報に記載されているように、電極作製用塗料に使用される溶剤としては、N−メチル−2−ピロリドン(NMP)の単独使用が一般的であった。しかし、NMP単独で塗料を作製すると、空気中の水分を吸収しやすく、塗料安定性が極めて不十分となる。さらに、ニッケル系リチウム複合酸化物は、従来のコバルト系リチウム複合酸化物に比べて水分の影響を受けやすく、電池の充放電容量が低下するといった問題が生じてくる。
【0021】
本発明に使用される導電材は、化学変化を起こさない電子伝導材料であれば何でもよい。通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛等)、人造黒鉛などのグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、サーマルブラック等のカーボンブラック類、炭素繊維、気相成長炭素繊維、金属繊維等の導電性繊維類、銅、ニッケル、アルミニウム、銀等の金属粉末などを挙げることができる。
【0022】
塗料の製法としては、活物質と導電材、結合剤、溶剤等をハイパーミキサー等で混合することで作製できる。さらに、この塗料に超音波処理を施して分散してもよい。ここで、活物質と導電材が均一化するように活物質と導電材をオングミル等を用いて、事前に乾式処理を施してもよい。また、活物質と導電材に結合剤溶液を加えて加圧ニーダー等を用いて混練し塗料としてもよい。
【0023】
電極の集電体としては、構成された電池において化学変化を起こさない電子伝導体であれば何でもよいが、厚さ5〜40μmのアルミニウム箔、ステンレス箔、ニッケル箔等が使用できる。
【0024】
この集電体上に、リバースロール法、ダイレクトロール法、ブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビアロール法、バーコート法、ディップ法、キスコート法及びスクイズ法などの一般的によく知られた塗布法によって電極活物質組成塗料を塗布するが、なかでもエクストルージョン法が好ましく、5〜100m/分の速度で塗布されるように、塗料の溶剤組成、乾燥条件を選定することにより、良好な塗布層の表面状態を得ることができる。
【0025】
また塗布層の厚み、長さや巾は、最終的な電池の大きさにより決定されるが、塗布層の厚みは塗布後に一般に採用されているカレンダー加工によって調整することが好ましく、その加工圧力は、0.2〜10t/cm、加工温度は、10〜150℃が好ましい。
【0026】
【実施例】
(実施例1)
本発明の具体的な実施例について、実験結果に基づいて説明する。フッ素ゴム4重量部を上記混合溶剤45重量部に溶解し、結合剤溶液49重量部を作製した。活物質90重量部、導電材4重量部、結合剤溶液30重量部をプラネタリーミキサー(浅田鉄工社製PM−5)に投入し、1時間混練を行い、さらにこの混練物に残りの結合剤溶液19重量部を加え、30分間混練した。この混練物を取り出し電極作製用塗料とした。(配合処方を表1に示す。)
できあがった塗料を、エクストルージョンノズルにより20μm厚のアルミニウム箔集電体の片面に塗布を行い、120℃の乾燥炉内で溶剤の乾燥を行った。さらに裏面にも同様に塗布、乾燥を行った。ローラープレス機で圧縮成型し、所定の大きさに裁断して実施例1の電極を得た。
【0027】
【表1】

Figure 0003839590
【0028】
(比較例1)
実施例1の溶剤を、NMP単独で46重量部(他の溶剤を使用しない)に変更した以外は、実施例1と同様に操作を行って、サンプルを作成し、比較例1とした。
【0029】
(比較例2)
実施例1の結合剤を、ポリフッ化ビニリデン(呉羽化学工業社製KF−1300)に変更し、溶剤を、NMP単独46重量部(他の溶剤を使用しない)に変更した以外は、実施例1と同様に操作を行って、サンプルを作成し、比較例2とした。
【0030】
(粘度測定)
できあがった塗料の粘度を、作製直後および1週間後の時点で、レオロジー社製コーンプレート型粘度計により、せん断速度=10sec-1の値(V10)により求めた。
【0031】
(電池特性)
正極活物質層を乾燥し、直径15.5mmに成型することで正極を作製し、次に、負極として、厚さ1.85mmの金属リチウムを直径15.5mmに打ち抜いた。
そして、エチレンカーボネートとジメチルカーボネートの混合液にLiPF6を1モル/リットルなる濃度で溶解した非水電解液を用意し、この非水電解液と正極と負極及びポリプロピレン製の薄膜セパレーター、負極カップ、正極缶、ガスケットを用いて、直径20mm×厚さ2.5mmのコイン型電池を作製した。このコイン型電池は、図1に示したように、正極缶内に収容された正極4と負極1内に収容された負極2が、セパレーター3を介して積層され、正極缶6と負極カップとが、ガスケット5を介してかしめられ密閉されてなるものである。
このようにして作製した電池について、充電電圧4.2V、充電電流1mA、充電時間20時間なる条件で充電を行い、放電電流1mA、終止電圧3.0Vなる条件で放電を行い、放電容量を求めた。その結果を表2に示す。
【0032】
【表2】
Figure 0003839590
【0033】
【発明の効果】
本発明によって、ニッケル系のリチウム複合酸化物、導電材、および結合剤を有機溶剤中に分散させた場合、塗料安定性が向上し、それによって電池の充放電容量も向上した。
【図面の簡単な説明】
【図1】電池の構成を示す断面図である。
【符号の説明】
1.負極カップ
2.負極
3.セパレーター
4.正極
5.ガスケット
6.正極缶[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode for a nonaqueous electrolyte battery, and relates to an electrode for a nonaqueous electrolyte battery in which an electrode active material layer composed of an active material, a conductive agent, and a binder is applied on a current collector.
[0002]
[Prior art]
In recent years, the development of the electronic field is remarkable, and various devices such as a video camera, a liquid crystal camera, a mobile phone, a laptop computer, and a word processor have been developed. Correspondingly, in batteries used for power sources of these electronic devices, demands for miniaturization, weight reduction, and high energy density are increasing.
[0003]
Conventionally, lead batteries and nickel cadmium batteries have been used in these electronic devices. However, these batteries cannot sufficiently meet the demands for miniaturization, weight reduction, and high energy density.
[0004]
Therefore, a non-aqueous electrolyte battery using a non-aqueous electrolyte in which a lithium salt is dissolved in a non-aqueous solvent has been proposed. As this non-aqueous electrolyte battery, a lithium material, a lithium alloy, or a carbon material that can be doped or dedoped with lithium ions is used as a negative electrode material, and a lithium cobalt composite oxide is used as a positive electrode material. Has been.
[0005]
Since this type of non-aqueous electrolyte battery has an operating voltage as high as 3 to 4 V, it has an advantage that high energy density is possible, self-discharge is small, and cycle characteristics are excellent.
[0006]
In addition, in this non-aqueous electrolyte battery, research and development of active materials and the like have been actively conducted in order to achieve further miniaturization, weight reduction, and higher energy density. As the positive electrode active material, lithium nickel composite oxide or lithium A lithium composite oxide containing Ni such as nickel cobalt composite oxide has also been proposed.
[0007]
[Problems to be solved by the invention]
The present inventors have found that paints in which nickel-based lithium composite oxides, conductive materials, and binders are dispersed in an organic solvent have a higher moisture content in the air than lithium cobalt composite oxide-based paints. It has been found that when the electrode is made of a paint that is easily absorbed and the paint stability is extremely insufficient, and the paint absorbs moisture, the charge / discharge capacity of the battery decreases.
[0008]
Therefore, the present invention has been proposed in view of such a conventional situation, and it is intended to provide an electrode for a non-aqueous electrolyte battery that can improve the stability of the paint and increase the capacity of the battery. Objective.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides at least LixNiyMzO 2 (where x is 0.8 <x <1.2, y + z is 0.8 <y + z <1.5, and z is 0 ≦ z <0. 35. M is an electrode active material layer composed of an active material, a conductive material, and a binder having a composition of Co, Mg, Ca, Sr, Al, Mn, and Fe). An electrode for a non-aqueous electrolyte battery comprising an active material, a conductive agent and a binder dispersed in a mixed solvent of a high boiling point solvent having a boiling point of 150 ° C. or higher and a low boiling point solvent having a boiling point of less than 150 ° C. paint coated on the current collector, dried, which was obtained by pressing, the high-boiling solvent higher than the boiling point 0.99 ° C. is Ri mixed solvent der cyclohexanone and N- methyl-2-pyrrolidone, In all of the above high boiling solvents having a boiling point of 150 ° C. or higher, That is the weight percentage of 50 wt% or more, above the non-aqueous electrolyte battery electrode that the weight ratio of said cyclohexanone occupied in a high boiling solvent higher than the boiling point 0.99 ° C. is characterized 50-90 wt% der Rukoto Achieved.
[0010]
Furthermore, in this invention, it can be made preferable by making a binder into fluororubber.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
A specific embodiment of the present invention will be described.
The Li composite oxide used in the present invention is Li x Ni y M z O 2 (0.8 <x <1.5, 0.8 <y + z <1.2, 0 ≦ z <0.35, M Is one or more of Co, Al, Mn, Mg, and Fe).
[0012]
As a method for producing such a Li composite oxide, LiM 3+ O 2 (where M 3+ is mainly composed of Ni 3+ and contains Co, Mn, Al, Fe, etc.) is volatilized during firing. The following can be exemplified by drying a slurry obtained by reacting an alkaline water-soluble Li compound containing an anion and a basic metal salt in an aqueous medium, followed by firing.
[0013]
Here, the M 2+ in the basic metal salt (M 2+ (OH) 2- nx (A n-) x · mH 2 O) a predetermined amount mixed Co, Mn, Al, and Fe as main component Ni containing and, a n-is basic metal salt selected from nitrate ion, chloride ion, bromide ion, an acetate ion, anion compound represented by the n-valent such as carbonate ion (n = 1 to 3), and hydroxide A Li compound selected from one or more of Li, Li carbonate, or a hydrate thereof is in water, the concentration of the reaction solution is in the range of 5 to 25 wt%, and the reaction temperature is from room temperature to 100 Reaction is performed within the range of ° C. to obtain a slurry, and spray drying is performed to improve the uniformity of the shape of the composition.
[0014]
The dried product is baked by heating for about 0.1 to 20 hours in a temperature range of about 700 to 1000 ° C. in a gas atmosphere having an oxidizing power containing air, oxygen, ozone, or the like. An oxide can be obtained.
The basic metal salt used here is about 0.7 to 0.95 equivalent, preferably about 0.8 to 0.95 equivalent of alkali with respect to M 2+ in an aqueous solution of M 2+ . It can be produced by adding and reacting under reaction conditions of 80 ° C. or lower, aging at 40 ° C. to 70 ° C. for 0.1 to 10 hours, and removing by-products by washing with water. Examples of the alkali used here include alkali metal hydroxides such as sodium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide, and amines.
[0015]
Moreover, as another manufacturing method of Li complex oxide, what uses the following basic metal carbonate and a water-soluble Li compound can be illustrated.
Here, the basic metal carbonate is a water-soluble metal compound such as nitrate, sulfate, metal chloride (this water-soluble metal compound is mainly composed of Ni, and another water-soluble metal compound is added to a predetermined amount of Co, Mn, Al, Fe and the like mixed) and a precipitate obtained by reacting a compound selected from the group consisting of alkali carbonate, alkali bicarbonate, ammonium carbonate and ammonium bicarbonate in water, It is obtained by filtering and drying the precipitate obtained by reacting with sodium hydroxide in the reaction system in water. (To produce a good precipitate, use so that the carbonate radical is slightly excessive. It is also important to control the stirring conditions in order to control the specific surface area of the precipitate).
[0016]
The basic metal carbonate thus obtained is mixed with a powder of a water-soluble Li compound such as Li carbonate, Li hydroxide, etc. at such a ratio that the metal and Li are substantially 1: 1 mol, and the powder remains as it is. First, when heated to 300 to 500 ° C. in the presence of an inert gas or an oxygen-containing gas, only the decomposition of the basic metal carbonate proceeds, and the carbon dioxide in the crystal structure is released.
After the generation of carbon dioxide gas is substantially terminated at this stage (after the basic metal carbonate has become a metal oxide having many fine pores), when the temperature is further raised, the molten water-soluble Li compound becomes a metal oxide. Intrused into the micropores of the metal, and brought into a very close contact state, and when fired at a temperature of 700 to 900 ° C. in the presence of oxygen gas or oxygen-enriched air, Ni became divalent to trivalent, and Li A composite oxide is formed. As the basic metal carbonate used here, a material having a large specific surface area (100 m 2 / g or more) is preferable because gas emission and generation of micropores after preliminary firing are made more efficient.
[0017]
As the solvent used for the electrode preparation paint, a mixed solvent of a high boiling point solvent having a boiling point of 150 ° C. or higher and a low boiling point solvent having a boiling point of less than 150 ° C. is used.
[0018]
As the high boiling point solvent having a boiling point of 150 ° C. or higher, a mixture of cyclohexanone and N-methyl-2-pyrrolidone is used. The mixing ratio is cyclohexanone / N-methyl-2-pyrrolidone = 90 / 10-50 / 50.
[0019]
Examples of the low boiling point solvent having a boiling point of less than 150 ° C. include methyl ethyl ketone, methyl isobutyl ketone, toluene, acetone, methanol, ethanol, 1-propanol, 2-propanol, etc. Among them, methyl ethyl ketone, methyl isobutyl ketone, and toluene are preferable. preferable.
[0020]
As described in JP-A-4-249860, N-methyl-2-pyrrolidone (NMP) is generally used alone as a solvent used in an electrode preparation paint. However, when a coating material is produced with NMP alone, it easily absorbs moisture in the air and the stability of the coating material becomes extremely insufficient. Furthermore, nickel-based lithium composite oxides are more susceptible to moisture than conventional cobalt-based lithium composite oxides, resulting in a problem that the charge / discharge capacity of the battery is reduced.
[0021]
The conductive material used in the present invention may be any electron conductive material that does not cause a chemical change. Usually, natural graphite (scale-like graphite, scale-like graphite, etc.), graphite such as artificial graphite, carbon blacks such as acetylene black, ketjen black, channel black, furnace black, thermal black, carbon fiber, vapor grown carbon fiber And conductive fibers such as metal fibers, and metal powders such as copper, nickel, aluminum, and silver.
[0022]
As a manufacturing method of a coating material, it can produce by mixing an active material, a electrically conductive material, a binder, a solvent, etc. with a hyper mixer etc. Further, the paint may be subjected to ultrasonic treatment to be dispersed. Here, the active material and the conductive material may be dry-treated in advance using an ang mill or the like so that the active material and the conductive material are uniform. Alternatively, a binder solution may be added to the active material and the conductive material and kneaded using a pressure kneader or the like to form a paint.
[0023]
The current collector of the electrode may be any electronic conductor that does not cause a chemical change in the constructed battery, but an aluminum foil, stainless steel foil, nickel foil or the like having a thickness of 5 to 40 μm can be used.
[0024]
On this current collector, the reverse roll method, direct roll method, blade method, knife method, extrusion method, curtain method, gravure roll method, bar coat method, dipping method, kiss coat method and squeeze method are commonly used. The electrode active material composition paint is applied by a known coating method, but the extrusion method is preferable, and by selecting the solvent composition and drying conditions of the paint so that the coating method is applied at a speed of 5 to 100 m / min. A good surface state of the coating layer can be obtained.
[0025]
The thickness, length and width of the coating layer are determined by the final battery size, but the thickness of the coating layer is preferably adjusted by calendering generally employed after coating, and the processing pressure is 0.2-10 t / cm and the processing temperature are preferably 10-150 ° C.
[0026]
【Example】
Example 1
Specific examples of the present invention will be described based on experimental results. 4 parts by weight of fluororubber was dissolved in 45 parts by weight of the mixed solvent to prepare 49 parts by weight of a binder solution. 90 parts by weight of the active material, 4 parts by weight of the conductive material, and 30 parts by weight of the binder solution are put into a planetary mixer (PM-5 manufactured by Asada Tekko), kneaded for 1 hour, and the remaining binder is further added to this kneaded product. 19 parts by weight of the solution was added and kneaded for 30 minutes. This kneaded product was taken out and used as a coating material for electrode preparation. (The formulation is shown in Table 1.)
The finished paint was applied to one side of a 20 μm thick aluminum foil current collector with an extrusion nozzle, and the solvent was dried in a 120 ° C. drying oven. Further, the back surface was similarly coated and dried. The electrode of Example 1 was obtained by compression molding with a roller press and cutting into a predetermined size.
[0027]
[Table 1]
Figure 0003839590
[0028]
(Comparative Example 1)
A sample was prepared as Comparative Example 1 by operating in the same manner as in Example 1 except that the solvent of Example 1 was changed to 46 parts by weight of NMP alone (no other solvent was used).
[0029]
(Comparative Example 2)
Example 1 except that the binder of Example 1 was changed to polyvinylidene fluoride (KF-1300 manufactured by Kureha Chemical Industry Co., Ltd.) and the solvent was changed to 46 parts by weight of NMP alone (no other solvent was used). A sample was prepared by performing the same operation as in Comparative Example 2.
[0030]
(Viscosity measurement)
The viscosity of the finished paint was determined by a rheology cone plate viscometer with a shear rate = 10 sec −1 (V10) immediately after production and one week later.
[0031]
(Battery characteristics)
The positive electrode active material layer was dried and molded into a diameter of 15.5 mm to produce a positive electrode. Next, as a negative electrode, 1.85 mm thick metallic lithium was punched out to a diameter of 15.5 mm.
Then, a nonaqueous electrolytic solution in which LiPF 6 is dissolved at a concentration of 1 mol / liter in a mixed solution of ethylene carbonate and dimethyl carbonate is prepared. The nonaqueous electrolytic solution, the positive electrode, the negative electrode, a polypropylene thin film separator, a negative electrode cup, A coin-type battery having a diameter of 20 mm and a thickness of 2.5 mm was produced using a positive electrode can and a gasket. As shown in FIG. 1, the coin-type battery includes a positive electrode 4 accommodated in a positive electrode can and a negative electrode 2 accommodated in a negative electrode 1, which are stacked via a separator 3. Is caulked through a gasket 5 and hermetically sealed.
The battery thus fabricated is charged under the conditions of a charging voltage of 4.2 V, a charging current of 1 mA, and a charging time of 20 hours, and discharged under the conditions of a discharging current of 1 mA and a final voltage of 3.0 V to obtain a discharge capacity. It was. The results are shown in Table 2.
[0032]
[Table 2]
Figure 0003839590
[0033]
【The invention's effect】
According to the present invention, when a nickel-based lithium composite oxide, a conductive material, and a binder are dispersed in an organic solvent, the coating stability is improved, thereby improving the charge / discharge capacity of the battery.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of a battery.
[Explanation of symbols]
1. Negative electrode cup 2. Negative electrode 3. Separator 4. Positive electrode 5. Gasket 6. Positive electrode can

Claims (2)

少なくともLixNiyMzO(但し、xは0.8<x<1.2、y+zは0.8<y+z<1.5、zは0≦z<0.35である。MはCo、Mg、Ca、Sr、Al、Mn、Feの1種以上)なる組成の活物質、導電材、および結合剤からなる電極活物質層を集電体上に塗布した非水電解質電池用電極であって、該電極が、活物質、導電剤および結合剤を、沸点150℃以上の高沸点溶剤と沸点150℃未満の低沸点溶剤の混合溶剤中に分散させてなる塗料を集電体上に塗布、乾燥、プレスすることにより得られたものであり、前記、沸点150℃以上の高沸点溶剤が、シクロヘキサノンおよびN−メチル−2−ピロリドンの混合溶剤であり、前記、沸点150℃以上の高沸点溶剤の全溶剤中に占める重量割合が50重量%以上であり、前記、沸点150℃以上の高沸点溶剤中に占める前記シクロヘキサノンの重量割合が50〜90重量%であることを特徴とする非水電解質電池用電極。At least LixNiyMzO 2 (where x is 0.8 <x <1.2, y + z is 0.8 <y + z <1.5, z is 0 ≦ z <0.35. M is Co, Mg, Ca, A nonaqueous electrolyte battery electrode in which an electrode active material layer comprising an active material, a conductive material, and a binder having a composition of one or more of Sr, Al, Mn, and Fe) is applied on a current collector, However, a coating material in which an active material, a conductive agent and a binder are dispersed in a mixed solvent of a high boiling point solvent having a boiling point of 150 ° C. or higher and a low boiling point solvent having a boiling point of less than 150 ° C. is applied onto the current collector, dried, and pressed are those obtained by the high-boiling solvent higher than the boiling point 0.99 ° C. is Ri mixed solvent der cyclohexanone and N- methyl-2-pyrrolidone, wherein, above the boiling point 0.99 ° C. in a high boiling solvent total The weight ratio in the solvent is 50% by weight or more, Serial, non-aqueous electrolyte battery electrode that the weight ratio of said cyclohexanone occupied in a high boiling solvent higher than the boiling point 0.99 ° C. is characterized 50-90 wt% der Rukoto. 前記結合剤がフッ素ゴムである請求項1に記載の非水電解質電池用電極。The non-aqueous electrolyte battery electrode according to claim 1 wherein the binder is Ru fluororubber der.
JP20720998A 1998-07-06 1998-07-06 Nonaqueous electrolyte secondary battery electrode Expired - Lifetime JP3839590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20720998A JP3839590B2 (en) 1998-07-06 1998-07-06 Nonaqueous electrolyte secondary battery electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20720998A JP3839590B2 (en) 1998-07-06 1998-07-06 Nonaqueous electrolyte secondary battery electrode

Publications (2)

Publication Number Publication Date
JP2000021389A JP2000021389A (en) 2000-01-21
JP3839590B2 true JP3839590B2 (en) 2006-11-01

Family

ID=16536055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20720998A Expired - Lifetime JP3839590B2 (en) 1998-07-06 1998-07-06 Nonaqueous electrolyte secondary battery electrode

Country Status (1)

Country Link
JP (1) JP3839590B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010089939A1 (en) * 2009-02-06 2012-08-09 コニカミノルタホールディングス株式会社 Battery electrode manufacturing method and secondary battery manufacturing method

Also Published As

Publication number Publication date
JP2000021389A (en) 2000-01-21

Similar Documents

Publication Publication Date Title
JP6062947B2 (en) Precursor of positive electrode active material for lithium secondary battery, positive electrode active material, method for producing the same, and lithium secondary battery including the same
JP6860278B2 (en) Positive electrode active material for lithium secondary battery, its manufacturing method, positive electrode including this and lithium secondary battery
JP3994238B2 (en) Nonaqueous electrolyte lithium secondary battery
JP2015015244A (en) Positive electrode active material for lithium secondary batteries, method for manufacturing the same, positive electrode for lithium secondary batteries including the same, and lithium secondary battery
JP2014531719A (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same, positive electrode active material, and lithium secondary battery including the same
JP2017188211A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, positive electrode mixture paste for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR20110136689A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2021120937A (en) Positive electrode active material for lithium ion secondary battery, positive electrode and lithium ion secondary battery
JP3819940B2 (en) Nonaqueous electrolyte secondary battery
JPH08213022A (en) Nonaqueous secondary battery
JP2010044963A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP5594241B2 (en) Electrolyte and lithium ion secondary battery
JPH10172564A (en) Active material, its manufacture, and lithium ion secondary battery using active material
CN109983601B (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP4029195B2 (en) Method for producing positive electrode for non-aqueous electrolyte battery
KR101553389B1 (en) Positive active material for rechargeable lithium battery, coating material for positive active material, method of manufacturing the same and rechargeable lithium battery including same
JPH1145717A (en) Electrode for nonaqueous electrolytic battery
JP2017182990A (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JPH1145716A (en) Manufacture of electrode for nonaqueous electrolytic battery
JP5562204B2 (en) Positive electrode for lithium air secondary battery, method for producing the same, and lithium air secondary battery
JP3839590B2 (en) Nonaqueous electrolyte secondary battery electrode
KR20010012937A (en) Electrode for non-aqueous electrolytic cells
JPH10321228A (en) Positive electrode active material for lithium battery, its manufacture, and lithium battery using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050318

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050318

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20051031

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20051118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

EXPY Cancellation because of completion of term