JP3838684B2 - Method for manufacturing flexible solar cell - Google Patents

Method for manufacturing flexible solar cell Download PDF

Info

Publication number
JP3838684B2
JP3838684B2 JP31145695A JP31145695A JP3838684B2 JP 3838684 B2 JP3838684 B2 JP 3838684B2 JP 31145695 A JP31145695 A JP 31145695A JP 31145695 A JP31145695 A JP 31145695A JP 3838684 B2 JP3838684 B2 JP 3838684B2
Authority
JP
Japan
Prior art keywords
solar cell
sealing material
film
insulating sealing
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31145695A
Other languages
Japanese (ja)
Other versions
JPH09153631A (en
Inventor
進二 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP31145695A priority Critical patent/JP3838684B2/en
Publication of JPH09153631A publication Critical patent/JPH09153631A/en
Application granted granted Critical
Publication of JP3838684B2 publication Critical patent/JP3838684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、可撓性基板を有する薄膜太陽電池素子の1個あるいは複数個を、共通の表面保持材により挟んだ可撓性太陽電池の製造方法に関する。
【0002】
【従来の技術】
高分子材料フィルムのような可撓性基板上に背後電極層、光電変換半導体層および透明電極層を積層してなる薄膜太陽電池の複数個を接続導線により接続した太陽電池サブモジュールの両面を、保護材により被覆することによって外気の水分やガスの影響より保護してモジュール化することは、例えば特公平5−59591号公報に公知である。図3は、そのような可撓性太陽電池の断面構造を示し、表面保護材として表面側にガラス板31、裏面側にふっ素樹脂フィルム32を用い、可撓性基板上に複数の薄膜太陽電池素子を形成した太陽電池サブモジュール1を絶縁性封止材料としてのエチレンビニルアセテート(EVA)2を介して封入したものである。さらに補強のため、側辺がアルミニウム製のフレーム33とシリコーン樹脂系シーラント材34で覆われている。
【0003】
上述の様な太陽電池モジュールの製造工程は、枚葉にて重ねられた表面保護材料31とフィルム状のEVA2の上に複数の太陽電池サブモジュール1を配置し、配線作業を行なう工程と、配線作業後の太陽電池サブモジュール1上にフィルム状のEVA2、裏面保護材32を枚葉にて順次積層し、これを減圧下で熱圧着してEVA2の架橋を行なう工程と、最後に側辺をフレーム33で周囲を覆い隙間をシーラント34で埋める工程からなる。減圧下での熱圧着・架橋は、先ず積層された材料の雰囲気を低真空排気しながらEVA2の溶融粘度が最も低くなり、かつ封止材料内で架橋反応が生じない温度まで昇温させ、一定時間加圧保持させた後、EVA2を架橋させるために最適架橋反応温度まで昇温し保持することで行なわれている。
【0004】
可撓基板を用いた薄膜太陽電池は、ロールから引き出される長尺の基板上にロールツーロール方式あるいはステッピングロール方式で複数の層を成膜して巻き取ることができるため、量産性の点ですぐれている。しかし、上述のような枚葉方式の太陽電池モジュール製造方法では、可撓性太陽電池の特徴の一つである量産性が損なわれてしまうばかりでなく、ロール状に巻いたコンパクトな状態で保管、移動、施工が行えるという可撓性太陽電池のもう一つの特徴をも活かすこともできなくなる。そこで、両面の保護材に可撓性の耐候材料フィルムを用いれば、モジュール構成材料をすべてロール上から引き出し、でき上がったモジュールをロール上に連続的に巻き取ることができる。また表面保護材を省略して可撓性にし、EVA層を露出させてEVAの耐候性により保護することも考えられる。
【0005】
【発明が解決しようとする課題】
しかし、連続的に太陽電池素子を封止してロール状に巻き取るためには、モジュール構成材料をロール状に巻いた状態から連続的に供給することが必要になる。モジュール構成材料の中で、絶縁性封止材料として用いるEVAはロール状に巻き取ることは可能であるが、材料自身の伸縮が顕著で張力を制御しながら寸法変化やたわみが生じないように引き出すことができないという問題を有する。また、熱圧着時に溶融してしまうことから絶縁性封止材料を一定速度で連続的に搬送することも困難である。このため、太陽電池素子、表面保護材料、配線材料を積層させ圧着させる工程でしわの発生や気泡の巻き込みが生じ、太陽電池モジュールの信頼性の低下をも招いてしまう。このような問題は、単一の薄膜太陽電池素子を封止する場合にも存在する。
【0006】
本発明の目的は、上述の問題を解決し、絶縁性封止材料の溶融に基づく寸法変化やしわ、たわみの発生することなく、構成材料のロールからの引き出し、封止後の巻き取りの可能な可撓性太陽電池の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上述の目的を達成するために本発明は、可撓性基板上に形成された太陽電池素子を絶縁性封止材によって封止する可撓性太陽電池の製造方法において、絶縁性封止材を可撓性を有する支持基体と、少なくとも一面に離型性材料よりなる表面層を有する対向体のその一面との間に圧着したのち、前記対向体を除去して絶縁性封止材を露出させる工程と、そのあとに、支持基体上の絶縁性封止材露出面を太陽電池素子に接触させて圧着する工程とを含み、支持基体上の絶縁性封止材を太陽電池素子の両面に接触させて圧着する工程のうち、遅く行なわれる工程が減圧下で熱圧着する工程であることとする。
絶縁性封止材を可撓性のある支持基体上に圧着して支持することにより、支持基体の張力制御によってその上の封止材と共に搬送することができる。ロールからの引き出し時に封止材の寸法変化やたわみが生じないので、太陽電池素子への圧着工程をロールからの引き出し、ロールへの巻き取りの間に行うことが可能になる。絶縁性封止材に圧着のための加圧体が接触すると、加圧体に付着して離れにくいため、離型性表面を有する対向体を介して加圧する。そのあとで対向体を除去して絶縁封止材を太陽電池素子に接触できるようにする。支持基体上の絶縁性封止材を太陽電池素子の両面にそれぞれ接触させて圧着する工程のうち、遅く行われる工程が減圧下で熱圧着する工程であると、減圧下で熱圧着を行うことにより、構成材料から放出されるガス、それ以前の工程で構成材料内に巻き込まれた空気が除去され、太陽電池素子への封止材の密着が確保される。絶縁性封止材がEVAよりなることがよい。EVAは封止樹脂としての実績を有する。その場合、圧着を120℃以下で行い、架橋は後工程で行うことが望ましい。120℃以上では架橋反応が起きてしまう。架橋反応は別工程で必要な時間行う。絶縁性封止材の支持基体が離型性材料よりなり、絶縁性封止材を太陽電池素子に圧着する工程の後に支持基体を除去する工程を備えたことがよい。これにより両面を絶縁性材によって封止された可撓性太陽電池ができ上がる。離型性材料がふっ素樹脂、シリコーン樹脂、あるいは金属酸化物であることがよい。これらの材料は、表面自由エネルギーが支持基体に用いられプラスチックより低く、従って封止材や塵埃に対する接着力が低い。
本発明の参考手段によれば、絶縁性封止材の支持基体に、耐候性を有する材料よりなり、少なくとも絶縁性封止材との圧着面が離型性の低いものを用い、全製造工程終了後も残留させることがよい。これにより、支持基体が表面保護材として残り、かつ絶縁性封止材に十分な接着強度で固定される。絶縁性封止材の支持基体の封止圧着面に、圧着前に接着性向上表面処理を施す工程を備えたことがよい。これにより、表面保護材の絶縁性封止材との接着強度が向上する。絶縁性封止体の支持基体の反封止材圧着面に離型性材料よりなる表面層を被覆する工程を備えたこともよい。これにより表面保護材への塵埃などの付着が減少し、特に光入射面側では入射光を減殺することがなくなる。
【0008】
【発明の実施の形態】
可撓性太陽電池は、太陽電池素子、主配線材、補助配線材、絶縁性封止材および場合によっては、さらに表面保護材より構成する。太陽電池素子は1個でもよく複数個でモジュール化されてもよい。
絶縁性封止材の材料にはEVAからなる熱可塑性樹脂を用いる。EVAは50℃以上の温度で溶融粘度が急激に低下する60〜80℃に融点を有するホットメルト系の接着材料である。なお、溶融粘度は60℃〜150℃の範囲では顕著な変化は見られず、高温ほど低溶融粘度になる傾向を有する。また、EVAは120℃以上の温度領域では、温度により反応速度は異なるものの、あらかじめEVA中に混入させている架橋材により架橋反応が生じ熱的に安定するという特徴を有する。一方、EVAの融着性に関しては一定圧力のもとで融着させた場合、その融着力は温度および時間に依存して変化し、温度は高いほど、また時間が長いほどその融着強度が大きくなる。このため、EVAの熱圧着条件としては、熱圧着と架橋を連続的に行なう場合、60℃〜120℃の温度で行なうことが望ましい。またEVAの架橋条件はEVAのゲル化を十分に行なえる条件として140〜150℃の温度で10〜15分間保持することが必要である。
【0009】
絶縁性封止材を固定支持する目的で用いる支持基体で、後工程で除去するものには、少なくとも表面が離型性をもつようにする。従って、ポリビニルフルオライド(PVF)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)などのふっ素樹脂フィルムや、ふっ素樹脂コーティング、シリコーン樹脂コーティング、SiOx表面膜形成のされたポリエチレン系およびポリオレフィン系フィルムあるいは金属箔を用いる。絶縁性封止材の支持基体で、後工程で除去せず表面保護材として残すものは、絶縁性封止材のEVAに対して良好な接着性を示すものでなければならぬ。そのような支持基体としては、離型性の低いポリエチレンテレフタレート(PET)などのポリエステルフィルム、ポリビニルアルコールフィルム、ポリ塩化ビニルフィルム、ポリ塩化ビニリデンフィルム、ポリイミドフィルムあるいはポリエチレンフィルムを用いることができる。さらにEVAとの接着力を増すためには、その接着面に予めプラズマ処理や紫外線照射などの物理的表面処理、あるいはカップリング剤処理、モノマーまたはポリマーコーティング処理、蒸気処理などの化学的表面処理を施し、表面張力を40dyne/cm以上にしておく。また、反対側の外面となる面には、可撓性太陽電池の保管、移動、施工および運転時の外力からの素子の保護、塵埃の付着などによる光入射面の汚れの防止あるいは施工時の感電防止のため、ふっ素樹脂コーティングあるいはシリコーン樹脂コーティングを施す。もしくは離型性を有する材料のフィルムを簡易的に付着させてもよい。なお、表面保護材として残る支持基体のうち光入射側のものは、可視光を透過する透明フィルムである必要がある。配線材料の主配線材および補助配線材には導電性材料としてのCu、AgあるいはAlを用いる。その形状は箔でも縒り線であってもよく、その場合には導電性粘着層が片面または両面に形成されたものを用いると便利である。可撓性太陽電池全体の外部端子と補助配線あるいは主配線との間の接続には、表面に導電性粘着層を有する導体箔を用いるか、導電性粘着体あるいははんだを用いる。
【0010】
なお、圧着あるいは熱圧着は、EVAを太陽電池素子に対して密着させるために行う。従って、必ずしも外部から圧力を加えることを意味せず、支持基体あるいは太陽電池素子の自重によりEVAと素子の接触面に圧力が加える場合も含む。
【0011】
【実施例】
以下、図3を含めて共通の部分に同一の符号を付した図を引用して本発明のいくつかの実施例について述べる。
実施例1:
図1(a)〜(f)は実施例1の製造工程を示し、図2はこの工程に用いた製造装置を示す。製造工程は工程1より工程7までの7工程よりなる。
<工程1>
図1(a)に示すように、絶縁性封止材であるEVA2のフィルムの両面に離型性をもつふっ素樹脂コーティングフィルム3に貼り合わせる。そのためには、図2に示すようにロール11から引き出されるEVAフィルム2と、二つのロール12からそれぞれ引き出される2枚のふっ素樹脂コーティングフィルム3を二つの圧着ロール13の間を通して熱圧着する。熱圧着は、EVA中の架橋材が消費されてしまったり、架橋材としての効果を持たなくならないように熱圧着ロール13の温度が120℃以下で行う。上面のふっ素コーティングフィルム3はEVA2がロール13の面に付着するのを防ぐためのものであるから次の工程に入る前に剥がしてロール22に巻き取り、離型性支持基のフィルム3上にEVA層2が固定されたベースフィルム4を得る。
<工程2>
図1(b)に示すようにベースフィルム4のEVA層2の上に主配線材5を固定する。主配線5は長手方向をベースフィルム4の長手方向と平行にしてロール14から引き出し、圧着ロール15により圧着または熱圧着する。主配線材5の固定面はベースフィルム4のごとく一部分なので、熱圧着する場合は主配線材5自身を加熱して行う。図の2本の主配線材5の一方はプラス側、他方はマイナス側である。
<工程3>
図1(c)に示すように、ベースフィルム4上のEVA層2上の所定の位置に太陽電池素子によりなる太陽電池サブモジュール1を枚葉で固定し、圧着ロール16を通して圧着または熱圧着する。熱圧着の条件は工程1と同じである。
【0012】
太陽電池サブモジュール1と主配線材5との位置関係は、太陽電池サブモジュール1のプラスおよびマイナス端子が主配線材5と重なる形で配置するか、または太陽電池サブモジュール1に対し主配線材5が外側になるよう配置する。しかし、主配線材5の一部はモジュール1の周縁の外側にあって外部との電気的な接続が行われるため、剥離や腐食といった太陽電池モジュールの信頼性を損なう現象が主配線材15の部分で最も起きやすいといえることから、図のように主配線材5がサブモジュール2の外側にある位置関係の方が望ましい。
<工程4>
図1(d)に示すように、太陽電池サブモジュール1と主配線材5との間の接続を補助配線材51によって行う。補助配線材51の寸法および供給位置は、太陽電池サブモジュール1と主配線材5との位置関係により異なる。もちろん、両者少なくとも一部で重なり合うような寸法、供給位置関係でなければならない。<工程5>
図1(e)は省略して示しているが、 フィルム状EVA2の両面にふっ素樹脂コーティングフィルム3を熱圧着ロール13を通して貼り合わせたのち、下面のフィルムを剥がし取ることによって別個に作製したベースフィルム4を、EVA層2が太陽電池モジュール1に接するように重ね、圧着ロール17により熱圧着する。圧着を大気圧雰囲気下で行うと、太陽電池モジュール1の段差部での空気の巻き込みあるいは構成材料からの放出ガスによって気泡が発生しやすい。このため、図示しない減圧室を設けて、減圧下で加熱ロール13により熱圧着するのが最も望ましい。この際、工程1において生じた気泡やしわも除去される。この場合も、工程1で述べたと同様に120℃以下の温度で行う。熱圧着を加熱平板で行う方法もあるが、量産性の点で劣る。
<工程6>
次いで、図2に示すように、加熱室18を通してEVA2の架橋を行う。
【0013】
架橋条件はEVAのゲル化を充分に行える条件として140〜150℃の温度で10〜15分間保持する必要がある。架橋温度は熱圧着温度よりも高い温度であることから、可撓性太陽電池モジュールの構成材料からのガス放出があるので加熱室18を減圧することが望ましい。また、EVAは50℃以上の温度になると溶融粘度が低くなるので、成形不良の起きるのを防ぐために、さらに加圧された状態で架橋されることが望ましい。
<工程7>
最後に、図2に示すように両面の離型性のふっ素樹脂コーティングフィルム3をロール19通過後に剥がし取り、図1(f)に示す構造をもつ可撓性太陽電池10としてロール20の上に巻き取る。剥がし取ったふっ素樹脂コーティングフィルム3は、二つのロール21に巻き取る。
実施例2:
この実施例では図4(a)〜(d)に示すように、実施例1の工程2と工程3とを入れ換える。従って、ロールツーロール方式のモジュール組立装置においても、図5に示すように、主配線材5の送り出しロール14および圧着ロール15を、太陽電池サブモジュール1の圧着ロール16より後に配置する。これにより図4(b)に示すように太陽電池サブモジュール1をベースフィルム4のEVA層2の上に固定したのち、図4(c)に示すように主配線材5をサブモジュール1の外側に圧着し、次いで図4(d)に示すようにサブモジュール1と主配線材5との間の接続を補助配線材51によって行う。以後の工程は図1(e),(f)と同様である。
実施例3:
実施例1あるいは実施例2において工程1および5で離型性支持基体して用い、後工程で剥がし取ったふっ素樹脂コーティングフィルム3の代わりに、図6に示すように離型性の少ないPETフィルム6をEVA2の支持基体として用いてベースフィルム41を形成する。このPETフィルム6は図2あるいは図5に示す装置でロール12から引き出され、その上に、フィルム状EVA2を固定する。しかし、EVA2の他面上には、実施例1あるいは実施例2と同じに離型性をもつふっ素樹脂コーティングフィルム3を貼り合わせ、EVA2とPETフィルム6の熱圧着ののちに剥がし取る。そして、工程7、すなわち図2あるいは5のロール19、21は省略され、両面にベースフィルムを固定してつくられた可撓性太陽電池モジュール10は、加熱室18でEVA2の架橋を終えたのちに直接ロール20上に巻き取られる。剥がし取られなかったPETフィルム6は、表面保護材として残す。
実施例4:
実施例3のPETフィルム6の代わりに、EVA2と接する面を予め接着性向上表面処理をしたフィルムを用いる。すなわち接着性向上表面処理としてのプラズマ処理を行ったポリビニルアルコール(PVA)フィルムを用いる。
実施例5:
実施例3、4のPETフィルム6の代わりにポリエチレンフィルムを用いる。このポリエチレンフィルムの反EVA側の面にふっ素樹脂コーティングを施しておく。これにより表面への塵埃などの付着が防止でき、特に光入射面側において有効である。
【0014】
【発明の効果】
本発明によれば、太陽電池素子を被覆するための絶縁性封止材を支持基体上に固定することにより、ロールから引き出し時の張力制御を支持基体に対して行って搬送することが可能になった。この結果、可撓性太陽電池の封止を、ロール上に巻いた状態から供給される構成材料が用いて行い、ロール上に巻きとる製造工程が実現した。そして、枚葉方式と比較して高い量産性が得られ、特にコンパクトな状態で保管、移動、施工のできる可撓性太陽電池モジュールを製造できるようになった。
【図面の簡単な説明】
【図1】 本発明の実施例1の製造工程を(a)ないし(f)の順に示す断面図
【図2】 図1に示す製造工程を実施する製造装置の側面図
【図3】 従来の太陽電池モジュールの断面図
【図4】 本発明の実施例2の製造工程の前半を(a)ないし(d)の順に示す断面図
【図5】 図4に示す製造工程を実施する製造装置の側面図
【図6】 本発明の実施例3〜5に用いるベースフィルムの断面図
【符号の説明】
1 太陽電池サブモジュール
2 EVA
3 ふっ素樹脂コーティングフィルム
4、41 ベースフィルム
5 主配線材
51 補助配線材
6 PETフィルム
10 可撓性太陽電池モジュール
13、15、16、17 圧着ロール
18 加熱室
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a flexible solar cell in which one or a plurality of thin-film solar cell elements having a flexible substrate are sandwiched by a common surface holding material.
[0002]
[Prior art]
Both sides of a solar cell submodule in which a plurality of thin film solar cells formed by laminating a back electrode layer, a photoelectric conversion semiconductor layer, and a transparent electrode layer on a flexible substrate such as a polymer material film are connected by connecting wires, It is known, for example, in Japanese Patent Publication No. 5 (1993) -59591, that it is protected from the influence of moisture and gas of the outside air by coating with a protective material. FIG. 3 shows a cross-sectional structure of such a flexible solar cell, using a glass plate 31 on the front side and a fluororesin film 32 on the back side as a surface protective material, and a plurality of thin film solar cells on the flexible substrate. The solar cell submodule 1 in which the element is formed is sealed through ethylene vinyl acetate (EVA) 2 as an insulating sealing material. Further, the sides are covered with an aluminum frame 33 and a silicone resin sealant material 34 for reinforcement.
[0003]
The manufacturing process of the solar cell module as described above includes a step of arranging a plurality of solar cell submodules 1 on the surface protection material 31 and the film-like EVA 2 stacked in a single sheet, and performing wiring work, A film-like EVA 2 and a back surface protective material 32 are sequentially laminated on the solar cell submodule 1 after work in a single sheet, and this is thermocompression-bonded under reduced pressure to cross-link the EVA 2. It consists of a step of covering the periphery with the frame 33 and filling the gap with the sealant 34. Thermocompression bonding / crosslinking under reduced pressure is performed by first raising the temperature of EVA2 to a temperature at which the melt viscosity of EVA2 is lowest and no crosslinking reaction occurs in the sealing material while evacuating the atmosphere of the laminated material. After the pressure is maintained for a certain period of time, in order to cross-link EVA2, the temperature is raised to the optimum cross-linking reaction temperature and held.
[0004]
Thin-film solar cell using the flexible substrate, since it is possible to wind a film of multiple layers in a roll-to-roll or stepping roll method on an elongated substrate to be pulled out from the roll, in terms of mass production It is excellent. However, in the method of manufacturing a single-wafer solar cell module as described above, mass productivity, which is one of the characteristics of the flexible solar cell, is not lost, and the product is stored in a compact state wound in a roll shape. Further, it is impossible to make use of another characteristic of the flexible solar cell that can be moved and installed. Therefore, if a flexible weather-resistant material film is used as the protective material on both sides, all the module constituent materials can be drawn from the roll, and the completed module can be continuously wound on the roll. It is also conceivable that the surface protective material is omitted to make it flexible, and the EVA layer is exposed and protected by the weather resistance of EVA.
[0005]
[Problems to be solved by the invention]
However, in order to continuously seal the solar cell element and wind it into a roll, it is necessary to continuously supply the module constituent material from a state wound in a roll. Among module components, EVA used as an insulating sealing material can be wound in a roll shape, but the material itself stretches so that it does not cause dimensional change or deflection while controlling tension. Have the problem of not being able to. Moreover, since it melts at the time of thermocompression bonding, it is difficult to continuously convey the insulating sealing material at a constant speed. For this reason, in the process of laminating and pressure-bonding the solar cell element, the surface protection material, and the wiring material, wrinkles and bubbles are involved, and the reliability of the solar cell module is also lowered. Such a problem also exists when a single thin-film solar cell element is sealed.
[0006]
The object of the present invention is to solve the above-mentioned problems and to enable drawing of constituent materials from rolls and winding after sealing without causing dimensional changes, wrinkles and deflections due to melting of the insulating sealing material. Another object of the present invention is to provide a method for manufacturing a flexible solar cell.
[0007]
[Means for Solving the Problems]
In order to achieve the above-described object, the present invention provides a flexible solar cell manufacturing method in which a solar cell element formed on a flexible substrate is sealed with an insulating sealing material. After pressure-bonding between the flexible support base and one surface of the opposing body having a surface layer made of a releasable material on at least one surface, the opposing body is removed to expose the insulating sealing material. And a step of bringing the insulating sealing material exposed surface on the supporting substrate into contact with the solar cell element and then crimping the insulating sealing material on the supporting substrate to both surfaces of the solar cell element. Among the steps of performing the pressure bonding, the step performed later is the step of thermocompression bonding under reduced pressure.
By supporting the insulating sealing material by pressing it on a flexible support substrate, it can be conveyed together with the sealing material thereon by controlling the tension of the support substrate. Since the dimensional change and the deflection of the sealing material do not occur at the time of pulling out from the roll, it is possible to perform the crimping process to the solar cell element between the pulling out from the roll and the winding onto the roll. When a pressurizing body for pressure bonding comes into contact with the insulating sealing material, it adheres to the pressurizing body and is not easily separated, and therefore pressure is applied through a counter body having a releasable surface. Thereafter, the opposing body is removed so that the insulating sealing material can be brought into contact with the solar cell element. Of the steps of contacting and pressing the insulating sealing material on the support base to both sides of the solar cell element, the step performed later is the step of thermocompression bonding under reduced pressure, and thermocompression bonding is performed under reduced pressure. Accordingly, the gas released from the constituent material and the air entrained in the constituent material in the previous process are removed, and the adhesion of the sealing material to the solar cell element is ensured. The insulating sealing material is preferably made of EVA. EVA has a track record as a sealing resin. In that case, it is desirable that the pressure bonding be performed at 120 ° C. or lower and the crosslinking be performed in a later step. If it is 120 ° C. or higher, a crosslinking reaction occurs. The cross-linking reaction is performed for a necessary time in a separate step. It is preferable that the support base of the insulating sealing material is made of a releasable material and includes a step of removing the support base after the step of pressure-bonding the insulating sealing material to the solar cell element. As a result, a flexible solar cell having both surfaces sealed with an insulating material is completed . The releasable material is preferably a fluorine resin, a silicone resin, or a metal oxide. These materials have a surface free energy lower than that of plastic used for the supporting substrate, and therefore have a low adhesion to sealing materials and dust.
According to the reference means of the present invention, the supporting substrate of the insulating sealing material is made of a material having weather resistance, and at least the pressure-bonding surface with the insulating sealing material has low releasability, and the entire manufacturing process It is desirable to leave it after the end. As a result, the support base remains as a surface protective material and is fixed to the insulating sealing material with sufficient adhesive strength. It is preferable to provide a step of performing an adhesion improving surface treatment on the sealing material pressure-bonding surface of the support base of the insulating sealing material before pressure bonding. Thereby, the adhesive strength with the insulating sealing material of a surface protection material improves. A step of coating the surface layer made of a releasable material on the anti-sealing material pressure-bonding surface of the support base of the insulating sealing body may be provided. As a result, adhesion of dust and the like to the surface protection material is reduced, and the incident light is not reduced particularly on the light incident surface side.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The flexible solar cell is composed of a solar cell element, a main wiring material, an auxiliary wiring material, an insulating sealing material, and, in some cases, a surface protective material. One solar cell element or a plurality of solar cell elements may be modularized.
A thermoplastic resin made of EVA is used as the material of the insulating sealing material. EVA is a hot-melt adhesive material having a melting point at 60 to 80 ° C. at which the melt viscosity rapidly decreases at a temperature of 50 ° C. or higher. Note that the melt viscosity does not change significantly in the range of 60 ° C. to 150 ° C., and tends to have a lower melt viscosity as the temperature increases. Further, EVA has a characteristic that, in a temperature range of 120 ° C. or higher, the reaction rate varies depending on the temperature, but a crosslinking reaction is caused by a crosslinking material mixed in advance in EVA and is thermally stabilized. On the other hand, regarding the fusion property of EVA, when fusion is performed under a constant pressure, the fusion force changes depending on the temperature and time. The higher the temperature and the longer the fusion strength, the greater the fusion strength. growing. For this reason, as thermocompression bonding conditions for EVA, when thermocompression bonding and cross-linking are continuously performed, it is desirable to perform at a temperature of 60 ° C to 120 ° C. The EVA crosslinking conditions must be maintained at a temperature of 140 to 150 ° C. for 10 to 15 minutes as a condition that enables EVA to be sufficiently gelled.
[0009]
At least the surface of the support base used for the purpose of fixing and supporting the insulating sealing material, which is removed in a subsequent process, should have a releasability. Therefore, fluororesin films such as polyvinyl fluoride (PVF) and tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), fluororesin coating, silicone resin coating, polyethylene and polyolefins with SiOx surface film formed Use film or metal foil. The supporting substrate of the insulating sealing material, which is not removed in a subsequent process and remains as a surface protective material, must exhibit good adhesion to EVA of the insulating sealing material. As such a supporting substrate, a polyester film such as polyethylene terephthalate (PET) having low releasability, a polyvinyl alcohol film, a polyvinyl chloride film, a polyvinylidene chloride film, a polyimide film or a polyethylene film can be used. Furthermore, in order to increase the adhesive strength with EVA, the adhesive surface is subjected in advance to a physical surface treatment such as plasma treatment or ultraviolet irradiation, or a chemical surface treatment such as coupling agent treatment, monomer or polymer coating treatment, or steam treatment. The surface tension is set to 40 dyne / cm or more. In addition, on the opposite outer surface, the solar cell is protected from external forces during storage, movement, installation and operation, prevention of contamination of the light incident surface due to dust adhesion, etc. Fluorine resin coating or silicone resin coating is applied to prevent electric shock. Alternatively, a film of a material having releasability may be simply attached. Of the supporting substrate remaining as the surface protective material, the light incident side needs to be a transparent film that transmits visible light. Cu, Ag or Al as the conductive material is used for the main wiring material and the auxiliary wiring material of the wiring material. The shape may be a foil or a twisted line. In that case, it is convenient to use a conductive adhesive layer formed on one side or both sides. For the connection between the external terminals of the entire flexible solar cell and the auxiliary wiring or the main wiring, a conductive foil having a conductive adhesive layer on the surface is used, or a conductive adhesive or solder is used.
[0010]
Note that the pressure bonding or thermocompression bonding is performed in order to make EVA adhere to the solar cell element. Therefore, it does not necessarily mean that pressure is applied from the outside, and includes a case where pressure is applied to the contact surface between the EVA and the element due to its own weight.
[0011]
【Example】
Hereinafter, several embodiments of the present invention will be described with reference to the drawings including the same reference numerals in FIG.
Example 1:
1A to 1F show the manufacturing process of Example 1, and FIG. 2 shows the manufacturing apparatus used in this process. The manufacturing process consists of seven steps from step 1 to step 7.
<Step 1>
As shown to Fig.1 (a), it bonds together to the fluororesin coating film 3 which has a release property on both surfaces of the film of EVA2 which is an insulating sealing material. For that purpose, as shown in FIG. 2, the EVA film 2 drawn out from the roll 11 and the two fluororesin coating films 3 drawn out from the two rolls 12 are thermocompression bonded through the two pressure-bonding rolls 13. The thermocompression bonding is performed at a temperature of the thermocompression-bonding roll 13 of 120 ° C. or less so that the crosslinking material in EVA is not consumed or the effect as the crosslinking material is not lost. Since fluorine coating film 3 of the upper surface is intended to prevent the EVA2 from adhering to the surface of the roll 13 is peeled off before entering the next step taken up into a roll 22, the film 3 of the release of the supporting base member A base film 4 on which the EVA layer 2 is fixed is obtained.
<Step 2>
As shown in FIG. 1 (b), the main wiring member 5 is fixed on the EVA layer 2 of the base film 4. The main wiring 5 is drawn from the roll 14 with its longitudinal direction parallel to the longitudinal direction of the base film 4 and is crimped or thermocompression bonded by the crimping roll 15. Since the fixing surface of the main wiring member 5 is a part of the base film 4, the main wiring member 5 itself is heated when thermocompression bonding is performed. One of the two main wiring members 5 in the figure is the plus side, and the other is the minus side.
<Step 3>
As shown in FIG. 1 (c), a solar cell sub-module 1 made of a solar cell element is fixed to a predetermined position on the EVA layer 2 on the base film 4 with a single sheet, and is crimped or thermocompression bonded through a crimping roll 16. . The conditions for thermocompression bonding are the same as in step 1.
[0012]
The positional relationship between the solar cell submodule 1 and the main wiring member 5 is arranged such that the positive and negative terminals of the solar cell submodule 1 overlap the main wiring member 5 or the main wiring member with respect to the solar cell submodule 1. 5 is placed outside. However, since a part of the main wiring member 5 is outside the peripheral edge of the module 1 and is electrically connected to the outside, a phenomenon that deteriorates the reliability of the solar cell module such as peeling or corrosion is caused by the main wiring member 15. Since it can be said that the portion is most likely to occur, a positional relationship in which the main wiring member 5 is outside the submodule 2 as shown in the drawing is more desirable.
<Step 4>
As shown in FIG. 1 (d), the connection between the solar cell submodule 1 and the main wiring member 5 is performed by the auxiliary wiring member 51. The dimensions and supply position of the auxiliary wiring member 51 differ depending on the positional relationship between the solar cell submodule 1 and the main wiring member 5. Of course, the dimensions and supply position relationship must overlap at least partially. <Step 5>
Although not shown in FIG. 1 (e), a base film produced separately by peeling the film on the lower surface after laminating the fluororesin coating film 3 on both sides of the film-like EVA 2 through the thermocompression roll 13 4 are stacked so that the EVA layer 2 is in contact with the solar cell module 1, and thermocompression-bonded by a pressure-bonding roll 17. When the pressure bonding is performed in an atmospheric pressure atmosphere, air bubbles are likely to be generated due to air entrainment at the stepped portion of the solar cell module 1 or gas released from the constituent material. For this reason, it is most desirable to provide a decompression chamber (not shown) and perform thermocompression bonding with the heating roll 13 under reduced pressure. At this time, bubbles and wrinkles generated in step 1 are also removed. In this case as well, the process is performed at a temperature of 120.degree. There is a method of performing thermocompression bonding with a heated flat plate, but it is inferior in terms of mass productivity.
<Step 6>
Next, as shown in FIG. 2, EVA 2 is cross-linked through the heating chamber 18.
[0013]
It is necessary to maintain the crosslinking conditions at a temperature of 140 to 150 ° C. for 10 to 15 minutes as a condition that enables sufficient gelation of EVA. Since the crosslinking temperature is higher than the thermocompression bonding temperature, it is desirable to depressurize the heating chamber 18 because there is gas emission from the constituent material of the flexible solar cell module. Further, since EVA has a melt viscosity that is lowered at a temperature of 50 ° C. or higher, it is desirable that EVA be further crosslinked in a pressurized state in order to prevent molding defects.
<Step 7>
Finally, as shown in FIG. 2, the double-sided releasable fluororesin coating film 3 is peeled off after passing through the roll 19 to form a flexible solar cell 10 having the structure shown in FIG. Wind up. The peeled fluororesin coating film 3 is wound around two rolls 21.
Example 2:
In this embodiment, as shown in FIGS. 4A to 4D, Step 2 and Step 3 of Embodiment 1 are interchanged. Therefore, also in the roll-to-roll module assembly apparatus, as shown in FIG. 5, the delivery roll 14 and the crimping roll 15 of the main wiring member 5 are arranged behind the crimping roll 16 of the solar cell submodule 1. As a result, the solar cell submodule 1 is fixed on the EVA layer 2 of the base film 4 as shown in FIG. 4B, and then the main wiring member 5 is placed outside the submodule 1 as shown in FIG. Then, as shown in FIG. 4D, the connection between the submodule 1 and the main wiring member 5 is performed by the auxiliary wiring member 51. The subsequent steps are the same as those shown in FIGS.
Example 3:
Used as the supporting base of the releasing in Step 1 and 5 in Example 1 or Example 2, in place of the fluorine resin coating film 3 peeled off in a later step, little releasability as shown in FIG. 6 PET A base film 41 is formed using the film 6 as a support base of EVA2. This PET film 6 is pulled out from the roll 12 by the apparatus shown in FIG. 2 or FIG. 5, and the film-like EVA 2 is fixed thereon. However, on the other surface of the EVA 2, a fluororesin coating film 3 having releasability similar to that in Example 1 or Example 2 is bonded, and the EVA 2 and the PET film 6 are peeled off after thermocompression bonding. Then, Step 7, that is, the rolls 19 and 21 in FIG. 2 or 5 are omitted, and the flexible solar cell module 10 formed by fixing the base film on both sides is finished with the EVA 2 in the heating chamber 18. Directly on the roll 20. The PET film 6 that has not been peeled off is left as a surface protective material.
Example 4:
Instead of the PET film 6 of Example 3, a film in which the surface in contact with EVA 2 has been subjected to surface treatment for improving adhesion in advance is used. That is, a polyvinyl alcohol (PVA) film subjected to plasma treatment as a surface treatment for improving adhesion is used.
Example 5:
Instead of the PET film 6 of Examples 3 and 4, a polyethylene film is used. A fluorine resin coating is applied to the surface of the polyethylene film opposite to the EVA side. This prevents dust and the like from adhering to the surface, and is particularly effective on the light incident surface side.
[0014]
【The invention's effect】
According to the present invention, by fixing the insulating sealing material for covering the solar cell element on the support base, it is possible to carry the tension control when pulling out from the roll to the support base. became. As a result, the flexible solar cell was sealed using the constituent material supplied from the state wound on the roll, and the manufacturing process of winding on the roll was realized. And high mass productivity was obtained compared with the single wafer system, and it became possible to manufacture a flexible solar cell module that can be stored, moved, and constructed in a particularly compact state.
[Brief description of the drawings]
1 is a cross-sectional view showing the manufacturing process of Example 1 of the present invention in the order of (a) to (f). FIG. 2 is a side view of a manufacturing apparatus for performing the manufacturing process shown in FIG. FIG. 4 is a cross-sectional view showing the first half of the manufacturing process of Example 2 of the present invention in the order of (a) to (d). FIG. 5 is a cross-sectional view of a manufacturing apparatus for performing the manufacturing process shown in FIG. Side view [FIG. 6] Cross-sectional view of the base film used in Examples 3 to 5 of the present invention [Explanation of symbols]
1 Solar cell sub-module 2 EVA
DESCRIPTION OF SYMBOLS 3 Fluorine resin coating film 4, 41 Base film 5 Main wiring material 51 Auxiliary wiring material 6 PET film 10 Flexible solar cell module 13, 15, 16, 17 Crimp roll 18 Heating chamber

Claims (5)

可撓性基板上に形成された太陽電池素子を絶縁性封止材によって封止する可撓性太陽電池の製造方法において、絶縁性封止材を可撓性を有する支持基体と、少なくとも一面に離型性材料よりなる表面層を有する対向体のその一面との間に圧着したのち、前記対向体を除去して絶縁性封止材を露出させる工程と、そのあとに、支持基体上の絶縁性封止材の露出面を太陽電池素子に接触させて圧着する工程とを含み、支持基体上の絶縁性封止材を太陽電池素子の両面にそれぞれ接触させて圧着する工程のうち、遅く行われる工程が減圧下で熱圧着する工程であることを特徴とする可撓性太陽電池の製造方法。In a method for manufacturing a flexible solar cell in which a solar cell element formed on a flexible substrate is sealed with an insulating sealing material, the insulating sealing material is provided on at least one surface with a flexible support base. A step of pressure-bonding between the opposing body having a surface layer made of a releasable material and then removing the opposing body to expose the insulating sealing material; A step of bringing the exposed surface of the conductive sealing material into contact with the solar cell element and press-bonding the insulating sealing material on the support substrate and bringing the insulating sealing material on both sides of the solar cell element into contact with the solar cell element. method for producing a flexible solar cell dividing process is characterized a step der Turkey thermocompression bonding under reduced pressure. 絶縁性封止材の支持基体が離型性材料よりなり、絶縁性封止材を太陽電池素子に圧着する工程より後に支持基体を除去する工程を備えた請求項1に記載の可撓性太陽電池の製造方法。The flexible solar cell according to claim 1 , further comprising a step of removing the support base after the step of pressure-bonding the insulating sealant to the solar cell element, wherein the support base of the insulating sealant is made of a releasable material. A battery manufacturing method. 絶縁性封止材がエチレンビニルアセテートよりなる請求項1または請求項2に記載の可撓性太陽電池の製造方法。 The method for manufacturing a flexible solar cell according to claim 1, wherein the insulating sealing material is made of ethylene vinyl acetate . 圧着を120℃以下で行い、架橋は後工程で行う請求項3に記載の太陽電池の可撓性太陽電池の製造方法。 The method for producing a flexible solar cell for a solar cell according to claim 3, wherein the pressure bonding is performed at 120 ° C. or less, and the crosslinking is performed in a later step . 離型性材料がふっ素樹脂、シリコーン樹脂あるいは金属酸化物である請求項1ないし請求項4のいずれかに記載の可撓性太陽電池の製造方法。 The method for producing a flexible solar cell according to any one of claims 1 to 4 , wherein the releasable material is a fluorine resin, a silicone resin, or a metal oxide .
JP31145695A 1995-11-30 1995-11-30 Method for manufacturing flexible solar cell Expired - Fee Related JP3838684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31145695A JP3838684B2 (en) 1995-11-30 1995-11-30 Method for manufacturing flexible solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31145695A JP3838684B2 (en) 1995-11-30 1995-11-30 Method for manufacturing flexible solar cell

Publications (2)

Publication Number Publication Date
JPH09153631A JPH09153631A (en) 1997-06-10
JP3838684B2 true JP3838684B2 (en) 2006-10-25

Family

ID=18017446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31145695A Expired - Fee Related JP3838684B2 (en) 1995-11-30 1995-11-30 Method for manufacturing flexible solar cell

Country Status (1)

Country Link
JP (1) JP3838684B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4537515B2 (en) * 1999-08-13 2010-09-01 株式会社カネカ Method for producing solar cell module
JP4009891B2 (en) * 1999-11-17 2007-11-21 富士電機ホールディングス株式会社 Method for manufacturing thin film solar cell module
PT1297577E (en) * 2000-03-09 2008-10-14 Isovolta Method for producing a photovoltaic thin film module
JP4741538B2 (en) * 2007-03-27 2011-08-03 京セラ株式会社 Solar cell module
JP5862536B2 (en) * 2012-10-04 2016-02-16 信越化学工業株式会社 Manufacturing method of solar cell module
JP5867356B2 (en) * 2012-10-04 2016-02-24 信越化学工業株式会社 Manufacturing method of solar cell module
JP2016025274A (en) * 2014-07-23 2016-02-08 三菱化学株式会社 Solar cell module built-in film body
CN109755345A (en) * 2018-11-28 2019-05-14 米亚索能光伏科技有限公司 A kind of solar panel and preparation method thereof
US20230131853A1 (en) * 2020-03-09 2023-04-27 Fujikura Ltd. Piezoelectric coaxial sensor and method for manufacturing piezoelectric coaxial sensor
FI20225205A1 (en) * 2022-03-09 2023-09-10 Valoe Oyj Manufacturing method for manufacturing a photovoltaic element

Also Published As

Publication number Publication date
JPH09153631A (en) 1997-06-10

Similar Documents

Publication Publication Date Title
JP4401649B2 (en) Manufacturing method of solar cell module
JP5377019B2 (en) Manufacturing method of solar cell module
JP4869408B2 (en) Solar cell module and manufacturing method thereof
US20060207645A1 (en) Method of manufacturing a solor cell module
JP3838684B2 (en) Method for manufacturing flexible solar cell
JP2018110247A (en) Thin film solar cell module and manufacturing method of the same
CN112789735A (en) Method for producing solar panels curved in two directions
JP2002134768A (en) Solar cell module and its producing method
AU770820B2 (en) Method of encapsulating a photovoltaic module by an encapsulating material and the photovoltaic module
KR20190017666A (en) Packaging method for photovoltaic module
JP3564889B2 (en) Roll type manufacturing method and manufacturing apparatus for solar cell module
JP2002111036A (en) Solar battery module and its execution method
JP4086353B2 (en) LAMINATE MANUFACTURING METHOD AND SOLAR CELL MODULE MANUFACTURING METHOD
JP3829973B2 (en) Thin film solar cell module manufacturing method and manufacturing apparatus
JP2001177119A (en) Manufacturing method and device of solar cell module
JP4066271B2 (en) Thin film solar cell module manufacturing method and manufacturing apparatus thereof
JP2004055970A (en) Solar battery and its manufacturing method
JPH0970886A (en) Apparatus for producing solar cell module
JP3856224B2 (en) Manufacturing method of solar cell module
JPH07263733A (en) Thin film photoelectric conversion device and manufacture thereof
JP4009891B2 (en) Method for manufacturing thin film solar cell module
JPH11307789A (en) Solar cell module
JPH06151935A (en) Manufacture of solar battery module
JP2001267596A (en) Solar cell module and its manufacturing method
JP4106608B2 (en) Manufacturing method of solar cell module

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060613

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees