JP3836710B2 - Steam desuperheater - Google Patents

Steam desuperheater Download PDF

Info

Publication number
JP3836710B2
JP3836710B2 JP2001349515A JP2001349515A JP3836710B2 JP 3836710 B2 JP3836710 B2 JP 3836710B2 JP 2001349515 A JP2001349515 A JP 2001349515A JP 2001349515 A JP2001349515 A JP 2001349515A JP 3836710 B2 JP3836710 B2 JP 3836710B2
Authority
JP
Japan
Prior art keywords
liquid
steam
passage
pressure fluid
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001349515A
Other languages
Japanese (ja)
Other versions
JP2003148702A (en
Inventor
賢一 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tlv Co Ltd
Original Assignee
Tlv Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tlv Co Ltd filed Critical Tlv Co Ltd
Priority to JP2001349515A priority Critical patent/JP3836710B2/en
Publication of JP2003148702A publication Critical patent/JP2003148702A/en
Application granted granted Critical
Publication of JP3836710B2 publication Critical patent/JP3836710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、飽和温度以上のいわゆる過熱温度蒸気を、所定の温度例えば飽和温度まで減温することのできる蒸気減温装置に関する。
【0002】
【従来の技術】
従来の蒸気減温装置としては例えば特開昭62−141407号公報に示されているものが用いられていた。これは、過熱蒸気配管に圧力調節弁と圧力検出器と蒸気流量検出器と温度検出器、及び、過熱蒸気中へ供給する水流量検出器をそれぞれ取り付けて、過熱蒸気の圧力を検出して圧力調節弁を調節すると共に、過熱蒸気の流量と温度を検出して水流量検出器から所定量の水を過熱蒸気中へ供給することによって、過熱蒸気を飽和温度の蒸気へ減温することができるものである。
【0003】
【発明が解決しようとする課題】
上記従来の蒸気減温装置では、圧力調節弁と、圧力や流量や温度等の各種検出器及び検出器に対応した調節器が必要となり、減温装置が高価で複雑な物となってしまう問題があった。
【0004】
この実情に鑑み、本発明の主たる課題は、各種の検出器や調節弁を用いることなく、過熱温度蒸気を所定温度の蒸気へ減温することのできる安価でシンプルな蒸気減温装置を得ることである。
【0005】
【課題を解決するための手段】
上記の課題を解決するために講じた本発明の手段は、蒸気通路を流下する過熱蒸気に冷却流体を供給して、当該過熱蒸気を所定温度状態の蒸気へ減温するものにおいて、液体を溜め置く第1の液体溜容器を配置して、当該第1の液体溜容器の液体入口を過熱蒸気の流下する蒸気通路と連通路で連通し、当該第1の液体溜容器の液体出口を第2の液体溜容器と連通路で連通して、当該第2の液体溜容器の液体出口に接続通路を介して過熱蒸気の流下する蒸気通路と接続すると共に、第1の液体溜容器と第2の液体溜容器に高圧流体源と連通する高圧流体連通路を連通して、第1の液体溜容器と高圧流体連通路の間に、第1の液体溜容器内への高圧流体の流入と遮断を切り換える切換弁を取り付けたものである。
【0006】
【発明の実施の形態】
切換弁によって第1の液体溜容器内への高圧流体が遮断されている時に、蒸気通路中の液体が連通路と液体入口とを介して第1の液体溜容器内へ流入する。第1の液体溜容器内へ流入して溜まった液体は、切換弁によって高圧流体が第1の液体溜容器へ流入されると連通路と液体出口とを介して第2の液体溜容器内へ流入する。更に、第2の液体溜容器内へ流入した液体は、高圧流体の流体圧力によって、接続通路と液体出口とを介して蒸気通路へ供給されて過熱蒸気を減温する。
【0007】
【実施例】
図1において、過熱蒸気の流下する蒸気通路としての蒸気管1と、第1の液体溜容器2と第2の液体溜容器3、及び、第2の液体溜容器3から蒸気管1中に冷却液体を供給する接続通路4とで蒸気減温装置を構成する。
【0008】
蒸気管1にバルブ5と自動調節弁6と気液の混合分離器7を順次取り付けて、管路8から所定温度に減温された蒸気を、図示しない蒸気使用装置へ供給する。自動調節弁6は管路8から供給する蒸気の量又は圧力又は温度を調節するものであり、気液の混合分離器7は、蒸気管1中の過熱蒸気と接続通路4から供給される冷却液体を混合して更に分離し、管路8へ液体が分離され所定温度まで減温された蒸気だけを供給する。
【0009】
蒸気管1を分岐して高圧流体連通路9を連通する。高圧流体連通路9にバルブ10を介して第1の液体溜容器2の高圧流体入口11と接続すると共に、バルブ12を介して第2の液体溜容器3の上部側方と接続する。なお、図示はしていないが、高圧流体連通路9に、その二次側の圧力を一定に維持する機能を有する減圧弁を取り付けることによって、第1の液体溜容器2と第2の液体溜容器3へ供給する高圧流体の圧力を一定に保持することができる。
【0010】
第1の液体溜容器2の液体入口13に、逆止弁14と液体通路15を介して、気液の混合分離器7の下端部と接続する。混合分離器7の下端部には蒸気トラップ16と逆止弁17を接続する。蒸気トラップ16は、気液の混合分離器7で分離された蒸気の凝縮水としての復水や冷却液体だけを流下させ、蒸気は流下させることがない自動弁の一種である。逆止弁17と14は、蒸気トラップ16から液体入口13側への流体の通過を許容し、反対側への流体の通過は許容しないものである。
【0011】
第1の液体溜容器2の上部の高圧流体入口11の側方に、高圧流体出口18を設けて大気連通管19を接続する。第1の液体溜容器2の液体入口13の下方には液体出口20を設けて、第2の液体溜容器3と連通路21で連通する。連通路21には逆止弁22を取り付ける。逆止弁22は、液体出口20から第2の液体溜容器3側への流体の通過を許容し、反対側への通過は許容しないものである。
【0012】
第1の液体溜容器2は、液体入口13から流入してきた復水等の液体が内部に溜まってその液位が上昇すると内部の図示しないフロートを上昇させ、所定位置に達するとスナップ移動して、高圧流体入口11に取り付けた圧送弁を開弁すると共に、高圧流体出口18に取り付けた排気弁を閉弁して、高圧流体連通路9から高圧の蒸気を第1の液体溜容器2内部に供給し、溜まっていた液体を液体出口20から逆止弁22と連通路21を介して第2の液体溜容器3へ流下させるものである。
【0013】
第1の液体溜容器2内の液体が第2の液体溜容器3へ流下するに連れて、内部の図示しないフロートが降下して、所定の液位まで低下するとスナップ移動して、高圧流体入口11の圧送弁を閉弁すると共に、高圧流体出口18の排気弁が開弁して、第1の液体溜容器2内の高圧蒸気が大気連通管19から外部に排出され、再度、液体通路15から復水等の液体が第1の液体溜容器2内へ流入してくるものである。
【0014】
本実施例においては、高圧流体入口11に取り付けた圧送弁と高圧流体出口18に取り付けた排気弁とで、第1の液体溜容器2内への高圧流体の流入と遮断を切り換える切換弁を構成する。
【0015】
液体通路15の2つの逆止弁14,17の間に、冷却液体補給管23を接続する。冷却液体補給管23には自動弁24を取り付ける。冷却液体例えば冷却水が不足した場合に、自動弁24から補給することができるものである。
【0016】
連通路21によって第1の液体溜容器2と連通した第2の液体溜容器3は、密閉状のタンクで形成して、上部側方に高圧流体連通路9を接続する。容器3の上部には、容器3内の液位を検出する液位センサ25を取り付ける。容器3の下部には接続通路4を接続する。
【0017】
接続通路4には、自動弁26を介した余剰液体排出管27を接続すると共に、インライン式の熱交換器28を取り付ける。この熱交換器28は、エゼクタ29と加熱又は冷却流体供給管30、及び、流体供給管30に取り付けた自動調節弁31と逆止弁32とで構成する。接続通路4の蒸気管1側に、接続通路4内の液体温度を検出する温度センサ33を取り付ける。温度センサ33と自動調節弁31を図示しない温度コントローラを介して電気接続する。
【0018】
温度センサ33で検出した冷却液体温度に応じて、自動調節弁31の弁開度を調節することによって、加熱又は冷却流体供給管30から、所定量の加熱又は冷却流体を接続通路4内の液体に供給して、蒸気管1内に供給する冷却液体温度を任意にコントロールすることができる。接続通路4から蒸気管1内へ冷却液体を供給する場合、図示はしていないが接続通路4の蒸気管1内端部に、冷却液体を噴射するためのノズルを取り付けることが好ましい。
【0019】
第2の液体溜容器3に取り付けた液位センサ25は、図示しないコントローラを介して自動弁24,26と電気接続する。液位センサ25の検出液位によって、自動弁24を開弁して冷却液体を補給したり、あるいは、自動弁26を開弁して余剰冷却液体を系外へ排除するものである。
【0020】
蒸気管1内を初期立ち上げ時に蒸気が通過すると冷却されて蒸気は復水となり、気液の混合分離器7と蒸気トラップ16と逆止弁17,14を通って第1の液体溜容器2内へ流入する。容器2内の液位が所定高さに達すると、高圧流体入口11に取り付けた圧送弁が開弁し、高圧流体出口18に取り付けた排気弁が閉弁することによって、高圧流体連通路9から高圧蒸気が容器2内へ供給され、第2の液体溜容器3内と同圧になることにより、容器2内の液体は容器3内へ水頭差によって自然流下する。
【0021】
第2の液体溜容器3内は絶えず高圧流体通路9と連通しており、従って、容器3内の液体はその高圧流体の圧力によって接続通路4から蒸気管1内へ圧送され、蒸気管1内を流下する過熱蒸気中に注入される。蒸気管1内へ注入された冷却液体は、気液の混合分離器7で過熱蒸気と混合して過熱蒸気の温度を低下させる。この場合、低下させる過熱蒸気の温度は、接続通路4から供給する冷却液体の量とか温度を調節することによって適宜制御することができる。
【0022】
気液の混合分離器7で過熱蒸気と混合した残余の冷却液体は、この混合分離器7で気液分離され、下端部の蒸気トラップ16から第1の液体溜容器2内へ流下する。一方、液体の分離された所定温度の蒸気は、混合分離器7から管路8を通って蒸気使用箇所へと供給される。
【0023】
【発明の効果】
上記のように本発明によれば、第1の液体溜容器と第2の液体溜容器とを介して連続的に冷却液体を蒸気管へ供給することによって、蒸気管内の過熱蒸気を任意の蒸気温度まで減温することができ、圧力や流量等の各種検出器や、調節弁、あるいは、冷却液体を供給するためのポンプ手段等を用いることなく、安価でシンプルな蒸気減温装置とすることができる。
【図面の簡単な説明】
【図1】本発明の蒸気減温装置の実施例を示す構成図。
【符号の説明】
1 蒸気管
2 第1の液体溜容器
3 第2の液体溜容器
4 接続通路
7 気液の混合分離器
9 高圧流体通路
11 高圧流体入口
13 液体入口
15 液体通路
18 高圧流体出口
19 大気連通管
20 液体出口
21 連通路
23 冷却液体補給管
25 液位センサ
28 熱交換器
33 温度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steam temperature reducing device that can reduce so-called superheated steam having a temperature equal to or higher than a saturation temperature to a predetermined temperature, for example, a saturation temperature.
[0002]
[Prior art]
As a conventional steam temperature reducing device, for example, a device disclosed in Japanese Patent Application Laid-Open No. 62-141407 has been used. This is because the pressure control valve, pressure detector, steam flow rate detector, temperature detector, and water flow rate detector supplied to the superheated steam are respectively attached to the superheated steam piping, and the pressure of the superheated steam is detected. By adjusting the control valve and detecting the flow rate and temperature of the superheated steam and supplying a predetermined amount of water into the superheated steam from the water flow detector, the superheated steam can be reduced to the saturated temperature steam. Is.
[0003]
[Problems to be solved by the invention]
The conventional steam temperature reducing device requires a pressure control valve, various detectors such as pressure, flow rate, and temperature, and a controller corresponding to the detector, and the temperature reducing device becomes an expensive and complicated object. was there.
[0004]
In view of this situation, the main problem of the present invention is to obtain an inexpensive and simple steam temperature reducing device that can reduce the temperature of superheated steam to steam at a predetermined temperature without using various detectors and control valves. It is.
[0005]
[Means for Solving the Problems]
The means of the present invention devised to solve the above problem is to supply a cooling fluid to superheated steam flowing down the steam passage and reduce the temperature of the superheated steam to steam at a predetermined temperature state. A first liquid storage container is disposed, the liquid inlet of the first liquid storage container is communicated with a vapor passage through which superheated steam flows and a communication passage, and the liquid outlet of the first liquid storage container is connected to the second liquid storage container. The liquid reservoir of the second liquid reservoir is connected to the liquid outlet of the second liquid reservoir via a connection passage to a vapor passage through which superheated steam flows, and the first liquid reservoir and the second liquid reservoir The high-pressure fluid communication passage communicating with the high-pressure fluid source is communicated with the liquid reservoir, and the flow of high-pressure fluid into the first liquid reservoir is blocked between the first liquid reservoir and the high-pressure fluid communication passage. A switching valve for switching is attached.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
When the high pressure fluid into the first liquid reservoir is blocked by the switching valve, the liquid in the vapor passage flows into the first liquid reservoir via the communication passage and the liquid inlet. When the high-pressure fluid flows into the first liquid storage container by the switching valve, the liquid that has flowed into the first liquid storage container flows into the second liquid storage container via the communication path and the liquid outlet. Inflow. Furthermore, the liquid that has flowed into the second liquid reservoir is supplied to the vapor passage via the connection passage and the liquid outlet by the fluid pressure of the high-pressure fluid, and the superheated steam is reduced in temperature.
[0007]
【Example】
In FIG. 1, a steam pipe 1 as a steam passage through which superheated steam flows, a first liquid storage container 2, a second liquid storage container 3, and cooling from the second liquid storage container 3 into the steam pipe 1. A vapor temperature reducing device is constituted by the connection passage 4 for supplying the liquid.
[0008]
A valve 5, an automatic control valve 6, and a gas / liquid mixing / separating device 7 are sequentially attached to the steam pipe 1, and steam reduced to a predetermined temperature from the pipe 8 is supplied to a steam using device (not shown). The automatic control valve 6 adjusts the amount or pressure or temperature of the steam supplied from the pipe 8, and the gas-liquid mixing separator 7 is cooled by the superheated steam in the steam pipe 1 and the connection passage 4. The liquid is mixed and further separated, and only the vapor which has been separated into the pipe 8 and reduced in temperature to a predetermined temperature is supplied.
[0009]
The steam pipe 1 is branched to communicate with the high-pressure fluid communication passage 9. The high-pressure fluid communication passage 9 is connected to the high-pressure fluid inlet 11 of the first liquid reservoir 2 via the valve 10 and is connected to the upper side of the second liquid reservoir 3 via the valve 12. Although not shown in the drawings, the first liquid reservoir 2 and the second liquid reservoir are attached to the high-pressure fluid communication passage 9 by attaching a pressure reducing valve having a function of maintaining the pressure on the secondary side constant. The pressure of the high-pressure fluid supplied to the container 3 can be kept constant.
[0010]
The liquid inlet 13 of the first liquid reservoir 2 is connected to the lower end of the gas-liquid mixing separator 7 via a check valve 14 and a liquid passage 15. A steam trap 16 and a check valve 17 are connected to the lower end of the mixing separator 7. The steam trap 16 is a kind of automatic valve that causes only condensate or cooling liquid as condensed water of steam separated by the gas-liquid mixing separator 7 to flow down, and does not cause steam to flow down. The check valves 17 and 14 allow the passage of fluid from the vapor trap 16 to the liquid inlet 13 side and do not allow the passage of fluid to the opposite side.
[0011]
A high-pressure fluid outlet 18 is provided on the side of the high-pressure fluid inlet 11 at the top of the first liquid reservoir 2 to connect the atmosphere communication pipe 19. A liquid outlet 20 is provided below the liquid inlet 13 of the first liquid reservoir 2, and communicates with the second liquid reservoir 3 through the communication path 21. A check valve 22 is attached to the communication path 21. The check valve 22 allows passage of fluid from the liquid outlet 20 to the second liquid reservoir 3 side and does not allow passage of the fluid to the opposite side.
[0012]
The first liquid reservoir 2 raises a float (not shown) when a liquid such as condensate flowing in from the liquid inlet 13 accumulates therein and the liquid level rises, and snaps when it reaches a predetermined position. The pressure feed valve attached to the high-pressure fluid inlet 11 is opened, and the exhaust valve attached to the high-pressure fluid outlet 18 is closed, so that high-pressure vapor is fed into the first liquid reservoir 2 from the high-pressure fluid communication passage 9. The supplied and accumulated liquid flows down from the liquid outlet 20 to the second liquid reservoir 3 through the check valve 22 and the communication passage 21.
[0013]
As the liquid in the first liquid reservoir 2 flows down to the second liquid reservoir 3, the float (not shown) in the interior descends, and when it reaches a predetermined liquid level, it snaps and moves to the high pressure fluid inlet. 11 and the exhaust valve of the high-pressure fluid outlet 18 are opened, so that the high-pressure vapor in the first liquid reservoir 2 is discharged to the outside from the atmosphere communication pipe 19 and again the liquid passage 15 The liquid such as condensate flows into the first liquid reservoir 2.
[0014]
In this embodiment, a switching valve that switches between inflow and shutoff of the high-pressure fluid into the first liquid reservoir 2 is constituted by a pressure-feed valve attached to the high-pressure fluid inlet 11 and an exhaust valve attached to the high-pressure fluid outlet 18. To do.
[0015]
A cooling liquid supply pipe 23 is connected between the two check valves 14 and 17 in the liquid passage 15. An automatic valve 24 is attached to the cooling liquid supply pipe 23. When the cooling liquid, for example, the cooling water is insufficient, the automatic valve 24 can replenish.
[0016]
The second liquid reservoir 3 communicated with the first liquid reservoir 2 by the communication passage 21 is formed of a sealed tank, and the high-pressure fluid communication passage 9 is connected to the upper side. A liquid level sensor 25 for detecting the liquid level in the container 3 is attached to the upper part of the container 3. A connection passage 4 is connected to the lower part of the container 3.
[0017]
An excess liquid discharge pipe 27 is connected to the connection passage 4 via an automatic valve 26, and an inline heat exchanger 28 is attached. The heat exchanger 28 includes an ejector 29, a heating or cooling fluid supply pipe 30, and an automatic adjustment valve 31 and a check valve 32 attached to the fluid supply pipe 30. A temperature sensor 33 for detecting the liquid temperature in the connection passage 4 is attached to the connection passage 4 on the steam pipe 1 side. The temperature sensor 33 and the automatic control valve 31 are electrically connected via a temperature controller (not shown).
[0018]
A predetermined amount of heating or cooling fluid is supplied from the heating or cooling fluid supply pipe 30 to the liquid in the connection passage 4 by adjusting the valve opening of the automatic adjustment valve 31 according to the cooling liquid temperature detected by the temperature sensor 33. The cooling liquid temperature supplied to the steam pipe 1 can be arbitrarily controlled. When supplying the cooling liquid from the connection passage 4 into the vapor pipe 1, it is preferable to attach a nozzle for injecting the cooling liquid to the inner end of the vapor pipe 1 of the connection passage 4, although not shown.
[0019]
The liquid level sensor 25 attached to the second liquid reservoir 3 is electrically connected to the automatic valves 24 and 26 via a controller (not shown). Depending on the liquid level detected by the liquid level sensor 25, the automatic valve 24 is opened to replenish the cooling liquid, or the automatic valve 26 is opened to remove excess cooling liquid from the system.
[0020]
When the steam passes through the steam pipe 1 at the initial startup, the steam is cooled to become condensate, and passes through the gas / liquid mixing separator 7, the steam trap 16, and the check valves 17 and 14, and the first liquid reservoir 2. Flows in. When the liquid level in the container 2 reaches a predetermined height, the pressure feed valve attached to the high pressure fluid inlet 11 is opened, and the exhaust valve attached to the high pressure fluid outlet 18 is closed, so that the high pressure fluid communication passage 9 closes. The high-pressure steam is supplied into the container 2 and becomes the same pressure as that in the second liquid reservoir 3, so that the liquid in the container 2 naturally flows into the container 3 due to a water head difference.
[0021]
The inside of the second liquid reservoir 3 is constantly in communication with the high-pressure fluid passage 9. Therefore, the liquid in the container 3 is pumped from the connection passage 4 into the steam pipe 1 by the pressure of the high-pressure fluid, and the inside of the steam pipe 1. It is injected into superheated steam flowing down. The cooling liquid injected into the steam pipe 1 is mixed with superheated steam in the gas-liquid mixing separator 7 to lower the temperature of the superheated steam. In this case, the temperature of the superheated steam to be lowered can be appropriately controlled by adjusting the amount of the cooling liquid supplied from the connection passage 4 or the temperature.
[0022]
The remaining cooling liquid mixed with superheated steam in the gas-liquid mixing separator 7 is gas-liquid separated in the mixing separator 7 and flows down into the first liquid reservoir 2 from the vapor trap 16 at the lower end. On the other hand, the vapor at a predetermined temperature from which the liquid has been separated is supplied from the mixing / separating device 7 through the pipe 8 to the vapor use location.
[0023]
【The invention's effect】
As described above, according to the present invention, the cooling liquid is continuously supplied to the steam pipe via the first liquid reservoir and the second liquid reservoir, so that the superheated steam in the steam pipe can be changed to any steam. It is possible to reduce the temperature to a temperature, and to make an inexpensive and simple steam temperature reducing device without using various detectors such as pressure and flow rate, control valves, or pump means for supplying cooling liquid. Can do.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of a steam temperature reducing apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steam pipe 2 1st liquid storage container 3 2nd liquid storage container 4 Connection passage 7 Gas-liquid mixing separator 9 High pressure fluid passage 11 High pressure fluid inlet 13 Liquid inlet 15 Liquid passage 18 High pressure fluid outlet 19 Atmospheric communication pipe 20 Liquid outlet 21 Communication path 23 Cooling liquid supply pipe 25 Liquid level sensor 28 Heat exchanger 33 Temperature sensor

Claims (1)

蒸気通路を流下する過熱蒸気に冷却流体を供給して、当該過熱蒸気を所定温度状態の蒸気へ減温するものにおいて、液体を溜め置く第1の液体溜容器を配置して、当該第1の液体溜容器の液体入口を過熱蒸気の流下する蒸気通路と連通路で連通し、当該第1の液体溜容器の液体出口を第2の液体溜容器と連通路で連通して、当該第2の液体溜容器の液体出口に接続通路を介して過熱蒸気の流下する蒸気通路と接続すると共に、第1の液体溜容器と第2の液体溜容器に高圧流体源と連通する高圧流体連通路を連通して、第1の液体溜容器と高圧流体連通路の間に、第1の液体溜容器内への高圧流体の流入と遮断を切り換える切換弁を取り付けたことを特徴とする蒸気減温装置。A cooling fluid is supplied to the superheated steam flowing down the steam passage to reduce the temperature of the superheated steam to a steam in a predetermined temperature state, and a first liquid storage container for storing the liquid is disposed, and the first The liquid inlet of the liquid reservoir is communicated with a vapor passage through which superheated steam flows and the communication passage, the liquid outlet of the first liquid reservoir is communicated with the second liquid reservoir, and the second A high-pressure fluid communication path communicating with the high-pressure fluid source is connected to the first liquid storage container and the second liquid storage container while being connected to the liquid outlet of the liquid storage container via the connection passage through the connection passage. A steam temperature reducing device, wherein a switching valve for switching between inflow and shutoff of the high pressure fluid into the first liquid reservoir is attached between the first liquid reservoir and the high pressure fluid communication path.
JP2001349515A 2001-11-15 2001-11-15 Steam desuperheater Expired - Fee Related JP3836710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001349515A JP3836710B2 (en) 2001-11-15 2001-11-15 Steam desuperheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001349515A JP3836710B2 (en) 2001-11-15 2001-11-15 Steam desuperheater

Publications (2)

Publication Number Publication Date
JP2003148702A JP2003148702A (en) 2003-05-21
JP3836710B2 true JP3836710B2 (en) 2006-10-25

Family

ID=19162170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001349515A Expired - Fee Related JP3836710B2 (en) 2001-11-15 2001-11-15 Steam desuperheater

Country Status (1)

Country Link
JP (1) JP3836710B2 (en)

Also Published As

Publication number Publication date
JP2003148702A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
JPH0472156B2 (en)
JP3836710B2 (en) Steam desuperheater
JP3836711B2 (en) Steam desuperheater
JP3917408B2 (en) Steam desuperheater
JP2003148704A (en) Steam attemper
JP2006194531A (en) Steam temperature decreasing device
JP2004278872A (en) Condensate re-evaporation device
JP2003148703A (en) Steam attemper
JP2004076987A (en) Steam-heating device
JPH07328423A (en) Heater by steam
JP2007218471A (en) Waste heat-recovering/pressure-reducing device for steam
JP5295726B2 (en) Ejector device
JP5295725B2 (en) Ejector device
JP4472102B2 (en) Steam heating device
JP2009189982A (en) Vacuum steam heating apparatus
JP2007107836A (en) Steam attemperator
JPH11294398A (en) Pressure feeding device of liquid
JP5715811B2 (en) Liquid pumping device
JP5855929B2 (en) Heat exchanger
JPS6246079Y2 (en)
JP2007107835A (en) Steam attemperator
KR840000333B1 (en) Condensate recovery system
JP4472103B2 (en) Steam heating device
JP2004278874A (en) Condensate re-evaporation device
JPS6030565Y2 (en) Condensate recovery sealed tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees