JP3835487B2 - Rhodium purification method - Google Patents
Rhodium purification method Download PDFInfo
- Publication number
- JP3835487B2 JP3835487B2 JP03426695A JP3426695A JP3835487B2 JP 3835487 B2 JP3835487 B2 JP 3835487B2 JP 03426695 A JP03426695 A JP 03426695A JP 3426695 A JP3426695 A JP 3426695A JP 3835487 B2 JP3835487 B2 JP 3835487B2
- Authority
- JP
- Japan
- Prior art keywords
- rhodium
- impurities
- aqueous phase
- carboxylic acid
- purification method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、非鉄金属精錬工程や含白金廃触媒の処理工程で発生するロジウムおよび他の元素からなる混合物からロジウムを高収率で分離、精製することができるロジウムの精製方法に関するものである。
【0002】
【従来の技術】
ロジウムの精製方法としては、亜硝酸錯塩の錯安定度の差を利用して、ロジウム以外を沈殿分離し、ロジウムを母液に残し、次いで、結晶として分離する方法や、他の白金族元素の除去に関しては、特開平4−22402号公報に記載されているように、他の白金族を強塩基性陰イオン交換樹脂に吸着する方法、又、他の卑金属の分離に関しては、特開平3−277730号公報に記載されているような強酸性陽イオン交換樹脂に吸着させる方法が知られている。
【0003】
【発明が解決しようとする課題】
しかしながら、亜硝酸錯塩の錯安定度を利用して相互分離する方法では、比較的高いpHにおいて他の不純物を加水分解させるために、ロジウムもかなりの部分が沈殿し、ロジウムの純度が十分に高くなるまでこの操作を繰り返すと、初期の全ロジウムに対して20%ほどしか回収できないという問題があった。
【0004】
一方、陰イオン交換法により他の白金族を分離する場合、吸着されるイオンが完全にクロロ錯体の形態でないとロジウムと共に溶出してしまう問題があり、また、陽イオン交換法で共存する卑金属元素を分離する場合は、逆にクロロ錯体が完全に分解していないと吸着されないために、水で高度に希釈する必要がある問題があった。したがって、陰イオン交換法と陽イオン交換法とを組み合わせたとしても、他の白金族および卑金属元素を分離することは困難である。
【0005】
本発明は、完全にクロロ錯体を形成していない不純物も、逆に塩素イオンが高度に配位しているクロロ錯体として共存する不純物も、ロジウム中から選択的かつ定量的に分離し、さらに、高収率でロジウムを回収する方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者は、前記問題を解決し、前記目的を達成するために研究を重ねた結果、ロジウム中に共存する不純物のうち、白金族元素などの低塩基性の不純物の多くがトリブチルフォスフェイトと付加化合物を形成する性質を利用して有機相に抽出し、また、陽イオン性不純物がクロロ錯体を形成していても、カルボン酸とは塩を形成しやすい性質を利用してカルボン酸型抽出剤に抽出し、さらに、ロジウムのクロロ錯塩がイオン半径の大きなアルカリ陽イオンと難溶性塩を形成する性質を利用し、いずれの方法でも分離できない不純物と分離し、最後に、水素気流中で加熱することにより、金属成分以外を揮発除去し得るという知見に基づいてなされたものである。すなわち、本発明においては、ロジウムおよび塩化物イオンを含み、不純物が共存する水溶液をトリブチルフォスフェイトと混合し、ついで水相を水に難溶性な高級カルボン酸と混合し、得られた水相に難溶性のロジウムのクロロ錯塩を形成する化合物を溶解し、析出した結晶を水素気流中で熱分解するロジウムの精製方法、より具体的には、ロジウムおよび塩化物イオンを含み、不純物が共存する水溶液をトリブチルフォスフェイトと混合し、不純物を抽出し、ついで、得られた水相のpHを4〜7に維持しつつ、該水相を水に難溶性な高級カルボン酸と混合し、さらに不純物を有機相に抽出し、新たに得られた水相に、エチレンジアミンを溶解し、析出した結晶を水素気流中で熱分解することを特徴とするものである。
【0007】
【作用】
本発明は、前記知見に基づいてなされたものであり、ロジウム中に共存する不純物のうち、白金族元素などの低塩基性の不純物の大部分をトリブチルフォスフェイトで抽出し、次いで、水に難溶性な高級カルボン酸で陽イオン性の卑金属の大部分を抽出除去し、さらに、難溶性のロジウムのクロロ錯塩を形成する化合物を添加し、ロジウムを結晶として析出させることにより、残留している他の不純物から分離し、最終的に析出した結晶を水素気流中で熱分解する方法である。すなわち、トリブチルフォスフェイト抽出工程では、不純物元素は、塩化物あるいはクロロ錯イオンの遊離酸として抽出される。最もロジウムイオンと随伴しやすく、かつ、量的にも多い元素は白金であるが、この元素は、クロロ錯イオンの遊離酸として抽出されるために、塩酸の共存が不可欠である。塩酸の最低必要量は、白金に対して、2倍モルであるが、抽出平衡時に水相に2〜7mol/lの塩酸が共存することにより、より完全な抽出をすることができる。この抽出剤は、陰イオン交換樹脂とは異なり、溶媒和反応により抽出を行うために、完全に塩化物あるいはクロロ錯塩を形成していない元素も定量的に抽出することが可能であるという特徴がある。
【0008】
カルボン酸による抽出工程では、陽イオンを形成しやすい卑金属が、陽イオン交換反応により抽出される。不純物として特に多く含まれる銅、ニッケル、鉛などは塩化物中ではクロロ錯塩を形成していて、強酸性のスルホン酸型の陽イオン交換体とは反応が不完全であるが、弱塩基であるため弱酸性のカルボン酸型陽イオン交換体とは安定な結合を作りやすく、初めにクロロ錯体の状態で存在しているイオンでも定量的に塩を形成することができる。カルボン酸型の陽イオン交換体としては、イオン交換樹脂よりも抽出剤の方が金属を保持できる容量が大きく、かつ白金族との選択性が高いためにこの目的には適している。工業的に生産されている製品としては、バーサティック・アシッド−10(VA−10、シェル化学(社)、商品名)、ナフテン酸などがあり、粘度を低下させるために、石油系の溶媒で希釈して使用すると良好な相分離が行われる。カルボン酸型抽出剤では、反応の進行と同時に水素イオンが液中に放出されるために、アルカリなどによりpHを上昇させる必要があるが、あまりpHが高いとカルボン酸がアルカリの塩となって水相中に溶解するために、pH4〜7の範囲に維持することが望ましい。
【0009】
クロロ錯塩の結晶化工程では、最も多く塩素が配位したロジウムの塩素錯塩であるヘキサクロロロジウム(III) 酸の難溶性塩を析出させることにより、上記工程でも分離できなかった不純物からの分離を行う。陽イオン源としては、陽イオン半径が大きく、かつ、後の乾式水素還元工程で残留しにくい揮発、分解性のイオンが適しており、アンモニウム塩、ポリエチレンポリアミン類などが使用できるが、特に、錯塩の溶解度が低く、かつ、工業的に入手が容易な点を考慮すると、エチレンジアミンが適している。
【0010】
最終的に、得られた結晶は、水素気流中で還元することにより、揮発性の塩化物が除去され、不純物の非常に低い金属ロジウムを得ることができるものである。
【0011】
【実施例】
次に、本発明の実施例を述べる。
実施例
(1) Rh 75.4g/l、pt 2.81g/l、Pd 0.18g/l、Fe 0.0012g/l、Cu 0.05g/l、Pb 0.11g/l、Ni 0.03g/lおよびHCl 5.5mol/lを含む水溶液2230mlを、1460mlまで濃縮し、トリブチルフォスフェイトと相比O/A=1/lにて10分間かきまぜ混合した。抽残液を分析した結果、Pt 0.09g/l、Pd 0.004g/lまで低下していた。
【0012】
(2) トリブチルフォスフェイトの抽残液を50V/V% VA−10クリーンソルG(日本石油(社)、商品名)にて、相比O/A=1/lによるように混合しつつ、NaHCO3にて水相のpHが5.9になるように抽出を行った。抽残液を分析した結果、卑金属イオンは、Cu<0.001g/l、Ni 0.001g/l、Fe<0.001g/l、Pb<0.003g/lまで低下していた。
【0013】
(3) VA−10の抽残液には、6N HCl 1560mlを添加し、次いで液温を18℃に維持しつつ、液のpHが0になるまでエチレンジアミンを添加した。得られた結晶は、水素気流中にて450℃で1時間維持した。得られたロジウム中の各元素の品位は、Pt 36ppm、Pd 14ppm、Fe<1ppm、Cu<1ppm、Pb<10ppm、Ni 0.4ppmであり、Rhの重量は、145.9gであり、初めの液からの収率は、86.8%であった。
【0014】
【発明の効果】
本発明は、原液中に完全にクロロ錯体を形成していない白金族不純物や、塩素が高度に配位しているクロロ錯体として共存していて陽イオン交換樹脂では分離困難な陽イオン性の卑金属不純物が共存していても、ロジウム中から選択的かつ定量的に分離でき、さらに、高収率でロジウムを回収することができるなど工業的意義の大きい優れた効果が認められる。[0001]
[Industrial application fields]
The present invention relates to a rhodium purification method capable of separating and purifying rhodium in a high yield from a mixture of rhodium and other elements generated in a non-ferrous metal refining step and a treatment step of a platinum-containing spent catalyst.
[0002]
[Prior art]
As a purification method of rhodium, using the difference in complex stability of the nitrite complex salt, precipitates other than rhodium are precipitated, rhodium is left in the mother liquor, and then separated as crystals, and other platinum group elements are removed. As described in JP-A-4-22402, the method of adsorbing other platinum groups to strongly basic anion exchange resins and the separation of other base metals are described in JP-A-3-277730. There is known a method of adsorbing to a strongly acidic cation exchange resin as described in Japanese Patent Publication No. JP-A.
[0003]
[Problems to be solved by the invention]
However, in the method of mutual separation utilizing the complex stability of nitrite complex salt, rhodium also precipitates a considerable part in order to hydrolyze other impurities at a relatively high pH, and the purity of rhodium is sufficiently high. When this operation was repeated until the end, there was a problem that only about 20% of the initial rhodium could be recovered.
[0004]
On the other hand, when other platinum groups are separated by the anion exchange method, there is a problem that the adsorbed ions are not completely in the form of a chloro complex and are eluted together with rhodium, and the base metal element coexisting with the cation exchange method. On the other hand, when the chloro complex is separated, it is not adsorbed unless the chloro complex is completely decomposed. Therefore, even if the anion exchange method and the cation exchange method are combined, it is difficult to separate other platinum group and base metal elements.
[0005]
The present invention selectively and quantitatively separates impurities that have not completely formed a chloro complex and impurities that coexist as a chloro complex in which chloride ions are highly coordinated from rhodium, It is an object of the present invention to provide a method for recovering rhodium with high yield.
[0006]
[Means for Solving the Problems]
As a result of researches to solve the above problems and achieve the above object, the present inventor has found that, among impurities coexisting in rhodium, most of low basic impurities such as platinum group elements are tributyl phosphate. Extraction into the organic phase using the properties of forming adducts, and even if cationic impurities form chloro complexes, extraction with the carboxylic acid type takes advantage of the property of forming salts with carboxylic acids. In addition, the chloro complex salt of rhodium forms a sparingly soluble salt with an alkali cation having a large ionic radius, and is separated from impurities that cannot be separated by any method, and finally heated in a hydrogen stream. This is based on the knowledge that the components other than the metal component can be volatilized and removed. That is, in the present invention, an aqueous solution containing rhodium and chloride ions, in which impurities coexist, is mixed with tributyl phosphate, and then the aqueous phase is mixed with a higher carboxylic acid that is sparingly soluble in water. A method for purifying rhodium, in which a compound that forms a chloro complex salt of poorly soluble rhodium is dissolved, and the deposited crystals are thermally decomposed in a hydrogen stream, more specifically, an aqueous solution containing rhodium and chloride ions in which impurities coexist. Is mixed with tributyl phosphate to extract impurities, and while maintaining the pH of the obtained aqueous phase at 4 to 7, the aqueous phase is mixed with a higher carboxylic acid that is sparingly soluble in water. Extracted into an organic phase , ethylenediamine is dissolved in a newly obtained aqueous phase, and the precipitated crystals are thermally decomposed in a hydrogen stream.
[0007]
[Action]
The present invention has been made on the basis of the above knowledge, and among the impurities coexisting in rhodium, most of the low basic impurities such as platinum group elements are extracted with tributyl phosphate , and then are difficult to dissolve in water. Extract and remove most of the cationic base metal with a soluble higher carboxylic acid, add a compound that forms a chloro complex salt of poorly soluble rhodium, and precipitate rhodium as crystals, etc. In this method, the crystals separated from the impurities and finally precipitated are thermally decomposed in a hydrogen stream. That is, in the tributyl phosphate extraction step, the impurity element is extracted as a free acid of chloride or chloro complex ion. Platinum is the element that is most likely to accompany rhodium ions and is large in quantity, but since this element is extracted as a free acid of a chloro complex ion, the coexistence of hydrochloric acid is indispensable. Although the minimum required amount of hydrochloric acid is 2 times mol with respect to platinum, more complete extraction can be achieved by the presence of 2 to 7 mol / l hydrochloric acid in the aqueous phase during the extraction equilibrium. Unlike the anion exchange resin, this extractant is characterized by being capable of quantitatively extracting elements that have not completely formed chloride or chloro complex salts because extraction is performed by a solvation reaction. is there.
[0008]
In the extraction step using carboxylic acid, base metals that easily form cations are extracted by a cation exchange reaction. Copper, nickel, lead, etc., which are particularly abundantly contained as impurities, form chloro complex salts in chlorides and are incompletely reactive with strongly acidic sulfonic acid type cation exchangers, but are weak bases. Therefore, it is easy to form a stable bond with a weakly acidic carboxylic acid type cation exchanger, and a salt can be quantitatively formed even with ions initially present in the state of a chloro complex. As the carboxylic acid type cation exchanger, the extractant is suitable for this purpose because the extractant has a larger capacity for holding the metal and the selectivity with the platinum group is higher than that of the ion exchange resin. Industrially produced products include Versatic Acid-10 (VA-10, Shell Chemical Co., Ltd., trade name), naphthenic acid, etc., and petroleum-based solvents are used to reduce the viscosity. Good phase separation is achieved when diluted. In the carboxylic acid type extractant, hydrogen ions are released into the liquid simultaneously with the progress of the reaction. Therefore, it is necessary to raise the pH with an alkali or the like. However, if the pH is too high, the carboxylic acid becomes an alkali salt. In order to dissolve in the aqueous phase, it is desirable to maintain the pH in the range of 4-7.
[0009]
In the crystallization process of chloro complex salt, the hardly soluble salt of hexachlororhodium (III) acid, which is the chlorine complex salt of rhodium coordinated with the most chlorine, is precipitated to separate it from impurities that could not be separated in the above process. . As the cation source, volatile and decomposable ions having a large cation radius and difficult to remain in the subsequent dry hydrogen reduction process are suitable, and ammonium salts and polyethylene polyamines can be used. In view of the low solubility and easy industrial availability, ethylenediamine is suitable.
[0010]
Finally, the obtained crystals can be reduced in a hydrogen stream to remove volatile chlorides and obtain metal rhodium with very low impurities.
[0011]
【Example】
Next, examples of the present invention will be described.
Example
(1) Rh 75.4 g / l, pt 2.81 g / l, Pd 0.18 g / l, Fe 0.0012 g / l, Cu 0.05 g / l, Pb 0.11 g / l, Ni 0.03 g / l 2230 ml of an aqueous solution containing 1 and 5.5 mol / l of HCl was concentrated to 1460 ml and mixed with tributyl phosphate at a phase ratio of O / A = 1 / l for 10 minutes. As a result of analyzing the extraction residual liquid, it was lowered to Pt 0.09 g / l and Pd 0.004 g / l.
[0012]
(2) Mixing the tributyl phosphate extraction liquid with 50 V / V% VA-10 Cleansol G (Nippon Petroleum Corporation, trade name) so that the phase ratio is O / A = 1 / l. Extraction was performed with NaHCO 3 such that the pH of the aqueous phase was 5.9. As a result of analyzing the extracted residual liquid, the base metal ions were reduced to Cu <0.001 g / l, Ni 0.001 g / l, Fe <0.001 g / l, and Pb <0.003 g / l.
[0013]
(3) To the extraction residual liquid of VA-10, 1560 ml of 6N HCl was added, and then ethylenediamine was added until the pH of the liquid became 0 while maintaining the liquid temperature at 18 ° C. The obtained crystal was maintained at 450 ° C. for 1 hour in a hydrogen stream. The quality of each element in the obtained rhodium is Pt 36 ppm, Pd 14 ppm, Fe <1 ppm, Cu <1 ppm, Pb <10 ppm, Ni 0.4 ppm, and the weight of Rh is 145.9 g. The yield based on the liquid was 86.8%.
[0014]
【The invention's effect】
The present invention relates to a platinum group impurity that does not completely form a chloro complex in the stock solution, or a cationic base metal that coexists as a chloro complex in which chlorine is highly coordinated and is difficult to separate with a cation exchange resin. Even if impurities coexist, it can be selectively and quantitatively separated from rhodium, and further, rhodium can be recovered in a high yield.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03426695A JP3835487B2 (en) | 1995-01-31 | 1995-01-31 | Rhodium purification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03426695A JP3835487B2 (en) | 1995-01-31 | 1995-01-31 | Rhodium purification method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08209257A JPH08209257A (en) | 1996-08-13 |
JP3835487B2 true JP3835487B2 (en) | 2006-10-18 |
Family
ID=12409375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03426695A Expired - Lifetime JP3835487B2 (en) | 1995-01-31 | 1995-01-31 | Rhodium purification method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3835487B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1318441B1 (en) * | 2000-03-31 | 2003-08-25 | Chimet S P A | PROCEDURE FOR THE RECOVERY AND REFINING OF THE RHODIUM. |
-
1995
- 1995-01-31 JP JP03426695A patent/JP3835487B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08209257A (en) | 1996-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3971843A (en) | Process for liquid/liquid extraction of gallium | |
JP2013508566A (en) | Precious metal recovery method | |
RU2104734C1 (en) | Method of isolating metal from its organic complex | |
US4012481A (en) | Process for the separation of platinum group metals | |
JPS63502890A (en) | Production of ultra-pure silver nitrate | |
JPS5928614B2 (en) | Method for separating and purifying platinum and/or palladium | |
CN113755702A (en) | Rhodium-iridium separation refining process | |
JP3369855B2 (en) | Method for producing high purity nickel aqueous solution | |
JP3835487B2 (en) | Rhodium purification method | |
JP3975901B2 (en) | Iridium separation and purification method | |
JPH06157008A (en) | Method for recovering iodine from waste liquor containing iodine and/or inorganic iodine compound | |
JP2001020021A (en) | Manufacture of high purity cobalt | |
JP2774329B2 (en) | Method for producing ruthenium nitrate solution | |
FR2619098A1 (en) | PROCESS FOR PURIFYING CONCENTRATED SALMONES OF ALKALI HALIDES | |
JP3674732B2 (en) | Method for purifying zirconium and / or hafnium compounds | |
JP5000678B2 (en) | Purification method of iridium aqueous solution | |
JP3496319B2 (en) | Separation and recovery of platinum group elements | |
JP3493778B2 (en) | Rhodium purification and recovery method | |
JPH08209260A (en) | Purifying method of phodium | |
JPS6111891B2 (en) | ||
JP4422835B2 (en) | Ruthenium purification method | |
EP0353728A2 (en) | Improved process of extraction of amino acids from aqueous solutions thereof | |
RU2125477C1 (en) | Method for isolation of metal from its organic complexes | |
JPH08209256A (en) | Purifying method of phodium | |
JP3273851B2 (en) | Method for producing ruthenium nitrate solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041018 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051207 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060705 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060718 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100804 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100804 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110804 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110804 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120804 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120804 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130804 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |