JP3834575B2 - Steel pipe pile driving method - Google Patents
Steel pipe pile driving method Download PDFInfo
- Publication number
- JP3834575B2 JP3834575B2 JP2003412933A JP2003412933A JP3834575B2 JP 3834575 B2 JP3834575 B2 JP 3834575B2 JP 2003412933 A JP2003412933 A JP 2003412933A JP 2003412933 A JP2003412933 A JP 2003412933A JP 3834575 B2 JP3834575 B2 JP 3834575B2
- Authority
- JP
- Japan
- Prior art keywords
- pile
- tip
- lower pile
- soil
- steel pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Piles And Underground Anchors (AREA)
- Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
Description
本発明は、土木建築物の基礎となる地盤部分の補強を行うために使用するに鋼管杭の打ち込み工法に関する。 The present invention relates to a method for driving a steel pipe pile to be used to reinforce a ground portion that is the foundation of a civil engineering building.
従来の鋼管杭としては、先端部分にスクリュー羽根を設け、回転圧入を容易にしたものが知られている。このようなスクリュー鋼管杭を使用する場合、杭の製作コストが高くなり、運搬や保管するときにスクリュー部分が邪魔になり、圧入時に鋼管先端周辺の地層を荒らすから直立性が保持しにくく、杭の周辺地盤が沈下し易いという欠点があった。 As a conventional steel pipe pile, what provided the screw blade | wing at the front-end | tip part and made rotation press fit easy is known. When such a screw steel pipe pile is used, the manufacturing cost of the pile becomes high, the screw part becomes an obstacle during transportation and storage, and the stratum around the tip of the steel pipe is roughened during press fitting, so it is difficult to maintain uprightness. There was a disadvantage that the surrounding ground of the island was easy to sink.
そこで、初期沈下が起こり難く土中支持力に安定性があるとともに、硬質地盤への貫入が容易であり、しかも運搬・保管・現場加工が容易であり、さらに鋼管先端周辺の地盤を荒らさず直立性を保持し易いばかりか圧密効果や精度が得やすい鍔付拡底鋼管杭が開発された。この鋼管杭は、中空筒状に形成された本体の先端部の内部に底蓋を固着し、この底蓋に外部に突出する刃を固着した鋼管杭の先端側を土中に回転圧入した後に本体の先端側に拡底スクリュー筒を嵌め込んで溶着して成るものである(例えば、特許文献1参照)。
従来の鋼管杭では、拡底スクリュー筒よりも上方の杭周面の土壌は、このスクリュー筒によりもみほぐされているため、上方の杭周面の摩擦支持力を一定以上確保するのがむずかしかった。 In the conventional steel pipe pile, since the soil on the pile peripheral surface above the expanded screw cylinder is loosened by the screw cylinder, it is difficult to ensure the friction support force of the upper pile peripheral surface over a certain level.
そこで、本発明は、全体としての鋼管杭の先端支持力及び周面摩擦支持力を向上させ、杭の直立性を高めた鋼管杭の打ち込み工法を提供することを目的とする。 Then, an object of this invention is to provide the driving method of the steel pipe pile which improved the front end support force and peripheral surface friction support force of the steel pipe pile as a whole, and improved the uprightness of the pile .
上述の目的を達成するため、本発明は、下杭に上杭を接続する中空筒状の鋼管杭の打ち込み工法であって、下杭を(a)中空筒状の下杭本体の先端部の内部に固着された底蓋、(b)この底蓋に固着された外部へ突出する刃、(c)前記下杭本体の先端側に挿入され固着された円筒部、(d)この円筒部の外周のほぼ中間の高さ位置にかつ水平方向にほぼ円板状に形成された鍔部、(e)この鍔部の一部を半径方向に切断しその切断部分を互いに逆方向に30°〜45°の角度だけ傾斜するように折曲させて形成された傾斜羽根から構成し、両端開口の中空筒状であって、前記下杭に嵌め込まれる上杭を(f)上杭本体の先端側周面に水平方向に延びて固着されたフランジ部、(g)このフランジ部下面に設けたV字形の傾斜突起から構成し、この下杭を回転させながら土中に圧入し、所定の深度に下杭の先端部分が到達したら回転動作を停止し、その後圧入のみで下杭を土中にさらに圧入し、次いで前記上杭を下杭に嵌め込んで上杭のみを回転させながら土中に圧入し、所定の深度に上杭の先端部分が到達したら回転動作を停止し、その後圧入することで下杭の鍔部でもみほぐされた土壌を上杭のフランジ部で圧密するものである。 In order to achieve the above-described object, the present invention provides a hollow tubular steel pipe pile driving method for connecting an upper pile to a lower pile, wherein the lower pile is (a) the tip of the hollow tubular lower pile body. A bottom cover fixed to the inside, (b) a blade protruding to the outside fixed to the bottom cover, (c) a cylindrical portion inserted and fixed to the distal end side of the lower pile body, and (d) the cylindrical portion (E) a part of this collar part cut in a radial direction at a substantially intermediate height position on the outer periphery and in a horizontal direction, and the cut parts in mutually opposite directions 30 ° to It is composed of inclined blades formed by bending so as to be inclined at an angle of 45 °, and has a hollow cylindrical shape with open ends, and an upper pile fitted into the lower pile is (f) the tip side of the upper pile body A flange portion that extends in a horizontal direction and is fixed to the peripheral surface; (g) a V-shaped inclined protrusion provided on the lower surface of the flange portion ; Pressed into the soil while rotating the lower pile, the tip portion of the Shitakui a predetermined depth stops rotation when it reaches further pressed down piles in the soil subsequently pressed only, then the upper pile It fits into the lower pile and presses it into the soil while rotating only the upper pile. When the tip of the upper pile reaches the specified depth, it stops rotating, and then press-fitted to unravel the lower pile. The soil is consolidated with the flange of the upper pile.
本発明によれば、下杭に上杭を接続する中空筒状の鋼管杭の打ち込み工法であって、下杭を(a)中空筒状の下杭本体の先端部の内部に固着された底蓋、(b)この底蓋に固着された外部へ突出する刃、(c)前記下杭本体の先端側に挿入され固着された円筒部、(d)この円筒部の外周のほぼ中間の高さ位置にかつ水平方向にほぼ円板状に形成された鍔部、(e)この鍔部の一部を半径方向に切断しその切断部分を互いに逆方向に30°〜45°の角度だけ傾斜するように折曲させて形成された傾斜羽根から構成し、両端開口の中空筒状であって、前記下杭に嵌め込まれる上杭を(f)上杭本体の先端側周面に水平方向に延びて固着されたフランジ部、(g)このフランジ部下面に設けたV字形の傾斜突起から構成し、この下杭を回転させながら土中に圧入し、所定の深度に下杭の先端部分が到達したら回転動作を停止し、その後圧入のみで下杭を土中にさらに圧入し、前記上杭を下杭に嵌め込んで上杭のみを回転させながら土中に圧入し、所定の深度に上杭の先端部分が到達したら回転動作を停止し、その後圧入することで下杭の鍔部でもみほぐされた土壌を上杭のフランジ部で圧密するので、下杭を硬質地盤まで確実に圧入でき、その先端支持力を高くすることができるのみならず、上杭の圧入により下杭の周面の土壌が圧密されて杭全体の支持力も向上する。 According to the present invention, a hollow tubular steel pipe pile driving method for connecting an upper pile to a lower pile, wherein the lower pile is fixed to the inside of the tip of the hollow tubular lower pile body (a). A lid, (b) a blade protruding to the outside fixed to the bottom lid, (c) a cylindrical portion inserted and fixed to the distal end side of the lower pile body, and (d) a height approximately in the middle of the outer periphery of the cylindrical portion. (E) A part of this collar part is cut in the radial direction, and the cut parts are inclined in the opposite directions by an angle of 30 ° to 45 °. It is composed of inclined blades formed by bending so as to form a hollow cylindrical shape with open ends, and an upper pile fitted into the lower pile is horizontally oriented on the front peripheral surface of the upper pile body (f) (G) It is composed of a V-shaped inclined protrusion provided on the lower surface of the flange portion, and the lower pile is not rotated. Above was pressed into reluctant soil, the tip portion of the Shitakui a predetermined depth stops rotation when it reaches, then further pressed down piles in the ground press-fitting only, the on piles fitted underneath Pile When only the pile is rotated, it is pressed into the soil, and when the tip of the upper pile reaches the specified depth, the rotation is stopped, and then the soil that has been unraveled at the buttocks of the lower pile is pressed into the flange of the upper pile. As a result, the lower pile can be pressed firmly to the hard ground and the tip support force can be increased. Supporting ability is also improved.
以下に、この発明の好適な実施の形態を図面を参照にして説明する。 In the following, preferred embodiments of the present invention will be described with reference to the drawings.
図1に示す実施形態において、例えば構造用炭素鋼等の材料で形成された一定強度を有する中空円筒状の下杭1と上杭2とを接続した鋼管杭を土中に打ち込んで用いている。下杭1は下杭本体10の先端部の内部に底蓋11を固着し、この底蓋11に固着された刃12が外部へ突出している。この下杭1の先端側に挿入固着される円筒部21と、この円筒部21の外周のほぼ中間の高さ位置にかつ水平方向にほぼ円板状に形成された鍔部22と、この鍔部22の一部を半径方向に切断しその切断部分を互いに逆方向に30°〜45°の角度だけ傾斜するように折曲させて形成された傾斜羽根23とからスクリュー筒20を形成してある。この下杭1の前記鍔部22の直径Wは円筒部21の外径Dの2.5〜3倍に形成するとともに、本体10の先端部から鍔部22までの長さLは、本体10の外径寸法dのほぼ2倍に形成し、かつ互いに逆方向に傾斜する傾斜羽根23の開き角度α(図2参照)は60°前後に形成してある。 In the embodiment shown in FIG. 1, for example, a steel pipe pile formed by connecting a hollow cylindrical lower pile 1 and an upper pile 2 having a certain strength and made of a material such as structural carbon steel is driven into the soil. . The lower pile 1 has a bottom lid 11 fixed inside the tip of the lower pile body 10, and a blade 12 fixed to the bottom lid 11 protrudes to the outside. A cylindrical portion 21 inserted and fixed to the tip side of the lower pile 1, a flange portion 22 formed in a substantially disc shape in the horizontal direction at a substantially intermediate height position on the outer periphery of the cylindrical portion 21, A screw cylinder 20 is formed from an inclined blade 23 formed by cutting a part of the portion 22 in the radial direction and bending the cut portions in an opposite direction to be inclined at an angle of 30 ° to 45 °. is there. The diameter W of the flange portion 22 of the lower pile 1 is formed 2.5 to 3 times the outer diameter D of the cylindrical portion 21, and the length L from the distal end portion of the main body 10 to the flange portion 22 is The opening angle α (see FIG. 2) of the inclined blades 23 which are formed to be approximately twice the outer diameter dimension d and are inclined in opposite directions to each other is formed around 60 °.
両端開口の中空筒状の上杭2は、上杭本体3の先端側に水平方向に延びて固着されたフランジ部4を設け、このフランジ部4の下面にV字形の傾斜突起5を設けてある。この上杭2のフランジ部4の外径WBと下杭1の鍔部22の外径(直径W)とは、同一またはフランジ部4の外径を大きく形成してある(WB≧W)。上杭2の中空筒内の上部に突条(ストッパ)6を設け、この突条(ストッパ)6に下杭1の上端を係合させ、上杭2と下杭1との接続を図るようにしてある。或いは、両杭を打ち込んだ後、この個所を溶接してもよい。また、下杭1の上端側内周面には、回転伝達用の突起7を設けてあり、上杭2の上端側外周にも回転伝達用の突起8を設けてある。なお、符号Aで示す土壌層は、下杭1の先端が強固に支持される硬質地を示し、Bで示す土壌層は、下杭1のスクリュー筒20と上杭2のフランジ部4との間の土壌層を示し、Cで示す土壌層はフランジ部4より上の土壌層を示すものである。 A hollow cylindrical upper pile 2 having openings at both ends is provided with a flange portion 4 extending in the horizontal direction and fixed to the tip side of the upper pile body 3, and a V-shaped inclined protrusion 5 is provided on the lower surface of the flange portion 4. is there. The outer diameter WB of the flange portion 4 of the upper pile 2 and the outer diameter (diameter W) of the flange portion 22 of the lower pile 1 are the same or larger than the outer diameter of the flange portion 4 (WB ≧ W). A protrusion (stopper) 6 is provided on the upper portion of the upper pile 2 in the hollow cylinder, and the upper end of the lower pile 1 is engaged with the protrusion (stopper) 6 so that the upper pile 2 and the lower pile 1 are connected. It is. Or after driving both piles, you may weld this part. Further, a rotation transmission protrusion 7 is provided on the upper end side inner peripheral surface of the lower pile 1, and a rotation transmission protrusion 8 is also provided on the upper end side outer periphery of the upper pile 2. In addition, the soil layer shown by the code | symbol A shows the hard ground where the front-end | tip of the lower pile 1 is supported firmly, and the soil layer shown by B is the screw cylinder 20 of the lower pile 1, and the flange part 4 of the upper pile 2. A soil layer indicated by C indicates a soil layer above the flange portion 4.
図2は、下杭1の詳細を示すものであり、スクリュー筒20の鍔部22と傾斜羽根23との関係を詳細に示している。このスクリュー筒20の外径Dの大きさとしては、下杭本体10の外径寸法dの1.3〜2倍程度の範囲が好ましい。また、このスクリュー筒20を形成する材料としては高張力鋼などが使用に好適である。さらに、このスクリュー筒20の取付位置は、下杭本体10の先端部から鍔部22までの長さLが、この下杭本体10の外径寸法dのほぼ2倍の距離となるところに設けてある。 FIG. 2 shows the details of the lower pile 1 and shows the relationship between the flange 22 of the screw cylinder 20 and the inclined blades 23 in detail. The size of the outer diameter D of the screw cylinder 20 is preferably in the range of about 1.3 to 2 times the outer diameter d of the lower pile body 10. Further, as a material for forming the screw cylinder 20, high-tensile steel or the like is suitable for use. Furthermore, the mounting position of the screw cylinder 20 is provided where the length L from the distal end portion of the lower pile body 10 to the flange portion 22 is a distance approximately twice the outer diameter dimension d of the lower pile body 10. It is.
図3はスクリュー筒20の平面図であり、円筒部21は、ストレートな筒状(外径寸法D)を有しており、外径Dとほぼ同一かそれよりやや短い長さSに形成されている(図4参照)。なお、この長さSはスクリュー筒20の直進性と強度を確保するのに充分であればよく、特に同等であることは必要ではない。鍔部22は、直径W(外径寸法Dの2.5〜3倍程度)の大きさに形成されたほぼ円板状を有するものから成り、円筒部21のほぼ中間に取付け(溶着)てある。傾斜羽根23は、鍔部22の一部(この実施形態では1個所)に形成されており、鍔部22を半径方向に切断する(これによって土が逃げる隙間も同時に形成される)とともに、その切断部分を互いに逆方向に角度θだけ傾斜させてある(ほぼ45°に傾斜させてあるが、30°〜45°の範囲が好ましい)ように折り曲げてある。また、この傾斜羽根23の開き角度αの範囲は、図4に示すように60°前後であり、この傾斜羽根23の一方(先端側に向かうもの)には、ほぼ等脚台形状の補強板24が鍔部22との間に溶着されている。この図3及び図4に示すようなスクリュー筒20は、予め下杭本体10に固着しておいてもよいが、保管や運搬の際に邪魔にならないように、下杭本体10とは別個に保管、運搬し、杭打ち込み現場においてこのスクリュー筒20を所定位置の下杭本体10に溶着すればよい。 FIG. 3 is a plan view of the screw cylinder 20, and the cylindrical portion 21 has a straight cylinder shape (outer diameter D) and is formed to have a length S that is substantially the same as or slightly shorter than the outer diameter D. (See FIG. 4). Note that the length S only needs to be sufficient to ensure the straightness and strength of the screw cylinder 20, and it is not necessary to be particularly equal. The flange portion 22 is formed of a substantially disk shape having a diameter W (about 2.5 to 3 times the outer diameter D), and is attached (welded) to substantially the middle of the cylindrical portion 21. is there. The inclined blades 23 are formed in a part of the ridge part 22 (one place in this embodiment), and cut the ridge part 22 in the radial direction (this also forms a gap through which soil escapes), The cut portions are bent so as to be inclined in the opposite directions by an angle θ (approximately 45 °, preferably in the range of 30 ° to 45 °). Further, the range of the opening angle α of the inclined blades 23 is around 60 ° as shown in FIG. 4, and a substantially isosceles trapezoidal reinforcing plate is provided on one side of the inclined blades 23 (toward the tip side). 24 is welded between the flange portion 22. The screw cylinder 20 as shown in FIGS. 3 and 4 may be fixed to the lower pile body 10 in advance, but separately from the lower pile body 10 so as not to disturb the storage and transportation. The screw cylinder 20 may be stored, transported, and welded to the lower pile body 10 at a predetermined position at the pile driving site.
図5は、下杭本体10の先端部分の底蓋11と刃12の関係を示す拡大断面図であり、底蓋11が下杭本体10の内径d1の半分の深さ(d1/2)に設けてあり、また刃12の高さは内径寸法d1と同一になっている。 FIG. 5 is an enlarged cross-sectional view showing the relationship between the bottom lid 11 and the blade 12 at the tip portion of the lower pile body 10, where the bottom lid 11 has a half depth (d 1/2) of the inner diameter d 1 of the lower pile body 10. ) the is provided with, also the height of the blade 12 is in the same inner diameter d 1.
図6及び図7は、上杭2の側面図並びに平面図であり、この上杭2の全長は下杭1の全長の10%〜50%であることが望ましい。フランジ部4の外径WBは、鍔部22の外径Wと同一若しくは若干大きく形成してある。また、傾斜突起5は左右一対設けたが、フランジ部4を周方向に4等分した各半径位置に4個所設けてもよいし、それ以上であってもよい。また、上杭本体3の内径dは、下杭本体10の外径dと同一寸法としてあるが、上杭本体3の内径を下杭本体10の外径よりも若干大きくしてもよい。そして、図1に示すように上杭2を下杭1に被せるように嵌め込んで接続し、下杭1が上杭2内に挿入される。この下杭1の上杭2内への挿入される部分は、上杭2の2/3以上を占めているようにすることが望ましい。 6 and 7 are a side view and a plan view of the upper pile 2, and the total length of the upper pile 2 is preferably 10% to 50% of the total length of the lower pile 1. The outer diameter WB of the flange portion 4 is formed to be the same as or slightly larger than the outer diameter W of the flange portion 22. In addition, although a pair of left and right inclined protrusions 5 are provided, four or more may be provided at each radial position obtained by dividing the flange portion 4 into four equal parts in the circumferential direction. The inner diameter d of the upper pile body 3 is the same as the outer diameter d of the lower pile body 10, but the inner diameter of the upper pile body 3 may be slightly larger than the outer diameter of the lower pile body 10. Then, as shown in FIG. 1, the upper pile 2 is fitted and connected so as to cover the lower pile 1, and the lower pile 1 is inserted into the upper pile 2. It is desirable that the portion inserted into the upper pile 2 of the lower pile 1 occupies 2/3 or more of the upper pile 2.
図8は、回転圧入装置の概略を示す図であり、ゴムクローラ走行式のものであって、図示しないアウトリガーで地盤にしっかりと直立固定されたリーダ100(起伏自在)の両側に油圧オーガ機構101と回転用油圧モータ102付の圧入機103とを備えている。符号104はオーガを示し、符号105はチャックを示す。この装置においては油圧オーガ101を作動させ、オーガ104を回転させながら土中にねじ込み、所定の深さまで押し込んでリーダ100を含む装置全体をしっかりと固定する。次いで、回転用油圧モータ102付の圧入機103を作動させ、オーガ104により反力をとりつつ下杭1を土中へ圧入していく。この下杭1を圧入する場合には、表面側の土質が柔らかい土壌、すなわち軟質地層を下杭1の先端が進行するときには圧入動作だけでよい。この下杭1の先端が軟質地層を通過し、中間質土壌を進行するときに圧入動作だけでは圧入できなくなった地点から、回転用油圧モータ102を作動し、この油圧モータ102で下杭1を回転させながら圧入していく。下杭1の先端部分が中間質地層を通過して硬質土壌に到達したならば、再度圧入動作のみによって下杭1を最終的に圧入する。最後に油圧オーガ機構101を逆回転させてオーガ104を地中から引き上げるが、このオーガ104のねじ込み動作及び引き上げ動作は油圧オーガ機構101の回転動作とともに、この油圧オーガ機構101自体をリーダ100に設けたチェーン(図示せず)によって強制的に上下方向に移動させており、これによってオーガ104のねじ込み動作及び引き上げ動作が確実に行われるようになっている。 FIG. 8 is a diagram schematically showing a rotary press-fitting device, which is of a rubber crawler traveling type, and has hydraulic auger mechanisms 101 on both sides of a leader 100 (raising and lowering) firmly fixed upright on the ground by an outrigger (not shown). And a press-fitting machine 103 with a rotating hydraulic motor 102. Reference numeral 104 denotes an auger, and reference numeral 105 denotes a chuck. In this apparatus, the hydraulic auger 101 is operated, the auger 104 is rotated and screwed into the soil, and pushed to a predetermined depth to firmly fix the entire apparatus including the reader 100. Subsequently, the press-fitting machine 103 with the rotation hydraulic motor 102 is operated, and the lower pile 1 is press-fitted into the soil while taking a reaction force by the auger 104. In the case where the lower pile 1 is press-fitted, only the press-fitting operation is required when the front side of the lower pile 1 advances through the soft soil, that is, the soft soil layer. When the tip of the lower pile 1 passes through the soft stratum and advances through the intermediate soil, the rotary hydraulic motor 102 is operated from the point where the press-fitting operation cannot be performed only by the press-fitting operation. Press-fit while rotating. If the tip of the lower pile 1 passes through the intermediate stratum and reaches the hard soil, the lower pile 1 is finally press-fitted only by the press-fitting operation again. Finally, the hydraulic auger mechanism 101 is reversely rotated to pull up the auger 104 from the ground. The auger 104 is screwed and lifted together with the rotation of the hydraulic auger mechanism 101 and the hydraulic auger mechanism 101 itself is provided in the reader 100. The auger 104 is forcibly moved up and down by a chain (not shown) so that the auger 104 can be screwed and lifted reliably.
図9は下杭1を硬質地層すなわち先端を強固に支持する地層まで打ち込んだ状態を示し、この状態で下杭1を圧入した時点で、圧入機103側に付設したロードセンサ等の荷重計測装置によって土壌の支持力を自動的に計測するようにしてある。この図9に示すスクリュー筒20より上方の一定部分は、上方排出土層Xを示し、さらにその上にもみほぐし層Yが存在する。このもみほぐし層Yによる下杭1の周辺の摩擦力が充分でないときには、砂、砕石、固化性材或いはこれらの混合材を追加投入して充填材層Y´とすることができる。これにより下杭1の摩擦支持力を高めることができる。図10における符号9は充填材を充填する際に下杭1の中空内部に入らないように設けた蓋を示す。 FIG. 9 shows a state in which the lower pile 1 is driven into a hard formation, that is, a formation that strongly supports the tip. When the lower pile 1 is press-fitted in this state, a load measuring device such as a load sensor attached to the presser 103 side. Is used to automatically measure the supporting capacity of the soil. A certain portion above the screw cylinder 20 shown in FIG. 9 shows an upper discharge soil layer X, and further, there is a loosening layer Y thereon. When the frictional force around the lower pile 1 due to the moistening layer Y is not sufficient, sand, crushed stone, solidifying material, or a mixture thereof can be additionally added to form the filler layer Y ′. Thereby, the frictional support force of the lower pile 1 can be increased. The code | symbol 9 in FIG. 10 shows the lid | cover provided so that it might not enter into the hollow inside of the lower pile 1 when filling with a filler.
図11は、図10の状態から蓋9を取り外して上杭2を下杭1の上端側に嵌め込んだ状態(下杭1が上杭2の中空内部へ挿入)を示す。 FIG. 11 shows a state where the lid 9 is removed from the state of FIG. 10 and the upper pile 2 is fitted to the upper end side of the lower pile 1 (the lower pile 1 is inserted into the hollow interior of the upper pile 2).
図11のように上杭2を下杭1に嵌め込み、この上杭2を圧入機103のチャック105に装着し、回転させながら土中に圧入していく。このときフランジ部4は、もみほぐし層Y或いは充填材層Y´を圧密していきながら下降する。下杭1は硬質地層にその先端部が支持され、それ以上の圧入は殆んどない。下杭1が上杭2の内部の一定個所(ストッパ6に当るまで)まで挿入され、上杭2が所定の先端支持力を得たならば回転を停止し、上杭2の上方から圧力を加えてさらに圧入する。 As shown in FIG. 11, the upper pile 2 is fitted into the lower pile 1, and the upper pile 2 is mounted on the chuck 105 of the press-fitting machine 103 and press-fitted into the soil while rotating. At this time, the flange portion 4 descends while consolidating the kneading layer Y or the filler layer Y ′. The tip of the lower pile 1 is supported by a hard stratum, and there is almost no further press-fitting. If the lower pile 1 is inserted to a certain point inside the upper pile 2 (until it hits the stopper 6) and the upper pile 2 has obtained a predetermined tip support force, the rotation is stopped and pressure is applied from above the upper pile 2. In addition, press fit.
図13は、図12における作業終了後、上杭2と下杭1とを溶着する状態を示す。溶着個所は、ストッパ6と下杭1の上端部である。この個所を溶着せず、上杭2が下杭1に対して上下動可能としておくことで、地震に対応させることもできる。このようにして上杭2を土中に回転させて圧入した後に、回転を停止して上杭2の上端に所定の圧力をかける。このときに、上杭2の周面摩擦支持力を圧入機103側に付設したロードセンサなどの荷重計測装置によって計測する。その後、上下杭を溶着した後に改めて加圧して上下杭の複合した杭支持力を測定する。 FIG. 13 shows a state in which the upper pile 2 and the lower pile 1 are welded after the operation in FIG. The weld location is the upper end of the stopper 6 and the lower pile 1. The upper pile 2 can be moved up and down with respect to the lower pile 1 without welding this portion, so that it is possible to cope with an earthquake. Thus, after rotating the upper pile 2 in the soil and press-fitting it, the rotation is stopped and a predetermined pressure is applied to the upper end of the upper pile 2. At this time, the circumferential frictional support force of the upper pile 2 is measured by a load measuring device such as a load sensor attached to the presser 103 side. Then, after welding the upper and lower piles, press again to measure the combined pile bearing capacity of the upper and lower piles.
既製杭の支持力測定方法においては、事前に採取した地質調査データに基づく算定式によって算出するか、杭打ち施工後、規定の養生期間を経てから杭頭部に荷重を加えて支持力測定を行うのが一般的である。しかし、通常は算定式に必要な地質調査点は、施工予定地内の数地点に限られていて、各杭打ち設点を網羅していない。このため支持地層が傾斜していたり、複雑に入り組んでいる場合などにおいては、基礎全体に対する支持力の均等配分が不確実になる可能性が残る。また載荷重支持力測定は、コスト及び工期面から代表的打設杭に対してのみ実行されるのが一般的であり、精査されているとはいい難く、杭先端支持力、杭周面摩擦支持力の分別も成されていない。そこで当該支持力測定方法は、下杭1の打設時の最終加圧時に先端支持力を測定し、次に上杭2の打設時の最終加圧時に杭周面摩擦支持力を測定する。次に上下杭を固着した後に改めて加圧して複合した杭支持力を測定する。以上の測定により3種類の支持力の値が明確に判別され、以後長期における地盤の変化、変動(例えば、地層の断層変化、水位の変動、地震等による液状化)等による対応に適切に利用でき、また、この測定方法(施工機重量と地中反力獲得装置による荷重を載荷して測定値を記録する)は、打設と同時に短時間に実施可能であるから全打設杭に対して実施可能であり、コスト、工期への影響は僅少である。 In the method of measuring the bearing capacity of ready-made piles, calculate the bearing capacity by using a calculation formula based on pre-collected geological survey data, or after applying piles and applying a load to the pile head after a specified curing period. It is common to do it. However, the geological survey points necessary for the calculation formula are usually limited to a few points in the planned construction site and do not cover each pile driving point. For this reason, in the case where the supporting stratum is inclined or complicated, there is a possibility that the uniform distribution of the supporting force to the entire foundation becomes uncertain. In addition, the load bearing capacity measurement is generally performed only on typical piles in terms of cost and construction period, and it is difficult to say that they have been scrutinized. There is no support capacity separation. Therefore, the supporting force measuring method measures the tip supporting force at the time of final pressurization when the lower pile 1 is placed, and then measures the pile peripheral surface friction supporting force at the time of final pressurization when the upper pile 2 is placed. . Next, after fixing the upper and lower piles, press again to measure the combined pile bearing capacity. Based on the above measurements, three types of bearing capacity values can be clearly identified and used appropriately for long-term ground changes and changes (eg, fault changes in the formation, fluctuations in water level, liquefaction due to earthquakes, etc.). This measurement method (loading the construction machine weight and the load from the underground reaction force acquisition device and recording the measured value) can be carried out in a short time at the same time as placing, so for all the piles placed The impact on cost and construction period is negligible.
上述したように下杭1を土中に圧入する方法として、下杭本体10の外径dよりも外径寸法Wが大幅に大きな鍔部22を持ったスクリュー筒20を回転させながら地中へ圧入していくから、図1において符号Aで示す本体10よりも大きく下方領域にわたり圧密作用(圧入時に土壌が硬く圧縮された状態)が発生し、そのうえ先端部に発生する所謂モンロー効果によってその圧密な土壌の領域が鍔部22の下方に大きく広がって膨らんでいるから杭先端支持力が一層増大する。また、この鍔部22は従来のようなスクリュー鋼管杭とは異なり、水平方向に形成してあるから、有効面積が大きく確保できるばかりか、捩れ変位が著しく発生しにくい。しかもこの実施形態では、刃12とともに傾斜羽根23を設けてあり、回転圧入する際に傾斜羽根23の間から土を効率よく上部へ排出できるので、この排出した土が本体10の周辺に充填され、下杭1の鉛直安定性(杭周囲面の空洞化防止)をもたらす。さらに、この傾斜羽根23により下杭本体10の先端部分がセンタードリル効果によって下孔を精度よく掘削していくことと、先端部が鍔部22より先方へL長突出している(図2参照)ので、直進性も飛躍的に高まる。 As described above, as a method of press-fitting the lower pile 1 into the soil, the screw cylinder 20 having the flange portion 22 whose outer diameter dimension W is significantly larger than the outer diameter d of the lower pile body 10 is rotated into the ground. Since the press-fitting is performed, a compacting action (a state in which the soil is hard and compressed at the time of the press-fitting) is generated over the lower region larger than the main body 10 indicated by reference symbol A in FIG. Since the region of the soil that is not so wide spreads and expands below the heel part 22, the pile tip support force is further increased. Further, unlike the conventional screw steel pipe pile, the flange portion 22 is formed in the horizontal direction, so that not only the effective area can be secured, but also the torsional displacement hardly occurs. Moreover, in this embodiment, the inclined blades 23 are provided together with the blades 12, and the soil can be efficiently discharged to the upper part from between the inclined blades 23 during the rotary press-fitting, so that the discharged soil is filled around the main body 10. The vertical stability of the lower pile 1 (preventing the hollowing of the surrounding surface of the pile) is brought about. Further, the inclined blade 23 allows the tip portion of the lower pile body 10 to excavate the prepared hole with high accuracy by the center drill effect, and the tip portion protrudes from the flange portion 22 by an L length (see FIG. 2). As a result, straight-line performance also increases dramatically.
また、このようにして下杭1を土中に打ち込んだ後には、上述したように上杭2を下杭1に接続して(嵌め込んで)土中に打ち込むので、鍔部22の上面とフランジ部4の下面との間の杭周囲排出土を挟むように圧密することでこの圧密土壌が杭周より外周方向へ押し出され、周辺土層と密着していくから、杭周囲土質の分布情報を把握していれば効果的に杭周面の圧密が促進され、確実に杭周面摩擦支持力を獲得することができる。さらに鍔部22により上方へ排出された掘削もみほぐし土をフランジ部4で回転圧密して生じた空間へ砕石、砂及びこれらの混合骨材を充填してさらにこれを圧密することにより、高摩擦支持力が得られるようにしてもよく、地層の圧密効果より地盤全体の強化も達成される。 In addition, after driving the lower pile 1 into the soil in this way, the upper pile 2 is connected to (inserted into) the lower pile 1 and driven into the soil as described above. Since this compacted soil is pushed from the circumference of the pile toward the outer periphery by being compacted so that the soil discharged around the pile between the lower surface of the flange 4 is sandwiched, the distribution information of soil texture around the pile If it grasps | ascertains, consolidation of a pile peripheral surface is accelerated | stimulated effectively and a pile peripheral surface frictional support force can be acquired reliably. Further, the excavated crushed soil discharged upward by the ridge portion 22 is filled with crushed stone, sand and mixed aggregates into a space formed by rotating and consolidating the flange portion 4 and further compacted, thereby achieving high friction. Support force may be obtained, and strengthening of the entire ground is also achieved by the consolidation effect of the formation.
1 下杭
2 上杭
3 上杭本体
4 フランジ部
5 傾斜突起
10 下杭本体
11 底蓋
12 刃
21 円筒部
22 鍔部
23 傾斜羽根
DESCRIPTION OF SYMBOLS 1 Lower pile 2 Upper pile 3 Upper pile main body 4 Flange part 5 Inclination protrusion 10 Lower pile main body 11 Bottom cover 12 Blade 21 Cylindrical part 22 Gutter part 23 Inclined blade
Claims (3)
下杭を次の(a)〜(e)から構成し、
(a)中空筒状の下杭本体の先端部の内部に固着された底蓋、
(b)この底蓋に固着された外部へ突出する刃、
(c)前記下杭本体の先端側に挿入され固着された円筒部、
(d)この円筒部の外周のほぼ中間の高さ位置にかつ水平方向にほぼ円板状に形成された鍔部、
(e)この鍔部の一部を半径方向に切断しその切断部分を互いに逆方向に30°〜45°の角度だけ傾斜するように折曲させて形成された傾斜羽根、
両端開口の中空筒状であって、前記下杭に嵌め込まれる上杭を次の(f)〜(g)から構成し、
(f)上杭本体の先端側周面に水平方向に延びて固着されたフランジ部、
(g)このフランジ部下面に設けたV字形の傾斜突起、
この下杭を回転させながら土中に圧入し、所定の深度に下杭の先端部分が到達したら回転動作を停止し、その後圧入のみで下杭を土中にさらに圧入し、
次いで前記上杭を下杭に嵌め込んで上杭のみを回転させながら土中に圧入し、所定の深度に上杭の先端部分が到達したら回転動作を停止し、その後圧入することで下杭の鍔部でもみほぐされた土壌を上杭のフランジ部で圧密することを特徴とする鋼管杭の打ち込み工法。 A hollow tubular steel pipe pile driving method that connects the upper pile to the lower pile,
The lower pile is composed of the following (a) to (e),
(A) a bottom lid fixed to the inside of the tip of the hollow cylindrical lower pile body,
(B) an outwardly protruding blade fixed to the bottom lid;
(C) a cylindrical portion inserted into and fixed to the tip side of the lower pile body,
(D) a collar portion formed in a substantially disc shape in the horizontal direction at a substantially middle height position on the outer periphery of the cylindrical portion;
(E) An inclined blade formed by cutting a part of the collar part in the radial direction and bending the cut parts so as to be inclined in the opposite directions by an angle of 30 ° to 45 °,
It is a hollow cylindrical shape with open ends, and the upper pile fitted into the lower pile is composed of the following (f) to (g),
(F) A flange portion that extends horizontally and is fixed to the peripheral surface on the front end side of the upper pile body,
(G) A V-shaped inclined protrusion provided on the lower surface of the flange,
When this lower pile is rotated, it is pressed into the soil, and when the tip of the lower pile reaches a predetermined depth, the rotation operation is stopped, and then the lower pile is further pressed into the soil only by pressing.
Then pressed only on piles in the ground while rotating by fitting the on pile under pile tip portion of Uekui a predetermined depth stops rotation when it reaches, under piles by then pressed A steel pipe pile driving method characterized in that the soil loosened in the buttock is consolidated by the flange of the upper pile.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003412933A JP3834575B2 (en) | 2003-12-11 | 2003-12-11 | Steel pipe pile driving method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003412933A JP3834575B2 (en) | 2003-12-11 | 2003-12-11 | Steel pipe pile driving method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005171621A JP2005171621A (en) | 2005-06-30 |
JP3834575B2 true JP3834575B2 (en) | 2006-10-18 |
Family
ID=34733209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003412933A Expired - Fee Related JP3834575B2 (en) | 2003-12-11 | 2003-12-11 | Steel pipe pile driving method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3834575B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104746476A (en) * | 2013-12-30 | 2015-07-01 | 上海中交水运设计研究有限公司 | Wharf additionally provided with batter pile on rear edge and method for reinforcing wharf rear edge by applying batter pile |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3135220B2 (en) * | 1997-02-12 | 2001-02-13 | ポーター製造株式会社 | Flanged expanded steel pipe pile |
JP3937382B2 (en) * | 2000-04-10 | 2007-06-27 | Jfeスチール株式会社 | Construction method of screwed steel pipe pile |
JP2002061176A (en) * | 2000-08-22 | 2002-02-28 | Nippon Steel Corp | Base isolation pile and its work execution method |
JP2002235325A (en) * | 2001-02-07 | 2002-08-23 | Norio Moriya | Foundation pile |
JP4027702B2 (en) * | 2002-03-29 | 2007-12-26 | 大和ハウス工業株式会社 | Pile construction method |
-
2003
- 2003-12-11 JP JP2003412933A patent/JP3834575B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005171621A (en) | 2005-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Whitaker | The design of piled foundations: structures and solid body mechanics | |
US5707180A (en) | Method and apparatus for forming piles in-situ | |
US7326004B2 (en) | Apparatus for providing a rammed aggregate pier | |
US8221034B2 (en) | Methods of providing a support column | |
CA2730150C (en) | Shielded tamper and method of use for making aggregate columns | |
JP4958028B2 (en) | Construction method of pile hole rooting layer, foundation pile construction management device, foundation pile construction management method | |
US9243379B2 (en) | Method of providing a support column | |
Sliwinski et al. | PAPER 15 The integrity and performance of bored piles | |
KR101919607B1 (en) | Ground reinforcement method using jacked steel pipe pile | |
US20210317708A1 (en) | Well pad construction system and methods | |
JP3834575B2 (en) | Steel pipe pile driving method | |
JP3361879B2 (en) | Construction method of pile with drain layer and construction device used for it | |
JP4195707B2 (en) | Screw shaft used to form improved body | |
Gunnink et al. | Capacity of drilled shafts in Burlington limestone | |
JP3144767B2 (en) | Underground pile forming method and apparatus | |
AU763775B2 (en) | Method and apparatus for forming piles in place | |
JP4363597B2 (en) | Solid foundation method | |
JP5499335B2 (en) | Steel pipe pile and support structure and construction method using the steel pipe pile | |
JP2773034B2 (en) | Rotary press-fitting method for steel pipe piles | |
JP2958426B2 (en) | Differential settlement correction method | |
JP2008075374A (en) | Mat foundation construction method | |
Dang | A Study of Single Stone Column Bearing Capacity from a Full-Scale Plate Load Test in Long Son Project | |
KR900005913B1 (en) | Base stake inflated in bump state at lower end there of and its construction | |
JP2927612B2 (en) | Foundation method | |
Allen et al. | Use of stone columns to support I-90 cut and cover tunnel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060303 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060308 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060703 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060724 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090728 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120728 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120728 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150728 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |