JP3834143B2 - Method and apparatus for electrolytic purification of gold - Google Patents

Method and apparatus for electrolytic purification of gold Download PDF

Info

Publication number
JP3834143B2
JP3834143B2 JP02566398A JP2566398A JP3834143B2 JP 3834143 B2 JP3834143 B2 JP 3834143B2 JP 02566398 A JP02566398 A JP 02566398A JP 2566398 A JP2566398 A JP 2566398A JP 3834143 B2 JP3834143 B2 JP 3834143B2
Authority
JP
Japan
Prior art keywords
electrolytic
gold
electrolytic solution
solution
oxidizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02566398A
Other languages
Japanese (ja)
Other versions
JPH11222693A (en
Inventor
昇 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP02566398A priority Critical patent/JP3834143B2/en
Publication of JPH11222693A publication Critical patent/JPH11222693A/en
Application granted granted Critical
Publication of JP3834143B2 publication Critical patent/JP3834143B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は金の電解精製方法及び金の電解精製装置に係り、特に、金の電解精製の際に電解液に接している装置や配管などの設備表面に電解析出によらないで付着する、いわゆるプレーティング(化学大辞典8巻、73ページ、共立出版参照)の低減を図った金の電解精製方法及びその装置に関する。
【0002】
【従来の技術】
金の電解精製は、銀電解製錬の際の陽極泥を処理して得た粗金を板に鋳造して陽極とし、電解液は塩化金酸液を用いて陰極板上に純金を得る方法であり、いわゆるウォールウィル法(化学大辞典2巻、926ページ、共立出版参照)に基づいた電解条件で行われている。
【0003】
図2に示す金の電解精製装置により、従来の金の電解精製方法を述べる。電解槽1には塩化金酸液からなる電解液2が入っており、純チタン製の陰極3と濾布5で包んだ粗金からなる陽極4とが電解槽1内に懸垂されている。粗金の陽極4には交直電源6が接続されており、電解液2中に不純物を含む金を溶解させ、陰極3に金を析出させる。
【0004】
電解槽1の電解液2は、配管10より一部抜き出されて循環槽(タンク)7に入る。循環槽7内の電解液2は、ヒーター9によって加熱される。ヒー夕ー9は温度計8によって制御され、循環槽7の電解液2は一定の温度に保持される。循環槽7の一定温度の電解液2は、配管11のポンプ12で抜き出され、電解槽1に戻される。
【0005】
また、電解中、プレーティングによって電解液2中の金濃度が減少するので、適宜電解液組成を確認し、新たに塩化金酸液を加える。このようにして、陰極3に電解析出した金は、溶解して鋳型に鋳造され精製金として販売される。
【0006】
【発明が解決しようとする課題】
ところが、上記従来の金の電解精製方法にあっては、電解槽1、循環槽7、配管10、11などの電解液2に接する電解設備表面に、プレーティングによって付着する金の付着量が多かった。付着した金は除去しなければならないが、除去作業の間、通電を停止しなければならず、電解設備の稼働率が低かった。
【0007】
また、通常、粗金陽極中の不純物は電解液中に蓄積されて製品の純度を下げることになるため、連続的に除去するための浄液工程(浄液設備)が必要である。浄液設備がない場合、微量の不純物が電解析出する金と共析し製品の品質が安定しない。しかし、プレーティング現象に対処できる浄液設備となると、設備額やランニングコストが高くなってしまう。
【0008】
また、電解液2には塩酸を使用しており、遊離塩酸濃度が100g/リットルと高く、更に、電解液2の温度が60℃と高温のため、塩酸ミストが発生する状況にあった。このため、電解設備周辺で塩酸臭があり、腐食や作業環境上の充分な対処が必要であった。
【0009】
本発明は上記従来技術の問題点を解消すべくなされたものであり、プレーティングを低減することができ、電解精製の稼働率を向上できると共に浄液設備を簡素化でき、また、作業環境を改善することができる金の電解精製方法及びその装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記の目的を達成するために、本発明に係る金の電解精製方法は、粗金を陽極として電解液中に金を溶解させ、陰極に高純度の金を析出させる金の電解精製方法であって、前記電解液に酸化剤が添加されているものである。
【0011】
本発明者は、プレーティング現象に対処するため、種々検討したところ以下のことが判明した。即ち、電解中では原料である粗金の陽極から金が溶解する際、AuCl4 -、AuCl2 -の2種類の形態で電解液に溶出する。このうちAuCl2 - は下記の平衡反応式
3AuCl2 -⇔2Au+AuCl4 -+2Cl-
の右向きの反応(不均化反応)によりAuが析出し、プレーティングが起きるものと推定される。上記化学式によれば、右向きの反応を抑えることにより、プレーティングの防止が可能となる。
【0012】
そこで、本発明者は、プレーティングを抑制するため、電解液温度を下げ、電解液に種々の薬液を添加し電解を行った。その結果、過酸化水素水等の酸化剤が有効であることが判明した。すなわち、電解液の酸化還元電位は、薬液(酸化剤)を添加しない従来の塩化金酸液では500mVであり、過酸化水素水等の酸化剤を加えることにより電解液の酸化還元電位があがり、上記化学式のAuCl2 -の分解反応が抑制されることがわかった。つまり、電解液に酸化剤を添加することにより、最適な酸化還元電位を選択することで、上記化学式の反応を抑制でき、プレーティングによる電解液接触面への金付着量が大幅に減少する。
【0013】
上記発明において、酸化剤としては、過酸化水素水、次亜塩素酸塩、次亜塩素酸、塩素ガスから選ばれる1種以上のものが好ましい。これらのうち、1種だけで用いた場合、過酸化水素水が最も効果があったが、1種以上を組み合わせて用いるようにしてもよい。
【0014】
また、上記発明において、電解液の温度は、20℃〜55℃に保持するのが好ましく、より好ましくは、35℃〜45℃に保持するのがよい。
【0015】
電解液の温度を20℃以上としたのは、20℃以下では電解効率が低くなってしまい、また、電解液の温度を55℃以下としたのは、電解効率からいえば高いほうがよいが、過酸化水素水等の酸化剤の自己分解が起こらず、かつ塩酸のミストが多量に発生しないようにするためである。
【0016】
また、電解液の温度を、電解槽に電解液を循環供給する循環槽側の、温度が調節された電解液の循環供給によって保持するようにすると、複数の電解槽で電解精製を行った場合にも、電解槽ごとの電解液の温度のバラツキを抑えることができる。
【0017】
また、上記発明において、酸化剤の添加により、電解液の酸化還元電位を1000mV〜1400mVに保持するのが好ましく、より好ましくは、1100mV〜1300mVに保持するのがよい。
【0018】
電解液の酸化還元電位を1000mV以上としたのは、1000mV以上では、Auが、Au0よりもAu+の状態が安定となり、プレーティングを抑制できるからである。
また、電解液の酸化還元電位を1400mV以下としたのは、酸化剤の安定性を保持するためである。(酸化還元電位が800mV〜1700mVであれば、H22等は酸化剤としての作用を呈するが、1400mVを越えると、例えば、H22ではH2ガスの発生が起こるなど、酸化剤の安定性が低下する。)
【0019】
電解液の酸化還元電位を、電解槽に電解液を循環供給する循環槽側の、酸化剤の添加により酸化還元電位が調節された電解液の循環供給によって保持するようにすると、複数の電解槽で電解精製を行った場合にも、電解槽ごとの電解液の酸化還元電位のバラツキを抑えることができる。
【0020】
また、本発明に係る金の電解精製装置は、粗金を陽極として電解液中に金を溶解させ、陰極に高純度の金を析出させる金の電解精製装置であって、前記電解液の酸化還元電位を所定範囲に保持するために、電解液に添加される酸化剤の供給量を制御する制御手段を備えたものである。
【0021】
【発明の実施の形態】
以下に、本発明の実施の形態を図面を用いて説明する。図1は本発明の金の電解精製装置の一実施形態を示す概略構成図である。
【0022】
図1において1は電解槽であり、電解槽1には塩化金酸液に酸化剤を添加した電解液2が入っている。また、電解槽1には純チタン製の陰極3と、濾布5で包んだ粗金からなる陽極4とが懸垂されている。粗金の陽極4には交直電源6が接続されており、電解液2中に不純物を含む金を溶解させ、陰極3に金を析出させるようになっている。
【0023】
電解槽1には、所定の温度・酸化還元電位に調節された電解液2を電解槽1に循環供給するための循環槽(タンク)7が隣接して設けられている。循環槽7の容量は150リットル、材質はポリプロピレンからなる。電解槽1の電解液2は、配管10より一部抜き出されて循環槽7に入るが、配管10には、電解液2中に存在する不純物を除去するための浄液設備17が設けられている。
【0024】
循環槽7の電解液2の温度が所定範囲に保たれるように、電解液2の温度を温度計8で計測し、その計測値に基づいて制御装置16がヒーター9の加熱制御を行うようになっている。電解液2の温度は、上限を55℃、下限を20℃とする。電解効率からいえば高いほうがよいが、酸化剤としての過酸化水素水の自己分解が起こらない温度でかつ塩酸のミストが多量に発生しない温度とするためである。
【0025】
また、循環槽7には酸化剤供給系14から酸化剤として過酸化水素水(H22)が適宜供給され、循環槽7の電解液2の酸化還元電位が所定範囲に保持される。循環槽7には電位計13が設けられ、その測定信号によって制御装置16が、酸化剤供給系14のバルブ15の開閉ないし開度を制御し、あるいは、酸化剤供給系14のポンプ(図示せず)を駆動制御する構成となっている。電解液2の電位は、1000mVから1400mVの範囲で制御する。好ましくは1100mVから1300mVの範囲が良く、通常1200mVで行う。過酸化水素水としては、工業薬品や試薬品が使用できる。濃度は特に定める必要はないが、濃度は高い方で良く、35%程度のものを用いる。過酸化水素水は連続的でも間欠的でも添加できるが、連続的に添加する方が良い。
【0026】
循環槽7の一定温度・一定電位の電解液2は配管11のポンプ12で抜き出され、電解槽1に戻される。なお、電解中、プレーティングによって電解液2中の金濃度が減少した場合などには、適宜電解液組成を確認し、新たに塩化金酸液を加える。
【0027】
このように、電解液2に過酸化水素水を添加して電解液2の電位を上げることにより、プレーティング反応を抑制でき、電解槽1などの電解精製装置の表面に付着する金の量を大幅に減少させることができた。このため、付着した金の除去作業がほとんど不要となり、電解精製装置の稼働率を向上できた。さらに、特にプレーティング対策を施すことなく浄液設備17を設けることができ、設備コストやランニングコストを削減できると共に、浄液設備17を稼働させることで、不純物であるパラジウムの含有率を大幅に下げることができ、製品の品質を安定化できた。また、電解液温度を下げたことにより、塩酸ミストの発生量も大幅に減少し、腐食の防止、作業環境の改善がなされた。
【0028】
【実施例】
次に、本発明の金の精製方法の具体的な実施例を述べる。
【0029】
(実施例)
図1の電解精製装置を用い、表1に示した電解条件のもとで電解精製を行った。塩化金酸液の組成(g/リットル)は、Auが100、F‐HClが100、Agが10、Pdが20、Ptが20であった。電解液温度は循環槽で40℃となるように、循環槽で加熱した。電解液の循環量は2リットル/分であった。また、循環槽に濃度35重量%の過酸化水素水を10ないし100cc/分の割合で添加し、循環槽内に装入した電位計により、電解液の電位が1200mVで一定に保持されるように、過酸化水素水の添加量を調節した。
【0030】
【表1】

Figure 0003834143
この結果、電解精製装置の電解液接触面に付着する金の量は大幅に減少し、かつ電解精製装置の稼働率も向上した。さらに浄液設備を稼働させることで不純物であるパラジウムの含有率を大幅に下げることができ、製品の品質が安定した。また、電解液温度を40℃までに下げたことにより、塩酸ミストの発生量も大幅に減少し、作業環境も良好となった。これらの結果を表2に示す。
【0031】
【表2】
Figure 0003834143
(比較例)図1の電解精製装置を用い、表1に示した電解条件のもとで電解精製を行った。上記実施例と同じ組成の塩化金酸液を用い、塩化金酸液の電解液には酸化剤は添加せず、電解液温度を60℃に一定に保った。この結果を表2に示す。
【0032】
【発明の効果】
以上詳述したように、本発明によれば、電解液に酸化剤を添加して電解液の酸化還元電位を上げたため、プレーティングを生じる化学反応が抑制され、プレーティングによる電解液との接触面への金付着量を大幅に減少できる。
【0033】
このため、付着した金の除去作業がほとんど不要となり、電解精製装置の稼働率を向上でき、生産性を上げることができる。さらに、プレーティング対策を施すことなく浄液設備を設けることができ、設備コストやランニングコストを削減できると共に、浄液設備を稼働させることで、不純物であるパラジウム等の含有率を大幅に低下でき、精製金の品質を安定化できる。また、電解液温度を下げたことにより、塩酸ミストの発生量も大幅に減少でき、腐食の防止、作業環境の改善が図れる。
【図面の簡単な説明】
【図1】本発明に係る金の電解精製装置の一実施形態を示す概略構成図である。
【図2】従来の金の電解精製装置の概略構成図である。
【符号の説明】
1 電解槽
2 電解液
3 陰極
4 陽極
7 循環タンク
8 温度計
9 ヒーター
13 電位計
14 酸化剤供給系
15 バルブ
16 制御装置
17 浄液装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gold electrolytic purification method and a gold electrolytic purification apparatus, and in particular, adheres to an equipment surface such as an apparatus or piping in contact with an electrolytic solution at the time of gold electrolytic purification without depending on electrolytic deposition. The present invention relates to a method for electrorefining gold and a device therefor which reduce so-called plating (see Chemical Dictionary, Vol. 8, page 73, Kyoritsu Publishing).
[0002]
[Prior art]
Electrorefining of gold is a method of casting crude gold obtained by treating anode mud during silver electrolytic smelting on a plate as an anode, and obtaining pure gold on the cathode plate using a chloroauric acid solution as the electrolyte It is carried out under electrolytic conditions based on the so-called Wall Will method (see Chemical Dictionary 2, Vol. 926, Kyoritsu Publishing).
[0003]
A conventional gold electrolytic purification method will be described using the gold electrolytic purification apparatus shown in FIG. The electrolytic cell 1 contains an electrolytic solution 2 made of a chloroauric acid solution, and a cathode 3 made of pure titanium and an anode 4 made of coarse gold wrapped with a filter cloth 5 are suspended in the electrolytic cell 1. An AC / DC power supply 6 is connected to the crude gold anode 4, gold containing impurities is dissolved in the electrolyte 2, and gold is deposited on the cathode 3.
[0004]
The electrolytic solution 2 in the electrolytic cell 1 is partially extracted from the pipe 10 and enters a circulation tank (tank) 7. The electrolytic solution 2 in the circulation tank 7 is heated by the heater 9. The heater 9 is controlled by the thermometer 8, and the electrolytic solution 2 in the circulation tank 7 is maintained at a constant temperature. The electrolytic solution 2 having a constant temperature in the circulation tank 7 is extracted by the pump 12 of the pipe 11 and returned to the electrolytic tank 1.
[0005]
Further, since the gold concentration in the electrolytic solution 2 is reduced by plating during electrolysis, the composition of the electrolytic solution is appropriately confirmed, and a chloroauric acid solution is newly added. In this way, the gold electrodeposited on the cathode 3 is melted and cast into a mold and sold as refined gold.
[0006]
[Problems to be solved by the invention]
However, in the conventional gold electrolytic refining method, the amount of gold deposited by plating on the surface of the electrolytic equipment in contact with the electrolytic solution 2, such as the electrolytic cell 1, the circulation tank 7, the pipes 10 and 11, is large. It was. The attached gold had to be removed, but the current supply had to be stopped during the removal work, and the operating rate of the electrolysis equipment was low.
[0007]
In addition, since impurities in the crude gold anode are usually accumulated in the electrolytic solution to lower the purity of the product, a liquid purification process (liquid purification equipment) for continuous removal is required. In the absence of liquid purification equipment, a small amount of impurities co-deposit with gold that is electrolytically deposited, resulting in unstable product quality. However, if the liquid purification equipment can cope with the plating phenomenon, the equipment amount and running cost are increased.
[0008]
Moreover, hydrochloric acid was used for the electrolytic solution 2, the concentration of free hydrochloric acid was as high as 100 g / liter, and the temperature of the electrolytic solution 2 was as high as 60 ° C., so that hydrochloric acid mist was generated. For this reason, there was a smell of hydrochloric acid around the electrolysis equipment, and it was necessary to take sufficient measures against corrosion and working environment.
[0009]
The present invention has been made to solve the above-mentioned problems of the prior art, can reduce plating, improve the operation rate of electrolytic refining, simplify the liquid purification equipment, and reduce the work environment. It is an object of the present invention to provide a method and an apparatus for electrolytically purifying gold that can be improved.
[0010]
[Means for Solving the Problems]
To achieve the above object, the gold electrolytic purification method according to the present invention is a gold electrolytic purification method in which gold is dissolved in an electrolytic solution using crude gold as an anode, and high-purity gold is deposited on the cathode. Thus, an oxidizing agent is added to the electrolytic solution.
[0011]
The present inventor has made various studies in order to deal with the plating phenomenon, and has found the following. That is, during electrolysis, when gold dissolves from the raw gold anode, which is a raw material, it elutes into the electrolytic solution in two forms of AuCl 4 and AuCl 2 . Among AuCl 2 - is equilibrium reaction formula 3AuCl 2 - ⇔2Au + AuCl 4 - + 2Cl -
It is presumed that Au precipitates due to a rightward reaction (disproportionation reaction) and plating occurs. According to the above chemical formula, plating can be prevented by suppressing the reaction directed to the right.
[0012]
Therefore, the present inventor conducted electrolysis by lowering the electrolyte temperature and adding various chemicals to the electrolyte in order to suppress plating. As a result, it was found that an oxidizing agent such as hydrogen peroxide solution is effective. That is, the oxidation-reduction potential of the electrolytic solution is 500 mV in the conventional chloroauric acid solution to which no chemical solution (oxidant) is added. It was found that the decomposition reaction of AuCl 2 − having the above chemical formula is suppressed. That is, by adding an oxidizing agent to the electrolytic solution, by selecting an optimal redox potential, the reaction of the above chemical formula can be suppressed, and the amount of gold deposited on the electrolytic solution contact surface by plating is greatly reduced.
[0013]
In the above invention, the oxidizing agent is preferably one or more selected from hydrogen peroxide, hypochlorite, hypochlorous acid, and chlorine gas. Of these, hydrogen peroxide solution was most effective when used alone, but one or more may be used in combination.
[0014]
Moreover, in the said invention, it is preferable to hold | maintain the temperature of electrolyte solution at 20 to 55 degreeC, More preferably, it is good to hold | maintain at 35 to 45 degreeC.
[0015]
The reason why the temperature of the electrolytic solution is 20 ° C. or higher is that the electrolytic efficiency is low at 20 ° C. or lower, and that the temperature of the electrolytic solution is 55 ° C. or lower is better from the viewpoint of electrolytic efficiency, This is to prevent the self-decomposition of an oxidizing agent such as hydrogen peroxide solution and a large amount of hydrochloric acid mist.
[0016]
In addition, when the temperature of the electrolytic solution is maintained by circulating the supply of the electrolytic solution whose temperature is adjusted on the circulating tank side that circulates and supplies the electrolytic solution to the electrolytic cell, the electrolytic purification is performed in a plurality of electrolytic cells. In addition, it is possible to suppress variations in the temperature of the electrolytic solution for each electrolytic cell.
[0017]
Moreover, in the said invention, it is preferable to hold | maintain the oxidation-reduction potential of electrolyte solution at 1000 mV-1400 mV by addition of an oxidizing agent, More preferably, it is good to hold | maintain at 1100 mV-1300 mV.
[0018]
The reason why the oxidation-reduction potential of the electrolytic solution is set to 1000 mV or more is that when 1000 mV or more, Au has a more stable state of Au + than Au 0 and plating can be suppressed.
The reason why the oxidation-reduction potential of the electrolytic solution is set to 1400 mV or less is to maintain the stability of the oxidizing agent. (If the oxidation-reduction potential is 800 mV to 1700 mV, H 2 0 2 or the like exhibits an action as an oxidizing agent, but if it exceeds 1400 mV, for example, H 2 0 2 generates H 2 gas. Stability is reduced.)
[0019]
By maintaining the oxidation-reduction potential of the electrolytic solution by circulating supply of the electrolytic solution whose oxidation-reduction potential is adjusted by the addition of an oxidizing agent on the circulation tank side that circulates and supplies the electrolytic solution to the electrolytic cell, a plurality of electrolytic cells Even when electrolytic purification is carried out in this manner, variation in the oxidation-reduction potential of the electrolytic solution for each electrolytic cell can be suppressed.
[0020]
The gold electrolytic purification apparatus according to the present invention is a gold electrolytic purification apparatus that dissolves gold in an electrolytic solution using crude gold as an anode, and deposits high-purity gold on the cathode, and oxidizes the electrolytic solution. In order to maintain the reduction potential within a predetermined range, a control means for controlling the supply amount of the oxidizing agent added to the electrolytic solution is provided.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an embodiment of the gold electrolytic purification apparatus of the present invention.
[0022]
In FIG. 1, 1 is an electrolytic cell. The electrolytic cell 1 contains an electrolytic solution 2 in which an oxidizing agent is added to a chloroauric acid solution. Further, a cathode 3 made of pure titanium and an anode 4 made of coarse gold wrapped with a filter cloth 5 are suspended in the electrolytic cell 1. An AC / DC power supply 6 is connected to the crude gold anode 4, and gold containing impurities is dissolved in the electrolyte 2, and gold is deposited on the cathode 3.
[0023]
The electrolytic cell 1 is provided with a circulation tank (tank) 7 for circulating and supplying the electrolytic solution 2 adjusted to a predetermined temperature and oxidation-reduction potential to the electrolytic cell 1. The capacity of the circulation tank 7 is 150 liters, and the material is made of polypropylene. The electrolytic solution 2 in the electrolytic cell 1 is partially extracted from the pipe 10 and enters the circulation tank 7. The pipe 10 is provided with a liquid purification equipment 17 for removing impurities present in the electrolytic solution 2. ing.
[0024]
The temperature of the electrolytic solution 2 is measured by the thermometer 8 so that the temperature of the electrolytic solution 2 in the circulation tank 7 is maintained within a predetermined range, and the control device 16 controls the heating of the heater 9 based on the measured value. It has become. The upper limit of the temperature of the electrolytic solution 2 is 55 ° C., and the lower limit is 20 ° C. The higher the electrolytic efficiency, the better. However, this is because the temperature is such that hydrogen peroxide water does not self-decompose as an oxidizing agent and does not generate a large amount of hydrochloric acid mist.
[0025]
Further, hydrogen peroxide water (H 2 O 2 ) is appropriately supplied as an oxidizing agent from the oxidizing agent supply system 14 to the circulation tank 7, and the oxidation-reduction potential of the electrolytic solution 2 in the circulation tank 7 is maintained within a predetermined range. An electrometer 13 is provided in the circulation tank 7, and a control device 16 controls the opening / closing or opening degree of the valve 15 of the oxidant supply system 14 according to the measurement signal, or a pump (not shown) of the oxidant supply system 14. 2). The potential of the electrolytic solution 2 is controlled in the range of 1000 mV to 1400 mV. The range of 1100 mV to 1300 mV is preferable, and the process is usually performed at 1200 mV. As the hydrogen peroxide solution, industrial chemicals and reagent products can be used. The concentration does not need to be set in particular, but the higher concentration may be used, and a concentration of about 35% is used. The hydrogen peroxide solution can be added continuously or intermittently, but it is better to add it continuously.
[0026]
The electrolytic solution 2 having a constant temperature and a constant potential in the circulation tank 7 is extracted by the pump 12 of the pipe 11 and returned to the electrolytic tank 1. In addition, when the gold concentration in the electrolytic solution 2 is reduced by plating during electrolysis, the composition of the electrolytic solution is confirmed as appropriate, and a chloroauric acid solution is newly added.
[0027]
Thus, by adding hydrogen peroxide water to the electrolytic solution 2 and increasing the potential of the electrolytic solution 2, the plating reaction can be suppressed, and the amount of gold attached to the surface of the electrolytic purification apparatus such as the electrolytic cell 1 can be reduced. It was possible to greatly reduce. For this reason, the removal operation | work of the gold | metal | money adhering became unnecessary and it was able to improve the operation rate of the electrolytic purification apparatus. Furthermore, it is possible to provide the liquid purification equipment 17 without taking any special measures against plating, and it is possible to reduce equipment costs and running costs. By operating the liquid purification equipment 17, the content of palladium as an impurity is greatly increased. The quality of the product could be stabilized. In addition, by reducing the electrolyte temperature, the amount of hydrochloric acid mist generated was greatly reduced, preventing corrosion and improving the work environment.
[0028]
【Example】
Next, specific examples of the gold purification method of the present invention will be described.
[0029]
(Example)
Using the electrolytic purification apparatus of FIG. 1, electrolytic purification was performed under the electrolytic conditions shown in Table 1. The composition (g / liter) of the chloroauric acid solution was 100 for Au, 100 for F-HCl, 10 for Ag, 20 for Pd, and 20 for Pt. The electrolyte solution was heated in the circulation tank so that the electrolyte temperature was 40 ° C. in the circulation tank. The circulation rate of the electrolytic solution was 2 liters / minute. In addition, a 35 wt% concentration of hydrogen peroxide water is added to the circulation tank at a rate of 10 to 100 cc / min, and the potential of the electrolyte is kept constant at 1200 mV by an electrometer installed in the circulation tank. The amount of hydrogen peroxide solution added was adjusted.
[0030]
[Table 1]
Figure 0003834143
As a result, the amount of gold adhering to the electrolytic solution contact surface of the electrolytic purification apparatus was greatly reduced, and the operating rate of the electrolytic purification apparatus was improved. Furthermore, by operating the liquid purification equipment, the content of palladium, which is an impurity, can be greatly reduced, and the product quality has been stabilized. Moreover, by reducing the electrolyte temperature to 40 ° C., the amount of hydrochloric acid mist generated was greatly reduced and the working environment was improved. These results are shown in Table 2.
[0031]
[Table 2]
Figure 0003834143
(Comparative example) Using the electrolytic purification apparatus of FIG. 1, electrolytic purification was performed under the electrolytic conditions shown in Table 1. A chloroauric acid solution having the same composition as in the above example was used, and no oxidant was added to the electrolyte solution of the chloroauric acid solution, and the electrolyte temperature was kept constant at 60 ° C. The results are shown in Table 2.
[0032]
【The invention's effect】
As described above in detail, according to the present invention, an oxidizing agent is added to the electrolytic solution to raise the oxidation-reduction potential of the electrolytic solution, so that a chemical reaction that causes plating is suppressed, and contact with the electrolytic solution by plating is achieved. The amount of gold deposited on the surface can be greatly reduced.
[0033]
For this reason, the removal operation | work of the gold | metal | money adhering becomes almost unnecessary, can improve the operation rate of an electrolytic refining apparatus, and can raise productivity. Furthermore, liquid purification equipment can be provided without taking plating measures, and equipment costs and running costs can be reduced. By operating the liquid purification equipment, the content of impurities such as palladium can be greatly reduced. , Can stabilize the quality of refined gold. In addition, by reducing the electrolyte temperature, the amount of hydrochloric acid mist generated can be greatly reduced, preventing corrosion and improving the working environment.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of a gold electrolytic purification apparatus according to the present invention.
FIG. 2 is a schematic configuration diagram of a conventional gold electrolytic purification apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrolysis tank 2 Electrolyte 3 Cathode 4 Anode 7 Circulation tank 8 Thermometer 9 Heater 13 Electrometer 14 Oxidant supply system 15 Valve 16 Controller 17 Cleaner

Claims (9)

電解槽中において、粗金を陽極として電解液中に金を溶解させ、陰極に高純度の金を析出させる金の電解精製方法において、In an electrolytic bath, in a method for electrolytically purifying gold, in which gold is dissolved in an electrolytic solution using crude gold as an anode, and high-purity gold is deposited on a cathode,
前記電解液に酸化剤が添加されており、  An oxidizing agent is added to the electrolytic solution,
前記電解液の酸化還元電位を、電解槽に電解液を循環供給する循環槽側の、前記酸化剤の添加により酸化還元電位が調節された電解液の循環供給によって保持することを特徴とする金の電解精製方法。  The gold-metal oxide is characterized in that the oxidation-reduction potential of the electrolytic solution is maintained by circulating supply of the electrolytic solution whose oxidation-reduction potential is adjusted by the addition of the oxidizing agent on the circulation tank side that circulates and supplies the electrolytic solution to the electrolytic tank. Electrolytic purification method.
前記電解液の温度を、電解槽に電解液を循環供給する循環槽側の、温度が調節された電解液の循環供給によって保持するようにしたことを特徴とする請求項1記載の金の電解精製方法。  2. The gold electrolysis according to claim 1, wherein the temperature of the electrolytic solution is maintained by circulating and supplying a temperature-controlled electrolytic solution on a circulating tank side that circulates and supplies the electrolytic solution to the electrolytic cell. Purification method. 前記電解槽が複数個設けられ、前記循環槽は、複数の電解槽へ電解液の循環供給を行うことを特徴とする請求項1または2記載の金の電解精製方法。The gold electrolytic purification method according to claim 1 or 2, wherein a plurality of the electrolytic baths are provided, and the circulating bath circulates and supplies the electrolytic solution to the plurality of electrolytic baths. 前記酸化剤が、過酸化水素水、次亜塩素酸塩、次亜塩素酸、塩素ガスから選ばれる1種以上であることを特徴とする請求項1から3のいずれか記載の金の電解精製方法。  4. The gold electrolytic purification according to claim 1, wherein the oxidizing agent is one or more selected from hydrogen peroxide, hypochlorite, hypochlorous acid, and chlorine gas. Method. 前記電解液の温度を、20℃〜55℃に保持することを特徴とする請求項1から4のいずれか記載の金の電解精製方法。  The gold electrolytic purification method according to any one of claims 1 to 4, wherein the temperature of the electrolytic solution is maintained at 20 ° C to 55 ° C. 前記電解液の温度を、35℃〜45℃に保持することを特徴とする請求項1から5のいずれか記載の金の電解精製方法。  The gold electrolytic purification method according to any one of claims 1 to 5, wherein the temperature of the electrolytic solution is maintained at 35 ° C to 45 ° C. 前記酸化剤の添加により、前記電解液の酸化還元電位を1000mV〜1400mVに保持することを特徴とする請求項1ないし6のいずれか一項記載の金の電解精製方法。  The gold electrolytic purification method according to any one of claims 1 to 6, wherein the oxidation-reduction potential of the electrolytic solution is maintained at 1000 mV to 1400 mV by the addition of the oxidizing agent. 前記酸化剤の添加により、前記電解液の酸化還元電位を1100mV〜1300mVに保持することを特徴とする請求項1から6のいずれか一項記載の金の電解精製方法。  The gold electrolytic purification method according to any one of claims 1 to 6, wherein the oxidation-reduction potential of the electrolytic solution is maintained at 1100 mV to 1300 mV by the addition of the oxidizing agent. 粗金を陽極として電解液中に金を溶解させ、陰極に高純度の金を析出させる金の電解精製装置であって、A gold electrolytic purification apparatus that dissolves gold in an electrolytic solution using crude gold as an anode and deposits high-purity gold on a cathode,
電解液に添加される酸化剤の供給量と、電解液の液温とを制御する制御手段を備えた循環槽と、電解槽とを有し、  A circulation tank provided with a control means for controlling the supply amount of the oxidant added to the electrolytic solution and the liquid temperature of the electrolytic solution, and an electrolytic tank;
循環槽から電解槽へ、電解液の循環供給をおこなうことを特徴とする金の電解精製装置。  An electrorefining apparatus for gold, which circulates and supplies an electrolytic solution from a circulation tank to an electrolytic tank.
JP02566398A 1998-02-06 1998-02-06 Method and apparatus for electrolytic purification of gold Expired - Fee Related JP3834143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02566398A JP3834143B2 (en) 1998-02-06 1998-02-06 Method and apparatus for electrolytic purification of gold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02566398A JP3834143B2 (en) 1998-02-06 1998-02-06 Method and apparatus for electrolytic purification of gold

Publications (2)

Publication Number Publication Date
JPH11222693A JPH11222693A (en) 1999-08-17
JP3834143B2 true JP3834143B2 (en) 2006-10-18

Family

ID=12172046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02566398A Expired - Fee Related JP3834143B2 (en) 1998-02-06 1998-02-06 Method and apparatus for electrolytic purification of gold

Country Status (1)

Country Link
JP (1) JP3834143B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4628033B2 (en) * 2004-07-29 2011-02-09 アサヒプリテック株式会社 Method for recovering Au from an aqueous solution containing cyanide
CN103590071A (en) * 2013-11-01 2014-02-19 白银有色集团股份有限公司 Method for enhancing gold precipitation grade in gold electrorefining process

Also Published As

Publication number Publication date
JPH11222693A (en) 1999-08-17

Similar Documents

Publication Publication Date Title
JP5125278B2 (en) Method of electrolytic oxidation of etching waste liquid
JPH10317154A (en) Method for reclaiming solution for tin plating and apparatus therefor
KR100256895B1 (en) Method for regenerating etchant
JPH0780466A (en) Method and device for regenerating aqueous solution containing metal ion and sulfuric acid
JP2021523298A (en) Improvement of copper electrorefining
US4435258A (en) Method and apparatus for the recovery of palladium from spent electroless catalytic baths
US6827832B2 (en) Electrochemical cell and process for reducing the amount of organic contaminants in metal plating baths
JP5669995B1 (en) Method and apparatus for processing Au-containing iodine-based etching solution
JP3834143B2 (en) Method and apparatus for electrolytic purification of gold
JP2005187865A (en) Method and apparatus for recovering copper from copper etching waste solution by electrolysis
JP2005298870A (en) Method for recovering metal indium by electrowinning
JP3243929B2 (en) Adjustment method of copper ion concentration of copper removal electrolytic solution
JP2006241568A (en) Electrowinning method for iron from acid chloride aqueous solution
JP4787951B2 (en) Method for electrolytic purification of silver
JP4038253B2 (en) Electrolyzer for production of acidic water and alkaline water
JP2997110B2 (en) Etching solution treatment method
JPH01139789A (en) Production of high purity electrolytic copper having low silver content
WO2022038817A1 (en) Concentration reduction-suppression method for persulfuric acid component in sulfuric acid solution containing persulfuric acid component, and concentration reduction-suppression device for persulfuric acid component
CN109312482B (en) Method for recovering Au and regenerating etching solution from iodine-based etching waste liquid
JP2594799B2 (en) Manufacturing method of low-purity high-purity electrolytic copper
JP3316606B2 (en) Tin plating apparatus and tin plating method
JP2570076B2 (en) Manufacturing method of high purity nickel
JPH0576555B2 (en)
JP4018831B2 (en) Etching waste treatment method
JP2988193B2 (en) Gold electrolysis method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees