JP3834042B2 - Air conditioning control method and air conditioning system - Google Patents

Air conditioning control method and air conditioning system Download PDF

Info

Publication number
JP3834042B2
JP3834042B2 JP2004121258A JP2004121258A JP3834042B2 JP 3834042 B2 JP3834042 B2 JP 3834042B2 JP 2004121258 A JP2004121258 A JP 2004121258A JP 2004121258 A JP2004121258 A JP 2004121258A JP 3834042 B2 JP3834042 B2 JP 3834042B2
Authority
JP
Japan
Prior art keywords
cold
hot water
control valve
proportional control
air conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004121258A
Other languages
Japanese (ja)
Other versions
JP2005300118A (en
Inventor
義勝 土田
典雄 葛岡
真実 加用
至正 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2004121258A priority Critical patent/JP3834042B2/en
Priority to CNB2005800019191A priority patent/CN100422652C/en
Priority to PCT/JP2005/007227 priority patent/WO2005100875A1/en
Publication of JP2005300118A publication Critical patent/JP2005300118A/en
Application granted granted Critical
Publication of JP3834042B2 publication Critical patent/JP3834042B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

本発明は、大温度差比例制御弁を用いた空調制御方法及び空調システムに関し、さらに詳しくは、大温度差比例制御弁の制御を室内温度制御から切り離して独立制御することで、大温度差比例制御弁の長所を損ねることなく空調制御・システムの汎用性を高める(特に、リニューアル時における空調機器更新の依存性をなくす)改良技術に関する。   The present invention relates to an air conditioning control method and an air conditioning system using a large temperature difference proportional control valve. More specifically, the present invention relates to a large temperature difference proportional control by controlling the large temperature difference proportional control valve separately from the room temperature control. The present invention relates to an improved technology for improving the versatility of air conditioning control / system without losing the advantages of control valves (in particular, eliminating the dependency of air conditioning equipment renewal during renewal).

従来、例えば水方式セントラル冷暖房システムの放熱端末機であるファンコイル装置においては、熱交換器に冷温水を供給循環させる際、ON/OFF制御方式の二方弁が一般的に用いられていた。このON/OFF制御方式の弁は、全開又は全閉の弁開度で動作されていた。   Conventionally, for example, in a fan coil device which is a heat radiating terminal of a water-type central air conditioning system, an ON / OFF control type two-way valve is generally used when supplying cold / hot water to a heat exchanger. This ON / OFF control type valve was operated with a fully open or fully closed valve opening.

ところが、このようなON/OFF制御方式の弁を用いた場合、冷温水は、その熱負荷に応じたキメ細かな流量制御(例えば冷温水のファンコイル装置からの出口温度を所定の温度にすること)が困難となる。冷房運転を例にとれば、往管温度の設定が7℃で、還管温度の設定が17℃であったとき、還管温度が12℃で戻り、かつ実際未だ冷房能力が要求されている場合などである。このような場合には、往管と還管とで所定の温度差が確保されず、冷熱が十分に利用されないにもかかわらず、結局、冷熱不足の状態に陥った。   However, when such an ON / OFF control type valve is used, the cool / warm water has a fine flow control according to the heat load (for example, the outlet temperature from the fan coil device of the cool / warm water is set to a predetermined temperature). It becomes difficult. Taking cooling operation as an example, when the setting of the outgoing pipe temperature is 7 ° C. and the setting of the return pipe temperature is 17 ° C., the return pipe temperature is returned at 12 ° C. and the cooling capacity is still required. Such as the case. In such a case, a predetermined temperature difference is not ensured between the outgoing pipe and the return pipe, and although the cold heat is not sufficiently utilized, the cold heat is finally insufficient.

また、往管と還管とでの大温度差が確保されないことは、配管のサイズダウンが行えず、イニシャルコストの増大を招くとともに、搬送動力の増大にもつながり、ランラングコストを増大させる不利があった。   In addition, the fact that a large temperature difference between the outgoing pipe and the return pipe is not ensured cannot reduce the size of the pipe, leading to an increase in initial cost, leading to an increase in conveyance power, and a disadvantage in increasing run-run cost. there were.

このような問題から、大温度差比例制御弁が開発され、熱負荷に応じた冷温水のキメ細かな流量制御が行われるに至っている。これまでの大温度差比例制御弁を用いた空調システムは、図4に示すように、立ち上がり時など、室内負荷の多い間は、送風ファン1がコントローラ5により「強」で運転される。室内負荷の大小は、例えばそのときの室内検知センサ3を介してコントローラ5により把握され、コントローラ5はその温度差に基づき送風ファン1へ制御信号を送出する。室内温度が設定温度に達すると、送風ファン1は、コントローラ5からの制御信号により、「中」あるいは「弱」での運転信号を自動で行う。   Due to these problems, a large temperature difference proportional control valve has been developed, and fine flow control of cold / hot water according to the heat load has been performed. In the conventional air conditioning system using the large temperature difference proportional control valve, as shown in FIG. 4, the blower fan 1 is operated “strongly” by the controller 5 while the indoor load is large, such as at the time of startup. The magnitude of the indoor load is grasped by, for example, the controller 5 via the indoor detection sensor 3 at that time, and the controller 5 sends a control signal to the blower fan 1 based on the temperature difference. When the room temperature reaches the set temperature, the blower fan 1 automatically performs an operation signal of “medium” or “weak” by a control signal from the controller 5.

室内温度が設定温度に達した後、送風ファン1の送風量が減少されると、冷温水コイル7を通過する空気量が減少する。一方、冷温水コイル7に供給される冷温水量が一定であると、熱交換率が低下し、冷温水コイル7からは十分に熱交換されていない冷温水が戻されようとする。このとき、冷温水還管に取り付けられた出口温度検知用センサ11が冷温水コイル7から戻される冷温水の温度を検知し、この温度と入口温度との温度差が少ない場合には、コントローラ5が未だ十分な熱交換がなされていないと判断して大温度差比例制御弁13に信号を送ることにより、大温度差比例制御弁13の弁開度を小さくする。これにより、未だ使いきっていない冷暖房能力を有した冷温水は、冷温水コイル7に長い時間滞留し、送風空気と十分に熱交換されることになる。   After the room temperature reaches the set temperature, the amount of air passing through the cold / hot water coil 7 decreases when the amount of air blown by the blower fan 1 is reduced. On the other hand, if the amount of cold / hot water supplied to the cold / hot water coil 7 is constant, the heat exchange rate decreases, and the cold / hot water that is not sufficiently heat-exchanged tends to be returned from the cold / hot water coil 7. At this time, the outlet temperature detection sensor 11 attached to the cold / hot water return pipe detects the temperature of the cold / hot water returned from the cold / hot water coil 7, and if the temperature difference between this temperature and the inlet temperature is small, the controller 5 However, it is determined that sufficient heat exchange has not yet been performed, and a signal is sent to the large temperature difference proportional control valve 13 to reduce the valve opening of the large temperature difference proportional control valve 13. Thereby, the cold / hot water having the cooling / heating capacity that has not been used yet stays in the cold / hot water coil 7 for a long time, and is sufficiently heat-exchanged with the blown air.

ここで、図4に示した空調システムにおける動作の手順を図5を参照してより具体的に説明する。空調運転がONされると(st1)、空調機及びファンコイル装置が所定時間(一般的に3分程度)をかけて強制立ち上げされる(st3)。次いで、還管の温度差が設定値となるように、還温度制御が開始(ON)される(st5)。この還温度制御では、還管の温度差が設定値となっているか否かが判断され、還管の温度差が設定値となっていない場合には、上記コントローラ5を介し室内検知センサ3による大温度差比例制御弁13の比例制御が行われる(st7)。そして、比例制御の結果、還管の温度差が設定値となったなら、大温度差比例制御弁13の弁開度を減じる(st9)。空調機のOFF信号が入力されなければ(st11)、再び還温度制御(st5)へと戻されて、同様の手順が繰り返されることになる。   Here, the operation procedure in the air conditioning system shown in FIG. 4 will be described more specifically with reference to FIG. When the air conditioning operation is turned on (st1), the air conditioner and the fan coil device are forcibly started up over a predetermined time (generally about 3 minutes) (st3). Next, return temperature control is started (ON) so that the temperature difference of the return pipe becomes a set value (st5). In this return temperature control, it is determined whether or not the temperature difference of the return pipe is a set value. If the temperature difference of the return pipe is not the set value, the indoor detection sensor 3 passes through the controller 5. Proportional control of the large temperature difference proportional control valve 13 is performed (st7). If the temperature difference of the return pipe reaches the set value as a result of the proportional control, the valve opening degree of the large temperature difference proportional control valve 13 is reduced (st9). If the air conditioner OFF signal is not input (st11), the process returns to the return temperature control (st5) again, and the same procedure is repeated.

この空調制御方法によれば、入口温度との温度差が少ない場合、未だ十分な熱交換がなされてないことを判断し、使いきっていない冷暖房能力を有した冷温水を十分に熱交換させることができる。この結果、熱交換率を高めることができる。よって、ファンコイル装置の入口・出口温度差を大きくとることが可能となり、冷温水系統の循環水量も減少させることができ、ポンプ容量、配管サイズのサイズダウンに伴うイニシャルコスト、及び運転動力の削減によるランニングコストの削減が可能となった。   According to this air conditioning control method, when the temperature difference from the inlet temperature is small, it is judged that sufficient heat exchange has not yet been performed, and the cold / hot water having the cooling / heating capacity that has not been used up is sufficiently exchanged. Can do. As a result, the heat exchange rate can be increased. This makes it possible to increase the temperature difference between the inlet and outlet of the fan coil device, reduce the amount of circulating water in the chilled / hot water system, and reduce pump capacity, initial cost associated with downsizing the piping size, and operating power. The running cost can be reduced.

特開2000−266228公報JP 2000-266228 A

しかしながら、上記した従来の空調制御方法及び空調システムは、還温度制御が開始されると、還管の温度差が設定値となっているか否かが判断され、還管の温度差が設定値となっていない場合には、コントローラ5を介し室内検知センサ3による大温度差比例制御弁13の比例制御が行われる。すなわち、大温度差比例制御弁13が室内温度制御系の中に取り込まれ、そのなかでコントローラ5を介して連動制御される構成(室内制御連動型)となっていた。このため、従来の上記した空調システムでは、特に、リニューアル時、旧来の空調機を更新しない場合には、大温度差比例制御弁13のみを適用することができなかった。換言すれば、大温度差比例制御弁のメリットを得るためには空調機を更新しなければならなかった(すなわち、大温度差比例制御弁の採用は、空調機器更新に依存性を有していた)。その結果、上記した大温度差比例制御弁を用いた室内制御連動型の空調システムは、汎用性の低い問題があった。
また、大温度差比例制御弁を用いた室内制御連動型の空調システムは、室温センサとの連動制御が必要となるため、新設工事は元より、改修工事に対しても施工が煩雑となりかつ施工コストが増大した。さらに、室温センサとの連動制御が必要となることから、制御配線施工において誤配線が生じ易くなり、運転調整も連動制御の確認が必要なために煩雑となった。
本発明は上記状況に鑑みてなされたもので、空調機更新に依存せず設備施工が可能となる空調制御方法及び空調システムを提供し、もって、大温度差比例制御弁の長所を損ねることなく、新設工事は元より、改修工事に対しても容易かつ安価な対応が可能となり、しかも、誤配線の防止、運転調整の容易化も可能とすることを目的とする。
However, in the conventional air conditioning control method and air conditioning system described above, when the return temperature control is started, it is determined whether or not the temperature difference of the return pipe is a set value, and the temperature difference of the return pipe is set to the set value. If not, proportional control of the large temperature difference proportional control valve 13 by the indoor detection sensor 3 is performed via the controller 5. That is, the large temperature difference proportional control valve 13 is taken into the indoor temperature control system, and is interlockedly controlled via the controller 5 (indoor control interlocking type). For this reason, in the conventional air conditioning system described above, it is not possible to apply only the large temperature difference proportional control valve 13 particularly when the conventional air conditioner is not updated during renewal. In other words, the air conditioner had to be renewed in order to obtain the merit of the large temperature difference proportional control valve (that is, the adoption of the large temperature difference proportional control valve is dependent on the renewal of the air conditioning equipment. ) As a result, the indoor control-linked air conditioning system using the large temperature difference proportional control valve has a problem of low versatility.
In addition, indoor control-linked air conditioning systems that use large temperature difference proportional control valves require interlocking control with a room temperature sensor, so it is not only necessary for new construction work but also for repair work. Cost increased. Further, since interlock control with the room temperature sensor is required, erroneous wiring is likely to occur in the control wiring construction, and operation adjustment is also complicated because confirmation of the interlock control is necessary.
The present invention has been made in view of the above situation, and provides an air-conditioning control method and an air-conditioning system that enable facility construction without depending on air-conditioner renewal, and without losing the advantages of a large temperature difference proportional control valve. The purpose of the new construction is to make it possible to easily and inexpensively cope with the renovation work as well as to prevent erroneous wiring and facilitate operation adjustment.

上記目的を達成するための本発明に係る請求項1記載の空調制御方法は、ファンコイル装置の熱交換器に冷温水を循環供給するとともに、該熱交換器に室内空気を通過させることにより、前記冷温水と該室内空気とを熱交換させる空調システムの空調制御方法であって、前記熱交換器に接続した還管の冷温水温度を検出し、該冷温水温度が所定温度となるように前記熱交換器を通過させる冷温水の量を比例制御弁によって増減制御する第1処理と、該増減制御の経過時間が所定時間Tbとなったときに前記比例制御弁を強制的に全閉する第2処理と、該全閉状態の経過時間が所定時間Tcとなったときに前記比例制御弁を強制的に全開する第3処理と、該全開状態の経過時間が所定時間Tdとなったときに再び前記第1処理に戻って前記増減制御以降の処理を繰り返すことを特徴とする。   In order to achieve the above object, the air conditioning control method according to claim 1 of the present invention circulates and supplies cold / hot water to the heat exchanger of the fan coil device, and allows room air to pass through the heat exchanger. An air conditioning control method of an air conditioning system for exchanging heat between the cold / hot water and the room air, wherein the cold / hot water temperature of a return pipe connected to the heat exchanger is detected so that the cold / hot water temperature becomes a predetermined temperature. A first process for increasing / decreasing the amount of cold / hot water passing through the heat exchanger by a proportional control valve, and forcibly fully closing the proportional control valve when the elapsed time of the increase / decrease control reaches a predetermined time Tb. The second process, the third process for forcibly fully opening the proportional control valve when the elapsed time of the fully closed state reaches a predetermined time Tc, and the elapsed time of the fully opened state reaches a predetermined time Td Return to the first process again and increase or decrease And repeating the control after the treatment.

この空調制御方法では、還管の冷温水温度が検出され、この冷温水温度が所定温度となるように熱交換器を通過する冷温水の量が比例制御弁によって増減制御され、この増減制御が所定時間Tb経過すると、比例制御弁が強制的に全閉される。そして、この全閉状態が所定時間Tc経過すると、比例制御弁が強制的に全開され、さらに、この全開状態が所定時間Td経過すると、再び増減制御以降の処理が繰り返されることとなる。つまり、比例制御弁は、増減制御と、全閉状態と、全開状態とが所定時間ずつ順次繰り返し動作制御される。これにより、増減制御の後に、比例制御弁が強制的に全閉状態とされることで、過負荷状態(要求熱量に対して供給熱量が少ない状態)が積極的に作り出され、その後、全開状態となることにより、大温度差が得られることになる。この過負荷状態は、当初の全開状態による多量な冷温水供給により急激に解消され、最終的に増減制御(還温度制御)状態へと移行されて、大温度差での平衡が保たれることになる。したがって、この空調制御方法では、比例制御弁が、室内温度制御系の中に取り込まれなくなり、室内制御とは直接的にはかかわりのない独立型となる。これにより、空調機更新に依存しなくなり、リニューアル時、旧来の空調機を更新しない場合であっても、比例制御弁のみの適用が可能となり、大温度差比例制御弁の長所を損ねることなく、新設工事は元より、改修工事に対しても容易かつ安価な設備施工が可能となる。   In this air conditioning control method, the cold / hot water temperature in the return pipe is detected, and the amount of cold / warm water passing through the heat exchanger is controlled by the proportional control valve so that the cold / hot water temperature becomes a predetermined temperature. When the predetermined time Tb has elapsed, the proportional control valve is forcibly fully closed. When the fully closed state elapses for a predetermined time Tc, the proportional control valve is forcibly fully opened, and when the fully open state elapses for the predetermined time Td, the processes after the increase / decrease control are repeated again. In other words, the proportional control valve is controlled so that the increase / decrease control, the fully closed state, and the fully open state are sequentially repeated for a predetermined time. As a result, after the increase / decrease control, the proportional control valve is forcibly fully closed to actively create an overload state (a state in which the amount of supplied heat is less than the required amount of heat), and then the fully open state. As a result, a large temperature difference is obtained. This overload state is suddenly resolved by supplying a large amount of cold / hot water in the initial fully opened state, and finally it is shifted to the increase / decrease control (return temperature control) state, and the equilibrium with a large temperature difference is maintained. become. Therefore, in this air conditioning control method, the proportional control valve is not taken into the indoor temperature control system, and becomes an independent type that is not directly related to the indoor control. As a result, it does not depend on renewal of the air conditioner, and even at the time of renewal, even if the old air conditioner is not renewed, only the proportional control valve can be applied, without damaging the advantages of the large temperature difference proportional control valve, In addition to the original construction work, it will be possible to carry out easy and inexpensive equipment construction for repair work.

請求項2記載の空調制御方法は、前記増減制御の経過時間Tbが、10分≦Tb≦60分の範囲、前記全閉状態の経過時間Tcが、3分≦Tc≦10分の範囲、及び前記全開状態の経過時間Tdが、3分≦Td≦10分の範囲であることを特徴とする。   In the air conditioning control method according to claim 2, the elapsed time Tb of the increase / decrease control is in the range of 10 minutes ≦ Tb ≦ 60 minutes, the elapsed time Tc in the fully closed state is in the range of 3 minutes ≦ Tc ≦ 10 minutes, and The elapsed time Td in the fully opened state is in a range of 3 minutes ≦ Td ≦ 10 minutes.

この空調制御方法では、増減制御の経過時間Tbが、10分≦Tb≦60分の範囲となり、増減制御が最適な時間長で実行されることになる。すなわち、増減制御が10分より短い場合には、安定的な増減制御が得られず、また、60分以上では、積極的に設ける過負荷状態の間隔が長くなり過ぎ、大温度差によって得られる効果が、室温変化に伴い変動する負荷に追従して得難くなる。また、全閉状態の経過時間Tcが、3分≦Tc≦10分の範囲となり、積極的な過負荷状態が最適に得られることとなる。すなわち、3分より短い場合には、過負荷状態が得られず、10分より長い場合には、ファンコイル装置に対する熱供給が不足し過ぎる状態となり、室温変化が限界(不快を感じる温度差、例えば冷房時で2℃程度)を超えることとなる。また、全開状態の経過時間Tdが、3分≦Td≦10分の範囲となり、強制的な全閉状態による過負荷状態が最適なタイミングで解消される。すなわち、3分より短い場合には、過負荷状態が十分に解消されず、10分より長い場合には、大温度差増減制御によって得られる効果が遅れることとなる。   In this air conditioning control method, the elapsed time Tb of the increase / decrease control is in the range of 10 minutes ≦ Tb ≦ 60 minutes, and the increase / decrease control is executed with an optimal time length. That is, when the increase / decrease control is shorter than 10 minutes, stable increase / decrease control cannot be obtained, and when it is 60 minutes or more, the interval of the overload state that is actively provided becomes too long and is obtained due to a large temperature difference. The effect is difficult to obtain by following a load that varies with a change in room temperature. Further, the elapsed time Tc in the fully closed state is in a range of 3 minutes ≦ Tc ≦ 10 minutes, and a positive overload state is optimally obtained. That is, if it is shorter than 3 minutes, an overload state is not obtained, and if it is longer than 10 minutes, the heat supply to the fan coil device is too short, and the change in room temperature is limited (temperature difference that makes discomfort uncomfortable) For example, it will exceed about 2 ° C. during cooling. Further, the elapsed time Td in the fully open state is in the range of 3 minutes ≦ Td ≦ 10 minutes, and the overload state due to the forced fully closed state is eliminated at the optimal timing. That is, if it is shorter than 3 minutes, the overload state is not sufficiently resolved, and if it is longer than 10 minutes, the effect obtained by the large temperature difference increase / decrease control is delayed.

請求項3記載の空調システムは、ファンコイル装置の熱交換器に冷温水が循環供給されるとともに、該熱交換器に室内空気が通過することにより、前記冷温水と該室内空気とが熱交換される空調システムであって、前記熱交換器に接続した還管の冷温水温度を検出する出口温度検知用センサと、該出口温度検知用センサからの検出信号に基づき前記冷温水温度が所定温度となるように前記熱交換器を通過させる冷温水の量を増減制御する比例制御弁と、前記増減制御の経過時間が所定時間Tbとなったときに前記比例制御弁を強制的に全閉させるとともに、該全閉状態の経過時間が所定時間Tcとなったときに前記比例制御弁を強制的に全開させ、かつ該全開状態の経過時間が所定時間Tdとなったときに再び前記比例制御弁を増減制御させる制御手段とを具備したことを特徴とする。   In the air conditioning system according to claim 3, cold / hot water is circulated and supplied to the heat exchanger of the fan coil device, and indoor air passes through the heat exchanger, so that the cold / hot water and the indoor air exchange heat. An outlet temperature detection sensor for detecting a cold / hot water temperature of a return pipe connected to the heat exchanger, and the cold / hot water temperature is a predetermined temperature based on a detection signal from the outlet temperature detection sensor. And a proportional control valve for increasing / decreasing the amount of cold / hot water that passes through the heat exchanger, and forcibly fully closing the proportional control valve when the elapsed time of the increase / decrease control reaches a predetermined time Tb. The proportional control valve is forcibly fully opened when the elapsed time of the fully closed state reaches a predetermined time Tc, and again when the elapsed time of the fully opened state reaches the predetermined time Td. Increase / decrease control Characterized by comprising a control means.

この空調システムでは、比例制御弁が、室内温度制御系の中に取り込まれなくなり、従来の室内制御連動型に対し、室内制御とは直接的にはかかわりのない独立型として用いられるようになる。この結果、弁の制御が独立とすることで、空調システム新設時のコスト低減が可能となる。また、室内検知センサとの連動制御が不要なため、誤配線の問題が生じ難くなり、運転調整も容易にすることができる。   In this air conditioning system, the proportional control valve is not taken into the indoor temperature control system, and is used as an independent type that is not directly related to the indoor control, compared to the conventional indoor control interlocking type. As a result, the control of the valves is independent, so that it is possible to reduce the cost when a new air conditioning system is installed. In addition, since interlocking control with the indoor detection sensor is unnecessary, the problem of incorrect wiring hardly occurs, and operation adjustment can be facilitated.

本発明に係る空調制御方法によれば、冷温水温度が所定温度となるように熱交換器を通過させる冷温水の量を増減制御し、増減制御の経過時間が所定時間Tbとなったときに比例制御弁を強制的に全閉し、全閉状態の経過時間が所定時間Tcとなったときに比例制御弁を強制的に全開し、全開状態の経過時間が所定時間Tdとなったときに再び増減制御以降の処理を繰り返すので、比例制御弁が、室内温度制御系の中に取り込まれなくなり、従来の室内制御連動型から、室内制御とは直接的にはかかわりのない独立型となる。したがって、空調機更新に依存しなくなり、リニューアル時、旧来の空調機を更新しない場合であっても、比例制御弁のみを適用することができるようになる。この結果、大温度差比例制御弁の長所を損ねることなく、新設工事は元より、改修工事に対しても容易かつ安価な設備施工を可能にすることができる。   According to the air conditioning control method of the present invention, when the amount of cold / hot water passing through the heat exchanger is controlled to increase or decrease so that the temperature of the cold / hot water becomes a predetermined temperature, the elapsed time of the increase / decrease control reaches a predetermined time Tb. When the proportional control valve is forcibly fully closed, and when the elapsed time of the fully closed state reaches a predetermined time Tc, the proportional control valve is forcibly fully opened, and when the elapsed time of the fully opened state reaches the predetermined time Td Since the processing after the increase / decrease control is repeated again, the proportional control valve is not taken into the indoor temperature control system, and the conventional indoor control interlocking type becomes an independent type that is not directly related to the indoor control. Therefore, the air conditioner is not renewed, and only the proportional control valve can be applied even when the old air conditioner is not updated at the time of renewal. As a result, it is possible to easily and inexpensively perform the facility construction not only for the new construction work but also for the repair work without impairing the advantages of the large temperature difference proportional control valve.

本発明に係る空調システムによれば、還管の冷温水温度を検出する出口温度検知用センサと、出口温度検知用センサからの検出信号に基づき熱交換器を通過させる冷温水の量を増減制御する比例制御弁と、比例制御弁を所定時間で強制的に全閉、全開、或いは増減制御させる制御手段とを備えたので、比例制御弁を、従来の室内制御連動型から、室内制御とは直接的にはかかわりのない独立型として用いることができる。この結果、弁の制御を独立とすることで、空調システム新設時のコスト低減が可能となる。また、室内検知センサとの連動制御が不要なため、誤配線の問題が生じ難くなり、運転調整も容易にすることができる。   According to the air conditioning system of the present invention, the outlet temperature detection sensor for detecting the cold / hot water temperature of the return pipe, and the increase / decrease control of the amount of the cold / warm water passing through the heat exchanger based on the detection signal from the outlet temperature detection sensor. Proportional control valve and control means for forcibly closing, fully opening, or increasing / decreasing the proportional control valve for a predetermined time are provided. It can be used as a stand-alone type not directly related. As a result, by making the control of the valves independent, it is possible to reduce the cost when the air conditioning system is newly installed. In addition, since interlocking control with the indoor detection sensor is unnecessary, the problem of incorrect wiring hardly occurs, and operation adjustment can be facilitated.

以下、本発明に係る空調制御方法及び空調システムの好適な実施の形態を図面を参照して説明する。
図1は本発明に係る空調システムの構成図である。なお、図4に示した部材と同一の部材には同一の符号を付し、重複する説明は省略するものとする。
空調システム100には空調機21が設けられる。空調機21は、ファンコイル装置の熱交換器である冷温水コイル7に冷温水を循環供給するとともに、この冷温水コイル7に室内空気を通過させることにより、冷温水と室内空気とを熱交換させる。
Hereinafter, preferred embodiments of an air conditioning control method and an air conditioning system according to the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of an air conditioning system according to the present invention. In addition, the same code | symbol is attached | subjected to the member same as the member shown in FIG. 4, and the overlapping description shall be abbreviate | omitted.
The air conditioning system 100 is provided with an air conditioner 21. The air conditioner 21 circulates and supplies cold / hot water to the cold / hot water coil 7 which is a heat exchanger of the fan coil device, and passes the room air through the cold / hot water coil 7 to exchange heat between the cold / hot water and the room air. Let

冷温水コイル7は、図示しない水方式セントラル冷暖房システム或いは蓄熱システムからの冷温水の往管23及び冷温水の還管25と接続されている。また、空調機21には送風ファン1が内蔵され、送風ファン1は室内側から吸い込んだ室内空気を冷温水コイル7に通過させることで熱交換させ、冷温風となった室内空気を再び室内へ吹き出す。また、この送風ファン1は、例えば、室内検知センサ3からの室内温度検知信号の入力されるインバータコントローラ5により、送風量が可変制御可能となっている。   The cold / hot water coil 7 is connected to a cold / hot water return pipe 23 and a cold / hot water return pipe 25 from a water-type central cooling / heating system or a heat storage system (not shown). The air conditioner 21 has a built-in blower fan 1. The blower fan 1 exchanges heat by passing the indoor air sucked from the indoor side through the cold / hot water coil 7, and the indoor air that has become the cold / hot air is returned to the room again. Blow out. Further, the blower fan 1 can be variably controlled in the amount of blown air, for example, by an inverter controller 5 to which a room temperature detection signal from the room detection sensor 3 is input.

すなわち、立ち上がり時など、室内負荷の多い間は、送風ファン1がコントローラ5により「強」で運転される。室内負荷の大小は、例えばそのときの室内検知温度と設定温度との温度差によりコントローラ5によって把握され、コントローラ5はその温度差に基づき送風ファン1へ制御信号を送出する。室内温度が設定温度に達すると、送風ファン1は、コントローラ5からの制御信号により、「中」あるいは「弱」での運転信号を自動で行う。   That is, the air blower fan 1 is operated “strong” by the controller 5 while the room load is large, such as at the time of startup. For example, the magnitude of the indoor load is grasped by the controller 5 based on the temperature difference between the indoor detected temperature and the set temperature at that time, and the controller 5 sends a control signal to the blower fan 1 based on the temperature difference. When the room temperature reaches the set temperature, the blower fan 1 automatically performs an operation signal of “medium” or “weak” by a control signal from the controller 5.

冷温水コイル7に接続された冷温水の還管25には出口温度検知用センサ11が取り付けられ、出口温度検知用センサ11は冷温水コイル7を通過した後(熱交換を終えた後)の冷温水温度を検出する。この冷温水の還管25には出口温度検知用センサ11の下流側に大温度差比例制御弁(以下、「比例制御弁」という。)13が介装され、比例制御弁13は弁開度が無断階制御可能となっている。すなわち、この比例制御弁13は、冷温水の還管25の検出温度が所定温度となるように、冷温水コイル7を通過する冷温水の量を増減制御するようになっている。比例制御弁13としては、例えば特開2000−266228号公報に開示される「熱動弁」や、特許第2644423号明細書に開示される「流量制御弁」等を好適に用いることができる。   An outlet temperature detection sensor 11 is attached to the cold / hot water return pipe 25 connected to the cold / hot water coil 7, and the outlet temperature detection sensor 11 passes through the cold / hot water coil 7 (after heat exchange is completed). Detect cold / hot water temperature. A large temperature difference proportional control valve (hereinafter referred to as “proportional control valve”) 13 is interposed in the return pipe 25 of the cold / hot water downstream from the outlet temperature detection sensor 11, and the proportional control valve 13 has a valve opening degree. Can be controlled without permission. That is, the proportional control valve 13 controls to increase or decrease the amount of cold / hot water passing through the cold / hot water coil 7 so that the detected temperature of the return pipe 25 of the cold / hot water becomes a predetermined temperature. As the proportional control valve 13, for example, a “thermal valve” disclosed in Japanese Patent Laid-Open No. 2000-266228, a “flow control valve” disclosed in Japanese Patent No. 2644423, or the like can be suitably used.

この増減制御は、比例制御弁13に、例えばフィードバック制御可能な図示しない制御部を設け、この制御部に出口温度検知用センサ11からの検出信号を入力することにより行われる。したがって、冷温水コイル7では、全風量が通過する時、最大定格能力の熱交換が行われ、定格の還り温度にて還水される。また、冷温水コイル7は、還り温度が比例制御弁13による増減制御によって補償され、入口側との大きな温度差が確保されるようになっている。この温度差は、冷房時では例えば往水7℃に対し還水17℃の10℃とされ、暖房時では例えば往水45℃に対し還水35℃の10℃とされる。   This increase / decrease control is performed by providing the proportional control valve 13 with a control unit (not shown) capable of feedback control, for example, and inputting a detection signal from the outlet temperature detection sensor 11 to this control unit. Therefore, in the cold / hot water coil 7, when the total air volume passes, heat exchange with the maximum rated capacity is performed, and the water is returned at the rated return temperature. Further, the return temperature of the cold / hot water coil 7 is compensated by the increase / decrease control by the proportional control valve 13 so that a large temperature difference from the inlet side is ensured. This temperature difference is, for example, 10 ° C. of the return water 17 ° C. with respect to the forward water 7 ° C. during cooling, and 10 ° C. of the return water 35 ° C. with respect to the forward water 45 ° C. during heating, for example.

比例制御弁13には、シーケンス制御可能な制御手段27が接続されている。制御手段27としては、リレー及びタイマーの他、プログラマブルシーケンサ(PS)等を用いることができる。制御手段27は、比例制御弁13による増減制御の経過時間が、後述の所定時間Tbとなったときに、比例制御弁13を強制的に全閉させる。また、制御手段27は、比例制御弁全閉状態の経過時間が、後述の所定時間Tcとなったときに、比例制御弁13を強制的に全開させる。さらに、制御手段27は、比例制御弁全開状態の経過時間が所定時間Tdとなったときに、再び比例制御弁13を増減制御させる。つまり、比例制御弁13は、制御手段27によって、増減制御と、全閉状態と、全開状態とが所定時間ずつ順次繰り返されるようになっている。   A control means 27 capable of sequence control is connected to the proportional control valve 13. As the control means 27, a programmable sequencer (PS) etc. other than a relay and a timer can be used. The control means 27 forcibly fully closes the proportional control valve 13 when the elapsed time of the increase / decrease control by the proportional control valve 13 reaches a predetermined time Tb described later. Further, the control means 27 forcibly opens the proportional control valve 13 when the elapsed time of the proportional control valve fully closed state reaches a predetermined time Tc described later. Furthermore, the control means 27 controls the proportional control valve 13 to increase / decrease again when the elapsed time of the proportional control valve fully opened state reaches the predetermined time Td. That is, the proportional control valve 13 is configured so that the increase / decrease control, the fully closed state, and the fully open state are sequentially repeated by the control means 27 for each predetermined time.

次に、上記のように構成された空調システムによる空調制御方法を説明する。
図2は図1に示した空調システムを用いた空調制御方法の処理手順を表すフローチャートである。
この空調制御方法では、先ず、空調機21の運転が開始(ON)されると(st21)、空調機器類が強制立ち上げされる(st23)。次いで、第1処理において、冷温水コイル7に接続した冷温水の還管25の冷温水温度を出口温度検知用センサ11によって検出し、冷温水温度が所定温度となるように、冷温水コイル7を通過させる冷温水の量を比例制御弁13によって増減制御する還温度制御を行う(st25)。
Next, an air conditioning control method by the air conditioning system configured as described above will be described.
FIG. 2 is a flowchart showing a processing procedure of an air conditioning control method using the air conditioning system shown in FIG.
In this air conditioning control method, first, when the operation of the air conditioner 21 is started (ON) (st21), the air conditioning equipment is forcibly started up (st23). Next, in the first process, the cold / hot water temperature of the return pipe 25 of the cold / hot water connected to the cold / hot water coil 7 is detected by the outlet temperature detection sensor 11 so that the cold / hot water temperature becomes a predetermined temperature. Return temperature control is performed to increase or decrease the amount of cold / warm water passing through the proportional control valve 13 (st25).

次いで、第2処理において、この増減制御の経過時間が所定時間Tbとなったときに(st27)、比例制御弁13を強制的に全閉する(st29)。
次いで、第3処理において、この全閉状態の経過時間が所定時間Tcとなったときに(st31)、比例制御弁13を強制的に全開する(st33)。
この後、さらに全開状態の経過時間が所定時間Tdとなったときに(st35)、空調機21の運転停止信号が入力されていなければ(st37)、再び第1処理に戻って増減制御以降の上記同様の処理を繰り返す。
Next, in the second process, when the elapsed time of the increase / decrease control reaches a predetermined time Tb (st27), the proportional control valve 13 is forcibly fully closed (st29).
Next, in the third process, when the elapsed time of the fully closed state reaches a predetermined time Tc (st31), the proportional control valve 13 is forcibly fully opened (st33).
After this, when the elapsed time of the fully opened state reaches the predetermined time Td (st35), if the operation stop signal of the air conditioner 21 is not input (st37), the process returns to the first process again and after the increase / decrease control. The same processing as above is repeated.

ここで、増減制御の経過時間Tbは、10分≦Tb≦60分の範囲であることが好ましい。すなわち、増減制御が10分より短い場合には、安定的な増減制御が得られず、また、60分以上では、積極的に設ける過負荷状態の間隔が長くなり過ぎ、大温度差によって得られる効果が、室温変化に伴い変動する負荷に追従して得難くなる。したがって、経過時間Tbが10分≦Tb≦60分の範囲となることで、増減制御が最適な時間長で実行されることとなる。   Here, the elapsed time Tb of the increase / decrease control is preferably in the range of 10 minutes ≦ Tb ≦ 60 minutes. That is, when the increase / decrease control is shorter than 10 minutes, stable increase / decrease control cannot be obtained, and when it is 60 minutes or more, the interval of the overload state that is actively provided becomes too long and is obtained due to a large temperature difference. The effect is difficult to obtain by following a load that varies with a change in room temperature. Therefore, when the elapsed time Tb is in the range of 10 minutes ≦ Tb ≦ 60 minutes, the increase / decrease control is executed with an optimal time length.

また、全閉状態の経過時間Tcは、3分≦Tc≦10分の範囲であることが好ましい。すなわち、3分より短い場合には、過負荷状態が得られず、10分より長い場合には、ファンコイル装置に対する熱供給が不足状態となり、室温変化が限界(不快を感じる温度差、例えば冷房時で2℃程度)を超えることとなる。したがって、経過時間Tcが3分≦Tc≦10分の範囲となることで、積極的な過負荷状態が最適に得られることとなる。   The elapsed time Tc in the fully closed state is preferably in the range of 3 minutes ≦ Tc ≦ 10 minutes. That is, if it is shorter than 3 minutes, an overload state cannot be obtained, and if it is longer than 10 minutes, the heat supply to the fan coil device becomes insufficient, and the change in room temperature is the limit (temperature difference that causes discomfort, for example, cooling). It will exceed about 2 ° C. Therefore, when the elapsed time Tc is in the range of 3 minutes ≦ Tc ≦ 10 minutes, a positive overload state is optimally obtained.

また、全開状態の経過時間Tdは、3分≦Td≦10分の範囲であることが好ましい。すなわち、3分より短い場合には、過負荷状態が十分に解消されず、10分より長い場合には、大温度差増減制御によって得られる効果が遅れることとなる。したがって、経過時間Tdが3分≦Td≦10分の範囲となることで、強制的な全閉状態による過負荷状態が最適なタイミングで解消されることとなる。   The elapsed time Td in the fully open state is preferably in the range of 3 minutes ≦ Td ≦ 10 minutes. That is, if it is shorter than 3 minutes, the overload state is not sufficiently resolved, and if it is longer than 10 minutes, the effect obtained by the large temperature difference increase / decrease control is delayed. Therefore, when the elapsed time Td is in the range of 3 minutes ≦ Td ≦ 10 minutes, the overload state due to the forced fully closed state is eliminated at the optimum timing.

図3は図2に示した空調制御方法における弁開度及び各部温度と経過時間との相関とを表した実例をもとにした説明図である。図3では、冷房運転時の弁開度の推移を上段、室温・出口温度・入口温度の推移を中段、出口温度の温度レンジを拡張させて表した拡大図を下段に示している。この例の場合、実例をもとにしたため冷温水の往管23の入口温度は7℃、冷温水の還管25の出口温度は15℃に設定されている。図3の例では、先ず、強制立ち上げ運転がなされ、次いで、上記実施の形態で説明した本発明に係る空調制御方法へと移行されている。強制立ち上げ運転時には、比例制御弁13は、全開され、運転開始から略t2時までに強制立ち上げが完了し、増減制御へと移行する。   FIG. 3 is an explanatory diagram based on an example showing the valve opening degree and the correlation between each part temperature and elapsed time in the air conditioning control method shown in FIG. In FIG. 3, the transition of the valve opening during the cooling operation is shown in the upper stage, the transition of the room temperature / outlet temperature / inlet temperature is shown in the middle stage, and the enlarged view showing the outlet temperature range is expanded in the lower stage. In the case of this example, based on the actual example, the inlet temperature of the cold / hot water outlet pipe 23 is set to 7 ° C., and the outlet temperature of the cold / hot water return pipe 25 is set to 15 ° C. In the example of FIG. 3, the forced start-up operation is first performed, and then the operation is shifted to the air conditioning control method according to the present invention described in the above embodiment. At the time of the forced startup operation, the proportional control valve 13 is fully opened, the forced startup is completed by approximately t2 from the start of the operation, and the process proceeds to increase / decrease control.

この例では、第1処理である増減制御が、略t2〜t5時までの時間長Tbで行われる。t3時の直前で出口水温が設定の15℃となり、弁開度も安定することが分る。次いで、略T5時に、第2処理である所定時間Tbの経過による比例制御弁13の強制全閉が行われる。これにより、出口水温・入口水温が徐々に上昇し、室温も20℃から22℃近傍まで上昇する。全閉状態が時間Tc経過すると、第3処理である比例制御弁13の強制全開が行われる。これにより、出口水温・入口水温が急速に低下され、設定温度に戻されるとともに、室温も22℃から再び20℃へ戻される。この後、さらに全開状態の経過時間が所定時間Tdとなったときに、再び第1処理に戻って増減制御以降の処理が繰り返えされることになる。   In this example, the increase / decrease control as the first process is performed for a time length Tb from approximately t2 to t5. It can be seen that the outlet water temperature is set to 15 ° C. just before t3 and the valve opening is also stabilized. Next, at approximately T5, the proportional control valve 13 is forcibly fully closed by the passage of the predetermined time Tb, which is the second process. As a result, the outlet water temperature and the inlet water temperature gradually rise, and the room temperature also rises from 20 ° C. to around 22 ° C. When the time Tc has elapsed in the fully closed state, the proportional control valve 13 that is the third process is forcibly fully opened. As a result, the outlet water temperature and the inlet water temperature are rapidly lowered to return to the set temperature, and the room temperature is also returned from 22 ° C. to 20 ° C. again. Thereafter, when the elapsed time of the fully opened state reaches the predetermined time Td, the process returns to the first process again and the processes after the increase / decrease control are repeated.

この空調制御方法では、冷温水の還管25の冷温水温度が検出され、この冷温水温度が所定温度となるように冷温水コイル7を通過する冷温水の量が比例制御弁13によって増減制御される。この増減制御が所定時間Tb経過すると、比例制御弁が強制的に全閉される。そして、この全閉状態が所定時間Tc経過すると、比例制御弁が強制的に全開され、さらに、この全開状態が所定時間Td経過すると、再び増減制御以降の処理が繰り返されることとなる。つまり、比例制御弁13は、増減制御と、全閉状態と、全開状態とが所定時間Tb、Tc、Tdずつ順次繰り返し動作制御される。   In this air conditioning control method, the temperature of the cold / hot water in the return pipe 25 of the cold / hot water is detected, and the amount of the cold / hot water passing through the cold / hot water coil 7 is increased or decreased by the proportional control valve 13 so that the temperature of the cold / hot water becomes a predetermined temperature. Is done. When this increase / decrease control elapses for a predetermined time Tb, the proportional control valve is forcibly fully closed. When the fully closed state elapses for a predetermined time Tc, the proportional control valve is forcibly fully opened, and when the fully open state elapses for the predetermined time Td, the processes after the increase / decrease control are repeated again. In other words, the proportional control valve 13 is controlled to sequentially repeat the increase / decrease control, the fully closed state, and the fully open state by predetermined times Tb, Tc, and Td.

これにより、増減制御の後に、比例制御弁13が強制的に全閉状態とされることで、過負荷状態(要求熱量に対して供給熱量が少ない状態)が積極的に作り出され、その後、全開状態となることにより、大温度差が得られることになる。この過負荷状態は、当初の全開状態による多量な冷温水供給により急激に解消され、最終的に増減制御(還温度制御)状態へと移行されて、大温度差での平衡が保たれることになる。   Thereby, after the increase / decrease control, the proportional control valve 13 is forcibly fully closed, so that an overload state (a state in which the supplied heat amount is small with respect to the required heat amount) is actively created, and then the fully open state is established. By entering the state, a large temperature difference is obtained. This overload state is suddenly resolved by supplying a large amount of cold / hot water in the initial fully opened state, and finally it is shifted to the increase / decrease control (return temperature control) state, and the equilibrium with a large temperature difference is maintained. become.

したがって、この空調制御方法によれば、比例制御弁13が、室内温度制御系の中に取り込まれなくなり、従来の室内制御連動型から、室内制御とは直接的にはかかわりのない独立型となる。すなわち、空調機更新に依存しなくなり、リニューアル時、旧来の空調機を更新しない場合であっても、比例制御弁13のみを適用することができるようになる。この結果、大温度差比例制御弁の長所を損ねることなく、新設工事は元より、改修工事に対しても容易かつ安価な設備施工を可能にすることができる。   Therefore, according to this air conditioning control method, the proportional control valve 13 is not taken into the room temperature control system, and becomes a stand-alone type that is not directly related to room control from the conventional room control interlocking type. . That is, it does not depend on the air conditioner renewal, and only the proportional control valve 13 can be applied even when the old air conditioner is not renewed at the time of renewal. As a result, it is possible to easily and inexpensively perform the facility construction not only for the new construction work but also for the repair work without impairing the advantages of the large temperature difference proportional control valve.

また、上記の空調システム100によれば、冷温水の還管25の冷温水温度を検出する出口温度検知用センサ11と、出口温度検知用センサ11からの検出信号に基づき冷温水コイル7を通過させる冷温水の量を増減制御する比例制御弁13と、比例制御弁13を所定時間で強制的に全閉、全開、或いは増減制御させる制御手段27とを備えたので、比例制御弁13を、従来の室内制御連動型から、室内制御とは直接的にはかかわりのない独立型として用いることができる。この結果、弁制御を独立とすることで、空調システム新設時のコスト低減が可能となる。また、室内検知センサ3との連動制御が不要なため、誤配線の問題が生じ難くなり、運転調整も容易にすることができる。   In addition, according to the air conditioning system 100 described above, the outlet temperature detection sensor 11 that detects the temperature of the cold / hot water in the return pipe 25 of the cold / hot water and the cold / hot water coil 7 that passes through the detection signal from the sensor 11 for detecting the outlet temperature. Since the proportional control valve 13 for increasing / decreasing the amount of cold / hot water to be controlled and the control means 27 for forcibly fully closing, fully opening or increasing / decreasing the proportional control valve 13 for a predetermined time, the proportional control valve 13 is The conventional indoor control interlocking type can be used as an independent type that is not directly related to the indoor control. As a result, by making the valve control independent, it is possible to reduce the cost when the air conditioning system is newly installed. Further, since interlocking control with the indoor detection sensor 3 is not required, the problem of miswiring is less likely to occur, and operation adjustment can be facilitated.

なお、上記の実施の形態では、熱交換器が空調機21の冷温水コイル7である場合を例に説明したが、本発明は、この他、VAV制御等を利用した空調機器に対しても採用することができ、この場合においても上記と同様の効果を奏するものである。   In the above embodiment, the case where the heat exchanger is the cold / hot water coil 7 of the air conditioner 21 has been described as an example. However, the present invention also applies to an air conditioner using VAV control or the like. In this case, the same effect as described above can be obtained.

本発明に係る空調システムの構成図である。It is a block diagram of the air conditioning system which concerns on this invention. 図1に示した空調システムを用いた空調制御方法の処理手順を表すフローチャートである。It is a flowchart showing the process sequence of the air-conditioning control method using the air-conditioning system shown in FIG. 図2に示した空調制御方法における弁開度及び各部温度と経過時間との相関とを表した説明図である。It is explanatory drawing showing the valve opening degree in the air-conditioning control method shown in FIG. 2, each part temperature, and the correlation with elapsed time. 従来の空調システムの概略を表す構成図である。It is a block diagram showing the outline of the conventional air conditioning system. 図4に示した従来の空調システムを用いた空調制御方法の処理手順を表すフローチャートである。It is a flowchart showing the process sequence of the air-conditioning control method using the conventional air conditioning system shown in FIG.

符号の説明Explanation of symbols

7…冷温水コイル(熱交換器)、11…出口温度検知用センサ、13…大温度差比例制御弁(比例制御弁)、25…冷温水の還管、27…プログラマブルシーケンサ(制御手段)、100…空調システム、Tb…増減制御の経過時間が所定時間、Tc…全閉状態の経過時間が所定時間、Td…全開状態の経過時間が所定時間   7 ... Cold / hot water coil (heat exchanger), 11 ... Sensor for detecting outlet temperature, 13 ... Large temperature difference proportional control valve (proportional control valve), 25 ... Cold / hot water return pipe, 27 ... Programmable sequencer (control means), DESCRIPTION OF SYMBOLS 100 ... Air-conditioning system, Tb ... Elapsed time of increase / decrease control for predetermined time, Tc ... Elapsed time for fully closed state for predetermined time, Td ... Elapsed time for fully open state for predetermined time

Claims (3)

ファンコイル装置の熱交換器に冷温水を循環供給するとともに、該熱交換器に室内空気を通過させることにより、前記冷温水と該室内空気とを熱交換させる空調システムの空調制御方法であって、
前記熱交換器に接続した還管の冷温水温度を検出し、該冷温水温度が所定温度となるように前記熱交換器を通過させる冷温水の量を比例制御弁によって増減制御する第1処理と、
該増減制御の経過時間が所定時間Tbとなったときに前記比例制御弁を強制的に全閉する第2処理と、
該全閉状態の経過時間が所定時間Tcとなったときに前記比例制御弁を強制的に全開する第3処理と、
該全開状態の経過時間が所定時間Tdとなったときに再び前記第1処理に戻って前記増減制御以降の処理を繰り返すことを特徴とする空調制御方法。
An air conditioning control method for an air conditioning system in which cold / hot water is circulated and supplied to a heat exchanger of a fan coil device, and indoor air is passed through the heat exchanger to exchange heat between the cold / hot water and the indoor air. ,
A first process of detecting a cold / hot water temperature of a return pipe connected to the heat exchanger, and increasing / decreasing the amount of the cold / warm water passing through the heat exchanger by a proportional control valve so that the cold / hot water temperature becomes a predetermined temperature. When,
A second process for forcibly fully closing the proportional control valve when the elapsed time of the increase / decrease control reaches a predetermined time Tb;
A third process for forcibly fully opening the proportional control valve when the elapsed time of the fully closed state reaches a predetermined time Tc;
An air conditioning control method characterized in that when the elapsed time in the fully open state reaches a predetermined time Td, the process returns to the first process again and the processes after the increase / decrease control are repeated.
前記増減制御の経過時間Tbが、10分≦Tb≦60分の範囲、
前記全閉状態の経過時間Tcが、3分≦Tc≦10分の範囲、
及び前記全開状態の経過時間Tdが、3分≦Td≦10分の範囲であることを特徴とする請求項1記載の空調制御方法。
The elapsed time Tb of the increase / decrease control is in the range of 10 minutes ≦ Tb ≦ 60 minutes,
The elapsed time Tc of the fully closed state is in a range of 3 minutes ≦ Tc ≦ 10 minutes,
The elapsed time Td in the fully opened state is in a range of 3 minutes ≦ Td ≦ 10 minutes.
ファンコイル装置の熱交換器に冷温水が循環供給されるとともに、該熱交換器に室内空気が通過することにより、前記冷温水と該室内空気とが熱交換される空調システムであって、
前記熱交換器に接続した還管の冷温水温度を検出する出口温度検知用センサと、
該出口温度検知用センサからの検出信号に基づき前記冷温水温度が所定温度となるように前記熱交換器を通過させる冷温水の量を増減制御する比例制御弁と、
前記増減制御の経過時間が所定時間Tbとなったときに前記比例制御弁を強制的に全閉させるとともに、該全閉状態の経過時間が所定時間Tcとなったときに前記比例制御弁を強制的に全開させ、かつ該全開状態の経過時間が所定時間Tdとなったときに再び前記比例制御弁を増減制御させる制御手段とを具備したことを特徴とする空調システム。
An air conditioning system in which cold / hot water is circulated and supplied to the heat exchanger of the fan coil device, and indoor air passes through the heat exchanger, whereby heat is exchanged between the cold / hot water and the indoor air,
An outlet temperature detection sensor for detecting a cold / hot water temperature of a return pipe connected to the heat exchanger;
A proportional control valve for increasing / decreasing the amount of cold / hot water passing through the heat exchanger so that the cold / hot water temperature becomes a predetermined temperature based on a detection signal from the outlet temperature detection sensor;
The proportional control valve is forcibly fully closed when the elapsed time of the increase / decrease control reaches a predetermined time Tb, and the proportional control valve is forcibly closed when the elapsed time of the fully closed state reaches a predetermined time Tc. And an air-conditioning system comprising: control means for increasing / decreasing the proportional control valve again when the fully-open state has elapsed for a predetermined time Td.
JP2004121258A 2004-04-16 2004-04-16 Air conditioning control method and air conditioning system Expired - Lifetime JP3834042B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004121258A JP3834042B2 (en) 2004-04-16 2004-04-16 Air conditioning control method and air conditioning system
CNB2005800019191A CN100422652C (en) 2004-04-16 2005-04-14 Air conditioner control method and air conditioner system
PCT/JP2005/007227 WO2005100875A1 (en) 2004-04-16 2005-04-14 Air conditioner control method and air conditioner system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004121258A JP3834042B2 (en) 2004-04-16 2004-04-16 Air conditioning control method and air conditioning system

Publications (2)

Publication Number Publication Date
JP2005300118A JP2005300118A (en) 2005-10-27
JP3834042B2 true JP3834042B2 (en) 2006-10-18

Family

ID=35150087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004121258A Expired - Lifetime JP3834042B2 (en) 2004-04-16 2004-04-16 Air conditioning control method and air conditioning system

Country Status (3)

Country Link
JP (1) JP3834042B2 (en)
CN (1) CN100422652C (en)
WO (1) WO2005100875A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5209244B2 (en) * 2007-07-24 2013-06-12 アズビル株式会社 Air conditioning control system and air conditioning control method
JP2012047412A (en) * 2010-08-27 2012-03-08 Yamatake Corp Air conditioning control system, and air conditioning control method
JP6498538B2 (en) * 2015-06-11 2019-04-10 鹿島建設株式会社 Air conditioning control device and air conditioning control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68914142T2 (en) * 1988-01-19 1994-07-07 Multistack Int Pty Ltd HEATING AND COOLING SYSTEMS.
JPH06272936A (en) * 1993-03-16 1994-09-27 Noritz Corp Control method of air conditioning apparatus
JP3184854B2 (en) * 1993-12-24 2001-07-09 東芝キヤリア株式会社 Refrigerant heating air conditioner
JP2002066228A (en) * 2000-08-25 2002-03-05 Tokyo Roki Co Ltd Filter paper for fuel filtration

Also Published As

Publication number Publication date
WO2005100875A1 (en) 2005-10-27
CN100422652C (en) 2008-10-01
JP2005300118A (en) 2005-10-27
CN1906446A (en) 2007-01-31

Similar Documents

Publication Publication Date Title
US7644869B2 (en) Auxiliary stage control of multistage thermostats
JP4459727B2 (en) Air conditioning control system for buildings
JP2010236816A (en) Heat pump type air conditioner and method of controlling heat pump type air conditioner
JP3834042B2 (en) Air conditioning control method and air conditioning system
JPH1078266A (en) Control method for hydrothermal source air conditioning device and hydrauthermal source air conditioning device having protective function
WO2021214931A1 (en) Air conditioning system and control method
JP7199529B2 (en) Control device, air environment adjustment system, air environment adjustment method, program, and recording medium
WO2017212571A1 (en) Air-conditioning system and relay unit
JP4101198B2 (en) Heat pump water heater / heater
JP5768151B2 (en) Heat pump type air conditioner and control method of heat pump type air conditioner
JP3516883B2 (en) Fan coil air conditioning control system
JP2006046839A (en) Cold and hot water carrying system
JP4527392B2 (en) Hot water heater and control method thereof
JPH09138024A (en) Air conditioner
JP4382309B2 (en) Hot water storage water heater
JP3128519B2 (en) Temperature controller for combined hot water heating system
JP3919046B2 (en) Air conditioner and hot water circuit using the same
JP2003074944A (en) Refrigerant heating type cooler/heater
JPH10253076A (en) Temperature controller for composite warm water heating system
JP4620908B2 (en) Hot water storage water heater
JPH10160175A (en) Controller for hot water floor heating system
JP4030501B2 (en) Air conditioner
JP3128518B2 (en) Temperature controller for combined hot water heating system
JP3888336B2 (en) Hot water heating terminal
JPH07127894A (en) Operation controlling method for air conditioner

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060720

R150 Certificate of patent or registration of utility model

Ref document number: 3834042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150728

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250