JP3832533B2 - Method for producing ammonium persulfate - Google Patents

Method for producing ammonium persulfate Download PDF

Info

Publication number
JP3832533B2
JP3832533B2 JP09470098A JP9470098A JP3832533B2 JP 3832533 B2 JP3832533 B2 JP 3832533B2 JP 09470098 A JP09470098 A JP 09470098A JP 9470098 A JP9470098 A JP 9470098A JP 3832533 B2 JP3832533 B2 JP 3832533B2
Authority
JP
Japan
Prior art keywords
ammonium persulfate
anode
electrolysis
ammonium
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09470098A
Other languages
Japanese (ja)
Other versions
JPH11293484A (en
Inventor
健一 君塚
庄一郎 梶原
貴光 敦賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP09470098A priority Critical patent/JP3832533B2/en
Priority to TW088103936A priority patent/TW416997B/en
Priority to US09/275,026 priority patent/US6214197B1/en
Priority to DE19913820A priority patent/DE19913820B4/en
Priority to CNB991045076A priority patent/CN1197765C/en
Publication of JPH11293484A publication Critical patent/JPH11293484A/en
Application granted granted Critical
Publication of JP3832533B2 publication Critical patent/JP3832533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、過硫酸アンモニウムの製造方法に関する。過硫酸アンモニウムはポリ塩化ビニルや、ポリアクリロニトリルの重合開始剤として、或いはプリント配線板処理剤として広く工業的に用いられている。
【0002】
【従来の技術】
過硫酸アンモニウムの一般的な製造方法としては、硫酸及び硫酸アンモニウムを含有した水溶液、即ち硫酸水素アンモニウム水溶液を原料とした電解製法が知られている。この方法では、硫酸水素アンモニウムを原料とし過硫酸アンモニウムを電解法によって製造し、生成した過硫酸アンモニウムを真空晶析・遠心分離等により濃縮・分離・乾燥し、製品化している。この時、結晶を含有していた溶液(通常晶析母液と呼ばれる)は、陰極の生成液と混合され、陽極原料として使用される。
【0003】
例えば、特開昭55−34700号公報には、プロトン、アルカリ金属イオンまたはアンモニウムイオンを伴った硫酸イオンの水溶液を隔膜電解槽中で陽極酸化することによる過硫酸アルカリ塩またはアンモニウム塩の製造方法が記載されているが、この方法では、最終的な電流効率は約80%にとどまり経済的な製法ではない。また、特開昭57−198275号公報には硫酸水素アンモニウムと電解促進剤を原料とする過硫酸アンモニウムの製造方法が記載されているが、この方法でも電流効率は約80%であり経済的に有利な方法とは言えない。
【0004】
【発明が解決しようとする課題】
本発明は、従来技術に述べられた過硫酸アンモニウムの製造方法に於ける問題点を解決し、且つ工業的に有利な方法で過硫酸アンモニウムを製造する方法を提供するものである。
【0005】
【課題を解決するための手段】
本発明者らは、これらの欠点を克服するため鋭意研究を行った結果、陽極原料の硫酸イオンとして硫酸アンモニウムのみを用いることにより過硫酸アンモニウム製造時の電流効率が著しく向上することを見出し、本発明を完成させるに至った。すなわち、本発明は、硫酸アンモニウムを陽極原料として用い、電解することにより過硫酸アンモニウムを製造する方法において、陽極原料の硫酸イオンとして硫酸アンモニウムのみを用いることを特徴とする過硫酸アンモニウムの製造方法に関するものである。
【0006】
【発明の実施の形態】
本発明の電解工程は、陽極原料として、硫酸アンモニウム30〜44重量%、好ましくは硫酸アンモニウム40〜44重量%の水溶液を用いる。この陽極原料は、必要量の分極剤を含むが、分極剤としては、チオシアン酸塩、シアン化物、シアン酸塩、フッ化物などが用いられる。陰極原料として、0〜35重量%の濃度の硫酸アンモニウムを含有する10〜80重量%の硫酸水溶液が用いられる。上述した濃度範囲以外では、低い電流効率しか得られず、得策ではない。
【0007】
電解槽は、アルミナ隔膜等で仕切られた広く工業的に用いられている箱型電槽、または、イオン交換膜等で仕切られたフィルタープレス型電槽でも良い。陽極は、好ましくは白金であるが炭素電極等の化学的に耐性を持つ材料も用いることができる。陰極は、鉛或いはジルコニウムが好ましいが、ステンレス等酸耐性のある金属電極も用いることができる。陽極の電流密度は、少なくとも40A/dm2 である。電解槽内温度は、15〜40℃である。これより低いと溶液中の塩類が析出する恐れがあり、また、溶液の温度が高くなるほど塩類の溶解度は上昇するが、高温では生成した過硫酸塩の加水分解反応が起こりやすく好ましくない。
【0008】
電解後の陽極液は、濃縮晶析される。濃縮晶析処理する時の晶析槽は、広く一般に使用される晶析槽が用いられる。晶析温度は、15〜60℃好ましくは20〜50℃である。これ以下の温度では、コンデンサー部の温度が低くなり過ぎ経済的に得策ではなくなるし、これ以上の温度では、過硫酸アンモニウムが分解し、結果的に低収率となる。晶析圧力は、先の温度範囲に於いて、水が沸騰するような圧力が適用される。晶析後の過硫酸アンモニウム含有スラリーは、遠心分離器等の固液分離器により結晶と晶析母液とに分離される。得られた結晶は、粉体乾燥機を用いて乾燥・製品化される。分離された晶析母液及び陰極生成液は、アンモニアにより中和された後、電解原料として再利用される。
【0009】
【実施例】
以下に実施例を挙げて本発明を更に詳しく説明するが、本発明はこれらの実施例に限定されるものではない。尚、実施例中の電流効率は(生成した過硫酸イオン(mol)×2)/通電量(F)×100%で表され、単位通電量当たりに生成した過硫酸イオンの割合を表す。また、電解電圧は、電極間の電位差であり、濃度の表示は全て重量%である。
【0010】
実施例1
電解槽は、透明塩化ビニル製を使用した。槽の陽極室と陰極室はシリコーンゴムシール剤を用いて固定した多孔質中性アルミナ隔膜板で仕切った。各室には、バッファータンク兼冷却タンクを設け、バッファータンクから電解室へチューブポンプにより送液を行い、電解室出口よりバッファータンクへの液戻りは、オーバーフローにより行った。バッファータンク内には、ガラス冷却管を挿入し冷却水を循環させた。陽極は、幅1.8cm×長さ16cm(面積28.8cm2 )の白金箔2枚を用いた。陰極は、鉛板を用いた。陽極と陰極は隔膜よりそれぞれ約0.5cm離してセットした。電解用の直流は、可変整流器より得た。
【0011】
陽極原料1395.2gは、硫酸アンモニウム43.0%(600.0g)、チオシアン酸アンモニウム0.03%(0.42g)の水溶液であった。陰極原料1333.6gは、硫酸18.9%(252.4g)、硫酸アンモニウム28.4%(378.8g)の水溶液であった。電解は、電流値34.5Aにて4時間行った。
【0012】
電解後、陽極生成液1333.8g、陰極生成液1391.0gを得た。液組成を滴定により分析したところ、陽極生成液組成は、過硫酸アンモニウム38.3%(511.2g)、硫酸アンモニウム7.50%(100.0g)、硫酸1.51%(20.2g)であった。また、陰極生成液組成は、硫酸アンモニウム41.9%(583.2g)、硫酸0.91%(12.6g)であった。この時の電流効率は87.0%であり、電解電圧は6.0V、陽極液平均温度28.7℃、陰極液平均温度29.2℃であった。
【0013】
実施例2
実施例1と同じ電解槽を用いた。陽極原料1677.5gは、過硫酸アンモニウム3.25%(54.5g)、硫酸アンモニウム37.0%(621.2g)、チオシアン酸アンモニウム0.03%(0.50g)の水溶液であった。陰極原料953.4gは、硫酸26.5%(252.5g)の水溶液であった。電解は、電流値34.5Aにて4時間行った。
【0014】
電解後、陽極生成液1615.9g、陰極生成液1010.4gを得た。液組成を滴定により分析したところ、陽極生成液組成は、過硫酸アンモニウム35.0%(565.6g)、硫酸アンモニウム7.50%(121.2g)、硫酸1.25%(20.2g)であった。また、陰極生成液組成は、硫酸アンモニウム20.2%(204.1g)、硫酸1.25%(12.6g)であった。この時の電流効率は87.0%であり、電解電圧は6.0V、陽極液平均温度28.9℃、陰極液平均温度29.7℃であった。
【0015】
陽極生成液の全量を撹拌機、コンデンサーを付した晶析槽へ導き、真空度20mmHg、温度30℃にて真空晶析を行い、過硫酸アンモニウムを析出させた。得られたスラリーを遠心分離器に導き結晶と晶析母液を分離した。得られた結晶526.8gを完全に乾燥したところ、純度99.9%の過硫酸アンモニウム結晶511.0gが得られた。晶析工程での過硫酸アンモニウム結晶の回収率は99.9%であった。
【0016】
また、結晶と分離された晶析母液は403.9gであり、その組成は、過硫酸アンモニウム13.5%(54.5g)、硫酸アンモニウム30.0%(121.2g)、硫酸5.00%(20.2g)であった。この晶析母液と先の電解で得られた陰極生成液を混合し、更に硫酸アンモニウム251.7g、チオシアン酸アンモニウム0.50gを溶解した。その後、混合液中の硫酸をアンモニアガス11.4gで中和し、陽極原料として使用した。陰極原料は別途調製した。
【0017】
晶析母液及び陰極生成液のリサイクルにより調製された陽極原料1677.9gは、過硫酸アンモニウム3.25%(54.5g)、硫酸アンモニウム37.0%(621.2g)、チオシアン酸アンモニウム0.03%(0.50g)の水溶液であった。陰極原料953.4gは、硫酸26.5%(252.5g)の水溶液であった。電解は、電流値34.5Aにて4時間行った。
【0018】
電解後、陽極生成液1615.5g、陰極生成液1010.9gを得た。液組成を滴定により分析したところ、陽極生成液組成は、過硫酸アンモニウム35.0%(565.6g)、硫酸アンモニウム7.50%(121.2g)、硫酸1.25%(20.2g)であった。また、陰極生成液組成は、硫酸アンモニウム20.2%(204.1g)、硫酸1.25%(12.6g)であった。この時の電流効率は87.2%であり、電解電圧は6.0V、陽極液平均温度28.3℃、陰極液平均温度29.5℃であった。
【0019】
比較例1
実施例1と同じ電解槽を用いた。陽極原料1817.8gは、過硫酸アンモニウム7.18%(130.6g)、硫酸アンモニウム33.7%(612.8g)、硫酸5.81%(105.7g)、チオシアン酸アンモニウム0.03%(0.55g)であった。陰極原料1526.7gは、硫酸14.6%(223.3g)の水溶液であった。電解は、電流値34.5Aにて4時間電解を行った。
【0020】
電解後、陽極生成液1714.6g、陰極生成液1616.8gを得た。液組成を滴定により分析したところ、陽極生成液組成は、過硫酸アンモニウム35.4%(606.4g)、硫酸アンモニウム5.79%(99.2g)、硫酸5.58%(95.6g)であった。また、陰極生成液組成は、硫酸アンモニウム14.7%(238.1g)、硫酸1.79%(28.9g)であった。この時の電流効率は81.0%であり、電解電圧は6.2V、陽極平均温度27.1℃、陰極平均温度28.1℃であった。この方法では、電流効率は本発明に比べ約6%低い結果となった。
【0021】
【発明の効果】
本発明の方法によれば、電解の電流効率が高く、安価に過硫酸アンモニウムを製造することが出来る。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing ammonium persulfate. Ammonium persulfate is widely used industrially as a polymerization initiator for polyvinyl chloride or polyacrylonitrile, or as a printed wiring board treating agent.
[0002]
[Prior art]
As a general method for producing ammonium persulfate, an electrolytic production method using an aqueous solution containing sulfuric acid and ammonium sulfate, that is, an aqueous solution of ammonium hydrogen sulfate, as a raw material is known. In this method, ammonium persulfate is produced using ammonium hydrogen sulfate as a raw material by an electrolytic method, and the produced ammonium persulfate is concentrated, separated and dried by vacuum crystallization, centrifugation, etc., and commercialized. At this time, a solution containing crystals (usually called a crystallization mother liquor) is mixed with a cathode production solution and used as an anode raw material.
[0003]
For example, JP-A-55-34700 discloses a method for producing an alkali persulfate or ammonium salt by anodizing an aqueous solution of sulfate ions accompanied by protons, alkali metal ions or ammonium ions in a diaphragm electrolytic cell. Although described, this method has a final current efficiency of only about 80% and is not an economical process. Japanese Patent Application Laid-Open No. 57-198275 describes a method for producing ammonium persulfate using ammonium hydrogen sulfate and an electrolysis accelerator as raw materials, but this method also has an economically advantageous current efficiency of about 80%. It's not a good way.
[0004]
[Problems to be solved by the invention]
The present invention solves the problems in the method for producing ammonium persulfate described in the prior art and provides a method for producing ammonium persulfate by an industrially advantageous method.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to overcome these drawbacks, the present inventors have found that the current efficiency during the production of ammonium persulfate is significantly improved by using only ammonium sulfate as the sulfate ion of the anode material. It came to complete. That is, the present invention relates to a method for producing ammonium persulfate, characterized in that ammonium sulfate is used as an anode raw material, and ammonium persulfate is produced by electrolysis.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the electrolysis step of the present invention, an aqueous solution containing 30 to 44% by weight ammonium sulfate, preferably 40 to 44% by weight ammonium sulfate is used as the anode material. The anode material includes a necessary amount of a polarizing agent, and as the polarizing agent, thiocyanate, cyanide, cyanate, fluoride, or the like is used. As the cathode material, a 10 to 80 wt% aqueous sulfuric acid solution containing 0 to 35 wt% ammonium sulfate is used. Outside the concentration range described above, only low current efficiency is obtained, which is not a good idea.
[0007]
The electrolytic cell may be a box type battery case widely used industrially partitioned by an alumina diaphragm or a filter press type battery case partitioned by an ion exchange membrane or the like. The anode is preferably platinum, but a chemically resistant material such as a carbon electrode can also be used. The cathode is preferably lead or zirconium, but an acid resistant metal electrode such as stainless steel can also be used. The anode current density is at least 40 A / dm 2 . The temperature in the electrolytic cell is 15 to 40 ° C. If the temperature is lower than this, the salt in the solution may be precipitated, and the solubility of the salt increases as the temperature of the solution increases. However, the hydrolysis of the persulfate produced tends to occur at a high temperature, which is not preferable.
[0008]
The anolyte after electrolysis is concentrated and crystallized. A widely used crystallization tank is used as the crystallization tank for the concentration crystallization treatment. The crystallization temperature is 15-60 ° C, preferably 20-50 ° C. If the temperature is lower than this, the temperature of the condenser part becomes too low to be economically advantageous, and if the temperature is higher than this, ammonium persulfate decomposes, resulting in a low yield. As the crystallization pressure, a pressure at which water boils in the above temperature range is applied. The ammonium persulfate-containing slurry after crystallization is separated into crystals and a crystallization mother liquor by a solid-liquid separator such as a centrifugal separator. The obtained crystals are dried and commercialized using a powder dryer. The separated crystallization mother liquor and cathode production liquid are neutralized with ammonia and then reused as an electrolytic raw material.
[0009]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. The current efficiency in the examples is expressed by (generated persulfate ions (mol) × 2) / energization amount (F) × 100%, and represents the ratio of persulfate ions generated per unit energization amount. Moreover, the electrolysis voltage is a potential difference between the electrodes, and all the concentration indications are by weight.
[0010]
Example 1
The electrolytic cell was made of transparent vinyl chloride. The anode chamber and cathode chamber of the tank were partitioned by a porous neutral alumina diaphragm plate fixed using a silicone rubber sealant. Each chamber was provided with a buffer tank / cooling tank, and the solution was fed from the buffer tank to the electrolysis chamber by a tube pump. The liquid return from the electrolysis chamber outlet to the buffer tank was performed by overflow. A glass cooling tube was inserted into the buffer tank to circulate the cooling water. As the anode, two platinum foils having a width of 1.8 cm and a length of 16 cm (area: 28.8 cm 2 ) were used. A lead plate was used as the cathode. The anode and cathode were set about 0.5 cm apart from the diaphragm. The direct current for electrolysis was obtained from a variable rectifier.
[0011]
The anode raw material 1395.2 g was an aqueous solution of ammonium sulfate 43.0% (600.0 g) and ammonium thiocyanate 0.03% (0.42 g). The cathode raw material 1333.6 g was an aqueous solution of 18.9% (252.4 g) sulfuric acid and 28.4% (378.8 g) ammonium sulfate. The electrolysis was performed at a current value of 34.5 A for 4 hours.
[0012]
After the electrolysis, 1333.8 g of an anode generating solution and 1391.0 g of a cathode generating solution were obtained. When the liquid composition was analyzed by titration, the composition of the anode production liquid was ammonium persulfate 38.3% (511.2 g), ammonium sulfate 7.50% (100.0 g), and sulfuric acid 1.51% (20.2 g). It was. Moreover, the cathode production liquid composition was ammonium sulfate 41.9% (583.2g) and sulfuric acid 0.91% (12.6g). The current efficiency at this time was 87.0%, the electrolysis voltage was 6.0 V, the average anolyte temperature was 28.7 ° C., and the average catholyte temperature was 29.2 ° C.
[0013]
Example 2
The same electrolytic cell as in Example 1 was used. The anode raw material 1677.5 g was an aqueous solution of ammonium persulfate 3.25% (54.5 g), ammonium sulfate 37.0% (621.2 g), and ammonium thiocyanate 0.03% (0.50 g). The cathode raw material 953.4 g was an aqueous solution of 26.5% (252.5 g) sulfuric acid. The electrolysis was performed at a current value of 34.5 A for 4 hours.
[0014]
After electrolysis, 1615.9 g of an anode generating solution and 1010.4 g of a cathode generating solution were obtained. When the liquid composition was analyzed by titration, the anode production liquid composition was 35.0% (565.6 g) ammonium persulfate, 7.50% (121.2 g) ammonium sulfate, and 1.25% (20.2 g) sulfuric acid. It was. The composition of the cathode generation liquid was 20.2% (204.1 g) ammonium sulfate and 1.25% (12.6 g) sulfuric acid. The current efficiency at this time was 87.0%, the electrolysis voltage was 6.0 V, the anolyte average temperature was 28.9 ° C., and the catholyte average temperature was 29.7 ° C.
[0015]
The total amount of the anode production liquid was guided to a crystallization tank equipped with a stirrer and a condenser, and vacuum crystallization was performed at a vacuum degree of 20 mmHg and a temperature of 30 ° C. to precipitate ammonium persulfate. The resulting slurry was guided to a centrifuge to separate crystals and crystallization mother liquor. When 526.8 g of the obtained crystals were completely dried, 511.0 g of ammonium persulfate crystals having a purity of 99.9% were obtained. The recovery rate of ammonium persulfate crystals in the crystallization step was 99.9%.
[0016]
The crystallized mother liquor separated from the crystals was 403.9 g, and its composition was ammonium persulfate 13.5% (54.5 g), ammonium sulfate 30.0% (121.2 g), sulfuric acid 5.00% ( 20.2 g). This crystallization mother liquor and the cathode production liquid obtained in the previous electrolysis were mixed, and further 251.7 g of ammonium sulfate and 0.50 g of ammonium thiocyanate were dissolved. Thereafter, sulfuric acid in the mixed solution was neutralized with 11.4 g of ammonia gas and used as an anode raw material. The cathode material was prepared separately.
[0017]
The anode raw material 1677.9 g prepared by recycling the crystallization mother liquor and the cathode production liquid was 3.25% (54.5 g) ammonium persulfate, 37.0% ammonium sulfate (621.2 g), 0.03% ammonium thiocyanate. (0.50 g) of an aqueous solution. The cathode raw material 953.4 g was an aqueous solution of 26.5% (252.5 g) sulfuric acid. The electrolysis was performed at a current value of 34.5 A for 4 hours.
[0018]
After electrolysis, 1615.5 g of an anode generating solution and 1010.9 g of a cathode generating solution were obtained. When the liquid composition was analyzed by titration, the anode production liquid composition was 35.0% (565.6 g) ammonium persulfate, 7.50% (121.2 g) ammonium sulfate, and 1.25% (20.2 g) sulfuric acid. It was. The composition of the cathode generation liquid was 20.2% (204.1 g) ammonium sulfate and 1.25% (12.6 g) sulfuric acid. The current efficiency at this time was 87.2%, the electrolysis voltage was 6.0 V, the anolyte average temperature was 28.3 ° C., and the catholyte average temperature was 29.5 ° C.
[0019]
Comparative Example 1
The same electrolytic cell as in Example 1 was used. Anode raw materials 1817.8 g were ammonium persulfate 7.18% (130.6 g), ammonium sulfate 33.7% (612.8 g), sulfuric acid 5.81% (105.7 g), ammonium thiocyanate 0.03% (0 .55 g). The cathode raw material 1526.7 g was an aqueous solution of sulfuric acid 14.6% (223.3 g). The electrolysis was performed at a current value of 34.5 A for 4 hours.
[0020]
After electrolysis, 1714.6 g of an anode generating solution and 1616.8 g of a cathode generating solution were obtained. When the liquid composition was analyzed by titration, the composition of the anode production liquid was 35.4% (606.4 g) ammonium persulfate, 5.79% (99.2 g) ammonium sulfate, and 5.58% (95.6 g) sulfuric acid. It was. The composition of the cathode generation liquid was ammonium sulfate 14.7% (238.1 g) and sulfuric acid 1.79% (28.9 g). The current efficiency at this time was 81.0%, the electrolysis voltage was 6.2 V, the anode average temperature was 27.1 ° C., and the cathode average temperature was 28.1 ° C. With this method, the current efficiency was about 6% lower than that of the present invention.
[0021]
【The invention's effect】
According to the method of the present invention, ammonium persulfate can be produced at a low cost with high current efficiency of electrolysis.

Claims (5)

硫酸アンモニウム水溶液を陽極原料として用い、電解することにより過硫酸アンモニウムを製造する方法において、電解後の陽極液を晶析・分離し、分離された晶析母液と陰極生成液を混合し、該混合液をアンモニアで中和して陽極原料に再利用することにより、陽極原料の硫酸イオンとして硫酸アンモニウムのみを用いることを特徴とする過硫酸アンモニウムの製造方法。In a method for producing ammonium persulfate by electrolysis using an aqueous ammonium sulfate solution as an anode raw material, the electrolyzed anolyte is crystallized and separated, the separated crystallization mother liquor and the cathode product liquid are mixed, and the mixture is A method for producing ammonium persulfate, characterized by using only ammonium sulfate as sulfate ions of an anode material by neutralizing with ammonia and reusing it as an anode material. 硫酸アンモニウムの濃度が30〜44重量%である請求項1記載の過硫酸アンモニウムの製造方法。The method for producing ammonium persulfate according to claim 1, wherein the concentration of ammonium sulfate is 30 to 44% by weight. 電解の陽極が白金である請求項1記載の過硫酸アンモニウムの製造方法。The method for producing ammonium persulfate according to claim 1, wherein the electrolytic anode is platinum. 電解の陽極の電流密度が少なくとも40A/dm2 である請求項1記載の過硫酸アンモニウムの製造方法。 2. The method for producing ammonium persulfate according to claim 1, wherein the current density of the electrolytic anode is at least 40 A / dm < 2 >. 電解の温度が15〜40℃である請求項1記載の過硫酸アンモニウムの製造方法。The method for producing ammonium persulfate according to claim 1, wherein the temperature of electrolysis is 15 to 40 ° C.
JP09470098A 1998-03-30 1998-04-07 Method for producing ammonium persulfate Expired - Fee Related JP3832533B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP09470098A JP3832533B2 (en) 1998-04-07 1998-04-07 Method for producing ammonium persulfate
TW088103936A TW416997B (en) 1998-03-30 1999-03-15 Process for producing persulfate
US09/275,026 US6214197B1 (en) 1998-03-30 1999-03-24 Process for producing persulfate
DE19913820A DE19913820B4 (en) 1998-03-30 1999-03-26 Process for the preparation of ammonium persulphate and its use for the preparation of sodium or potassium persulphate
CNB991045076A CN1197765C (en) 1998-03-30 1999-03-30 Process for producing persulfate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09470098A JP3832533B2 (en) 1998-04-07 1998-04-07 Method for producing ammonium persulfate

Publications (2)

Publication Number Publication Date
JPH11293484A JPH11293484A (en) 1999-10-26
JP3832533B2 true JP3832533B2 (en) 2006-10-11

Family

ID=14117462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09470098A Expired - Fee Related JP3832533B2 (en) 1998-03-30 1998-04-07 Method for producing ammonium persulfate

Country Status (1)

Country Link
JP (1) JP3832533B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5320173B2 (en) 2008-06-30 2013-10-23 クロリンエンジニアズ株式会社 Sulfuric acid electrolysis method
KR101377428B1 (en) * 2011-12-13 2014-03-26 (주) 휴브글로벌 Continuous operating method for producing ammonium persulfate
CN102828197B (en) * 2012-08-31 2014-12-10 云浮市银利化工有限公司 Full-sealed type ammonium persulfate electrolysis system and method
CN104152943B (en) * 2014-08-15 2017-05-10 东南大学 Device and method for preparing ammonium persulphate with ammonia and urea solution flue gas purified absorption solution
KR102260402B1 (en) 2017-01-13 2021-06-03 도레이 카부시키가이샤 Method for producing ammonium persulfate
CN113174604B (en) * 2021-04-13 2022-12-06 浙江工业大学 Method for preparing sodium persulfate through direct electrooxidation

Also Published As

Publication number Publication date
JPH11293484A (en) 1999-10-26

Similar Documents

Publication Publication Date Title
US6214197B1 (en) Process for producing persulfate
USRE32398E (en) Electrolytic process and electrolytic cell for the preparation of organic compounds
US4435256A (en) Process for making potassium ferrate [Fe(VI)] by the electrochemical formation of sodium ferrate
JP6512362B2 (en) Method for producing ammonium persulfate
US6491807B2 (en) Process for producing sodium persulfate
JP7163841B2 (en) Method for producing ammonium persulfate
JP3832533B2 (en) Method for producing ammonium persulfate
US3915816A (en) Process for the electrolytic production of sodium peroxodisulfate
JP3778238B2 (en) Method for producing sodium persulfate
JPH033747B2 (en)
JP4182302B2 (en) Method for producing potassium persulfate
RU2020192C1 (en) Method of gold refining
JP3832534B2 (en) Method for producing sodium persulfate
US4265718A (en) Method for producing hydroxylated nickel compounds
US6200454B1 (en) Process for producing sodium persulfate
JP2005298870A (en) Method for recovering metal indium by electrowinning
JP2001003187A (en) Production of sodium persulfate
JP2001220695A (en) Method for preparing ammonium persulfate
JP2001089886A (en) Method for producing sodium persulfate
US3616322A (en) Process for purifying a catholyte used for electrolytic hydrodimerization of acrylonitrile
JPS61133192A (en) Treatment of waste copper liquid containing hydrochloric acid
JP2023176312A (en) Production method of ammonium persulfate
JPH0625880A (en) Production of aqueous tetraalkyl ammonium hydroxide solution
JP2022129759A (en) Production method for ammonium persulfate
JPS6054886B2 (en) Method for purifying aqueous alkali chloride solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees