JP3831788B2 - 活動筋肉表示装置 - Google Patents

活動筋肉表示装置 Download PDF

Info

Publication number
JP3831788B2
JP3831788B2 JP2004535836A JP2004535836A JP3831788B2 JP 3831788 B2 JP3831788 B2 JP 3831788B2 JP 2004535836 A JP2004535836 A JP 2004535836A JP 2004535836 A JP2004535836 A JP 2004535836A JP 3831788 B2 JP3831788 B2 JP 3831788B2
Authority
JP
Japan
Prior art keywords
unit
item
motor
surface electromyogram
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004535836A
Other languages
English (en)
Other versions
JPWO2004023996A1 (ja
Inventor
聡 前川
義久 藤原
学 小谷
隆彦 有本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Publication of JPWO2004023996A1 publication Critical patent/JPWO2004023996A1/ja
Application granted granted Critical
Publication of JP3831788B2 publication Critical patent/JP3831788B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/296Bioelectric electrodes therefor specially adapted for particular uses for electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array

Description

本発明は、皮膚表面上で計測する表面筋電図から筋を構成する運動単位を特定し、この特定した運動単位に基づき、活動する筋肉を表示する活動筋肉表示装置に関するものである。
生体は複雑な運動制御を行っており、その制御機構を明らかにすることは、人間工学等の分野において大きな意義があり、このような生体における制御機構を解明するため、神経−筋活動を計測・解析しようという試みが多く行われている。
筋は、多くの運動単位と呼ばれるサブユニットにより構成されている。この運動単位は脊髄内の単一のα運動ニューロン(α Motor Neuron、以下、「α−MN」とする。)と、α−MNに支配される筋繊維群からなり、神経−筋制御機構の最小機能単位である。筋の収縮時には、複数の運動単位が協調して活動する。運動単位の活動電位(Motor Unit action potential、以下、「MUAP」とする。)を計測し、個々の活動様式を解析することは、神経−筋制御機構を解明する上で重要なことである。
筋収縮に伴って発生する電位の変化を示す筋電図は、複数のMUAPの干渉波形として計測されるが、この筋電図には、筋に刺入する針電極で計測した針筋電図と、非侵襲の表面電極により計測した表面筋電図がある。
針筋電図は、生体組織などの影響を受けにくく、運動単位の分離が比較的容易であるという利点があり、筋電図を運動単位の分離により解析する際に用いられることが多い(K.C.McGill、K.L.Cummins and L.J.Dorfman、“Automatic Decomposition of Clinical Electromyogram、”IEEE Trans。Biomed。Eng、BME、vol.32、pp.470−477、1985)。一方、表面筋電図は、皮膚表面に表面電極を貼り付ければ計測できるため、針筋電図に比べ比較的簡単に筋電図を計測できるといった利点があった。
しかしながら、針筋電図は、計測時に針電極を筋肉に刺して計測する必要があり、生体に負荷を与えてしまうといった問題点があるため、多数の筋を同時に計測することは困難であった。また、針電極が計測する部位は、非常に狭い範囲であり、あらかじめ生体組織内のどの場所を計測するかを決定しておく必要があった。一方、表面筋電図では電極下にある多数のMUAPが、時間的・空間的に加算されたものとして観測されるため、個々の運動単位の発火パターンを特定することが困難であるという問題点があった。
上記の課題を解決するために、本発明は、次のような手段を講じたものである。
すなわち、本発明は、皮膚表面上に配置する複数の電極と、この複数の電極における皮膚表面上の表面筋電図を計測する表面筋電図計測部と、この表面筋電図計測部で計測した表面筋電図に基づき活動した筋を構成する個々の運動単位からの信号を分離する運動単位分離部と、運動単位分離部で得た個々の運動単位の活動により生じた皮膚表面上での電位分布から、運動単位の3次元的な位置を推定する運動単位位置推定部と、この運動単位位置推定部で特定した個々の運動単位の活動をまとめて画像化して表示する表示部とを具備することを特徴とする。
このような構成によれば、複数の電極及び表面筋電図計測部によって生体を侵襲することなく表面筋電図を計測することができるとともに、運動単位分離部及び運動単位位置推定部によって、時間的・空間的に加算された多数のMUAPから活動した運動単位の3次元的位置を特定することができ、さらに、特定した運動単位を表示部が画像化するため、生体における筋制御機構の解明に非常に有用とすることができる。
なお、前記表面筋電図計測部で計測した表面筋電図から所定の発火パターンを示す個々の運動単位を推定するためには、前記運動単位分離部が、多チャンネルブラインドデコンボルーション法に基づき、前記表面筋電図計測部で計測した表面筋電図から所定の発火パターンを示す個々の運動単位を分離することが望ましい。
より正確に活動した運動単位を特定するためには、生理学的知見に基づく運動単位の発火間隔の分布パターンおよび表面筋電図波形を格納する運動単位発火パターン格納部を備え、前記運動単位分離部が分離した各電極のおける時系列信号と照合して,一致する関係にある場合に,運動単位と特定することが望まれる。
運動単位位置推定部では、与えられた皮膚表面上の電位分布を再現するのに必要な生体組織内に流れる電流源もしくは筋繊維の脱分極によって形成される電位分布を推定する必要がある。これを行うには、静電場を与える偏微分方程式程式に従って、運動単位分離部で与えられた表面電極位置での電位を境界条件として逆問題を解けばよい。
なお、本発明の好ましい態様としては、前記運動単位分離部で得た各運動単位に対応する電極位置電位より,前記運動単位位置推定部が、その電位を再現するようにポアソン方程式から電流源を推定するものが挙げられる。
また、運動単位位置推定部における逆問題を解くためには、電気的コンダクタンスが異なる生体内の脂肪、骨、筋肉等の分布、配置をモデル化したコンダクタンス分布モデルを格納するコンダクタンス分布モデル格納部を備える必要がある。
また、運動単位位置推定部における逆問題は、そのままでは不良設定問題であるため、一意に解くためには運動単位の脱分極モデルを格納する運動単位脱分極モデル格納部を備える必要がある。
分離の精度を向上させるためには、前記複数の電極が、アレイ状に並べて配置されたものであることが望ましい。
皮膚の動きにともなう接触抵抗の変化やリード線の揺れなどにより生じる低周波の変動等の外乱を好適に除去するためには、所定の周波数以上の周波数成分を有する信号を通過させるハイパスフィルタを設け、前記表面筋電図計測部が計測する表面筋電図が、このハイパスフィルタを通過させたものであればよい。
多チャンネルブラインドデコンボリューションを精度よく行うためには、前記表面筋電図計測部で計測した表面筋電図を、平均値が0、分散が1に正規化したり、前記運動単位分離部が、前記表面筋電図計測部で計測する表面筋電図を所定の条件で学習し、この学習した学習データに基づき発火した筋を構成する個々の運動単位を推定したりすることが望ましい。
また、運動単位を構成する筋繊維や運動ニューロンをモデル化した筋肉分布モデルを格納する筋肉分布モデル格納部を備え、前記表示部が前記運動単位位置推定部で特定した運動単位を前記筋肉分布モデルに重ねて3次元表示すれば、発火した運動単位の動作をより具体的に認識することができる。
精度よく表面筋電図の測定を行うためには、表面筋電図の計測時に、計測中の表面筋電図を画像出力する計測監視部を設け、この計測監視部に運動単位以外と推定される表面筋電図が画像出力された際に、前記表面筋電図計測部が計測を行わないように構成していることが望ましい。
第1図は、本発明の実施形態における活動筋肉表示装置の全体構成を模式的に示す図である。
第2図は、同実施形態における表面電極を模式的に示す図である。
第3図は、同実施形態における活動筋肉表示装置本体の内部機器構成図である。
第4図は、同実施形態における活動筋肉表示装置の機能を示す機能構成図である。
第5図は、同実施形態におけるチャンネル毎の表面筋電図を示す図である。
第6は、同実施形態におけるブラインドデコンボリューションの構造を示す図である。
第7図は、同実施形態における発火間隔分布パターン格納部に格納する運動単位の発火間隔の分布パターンを示す図である。
第8図は、同実施形態における活動筋肉表示装置の動作を示すフロー図である。
第9図は、同実施形態における独立成分を示すフロー図である。
第10図は、同実施形態における4番目の独立成分に対する混合フィルタのインパルス応答を示す図である。
第11図は、同実施形態における7番目の独立成分に対する混合フィルタのインパルス応答を示す図である。
第12図は、同実施形態における15番目の独立成分に対する混合フィルタのインパルス応答を示す図である。
第13図は、同実施形態における16番目の独立成分に対する混合フィルタのインパルス応答を示す図である。
第14図は、同実施形態における発火した運動単位を画像表示する態様を示す図である。
以下、本発明の一実施形態について図面を参照して説明する。
第1図は、本発明の実施形態における活動筋肉表示装置Aの全体構成を模式的に示す図である。
本発明の活動筋肉表示装置Aは、第1図に示すように、被験者Mの皮膚表面上に配置する複数の表面電極1a、1b、・・・、1s及び1t(以下、「表面電極1」と総称する。)を備えた表面電極ユニットIUと、この複数の表面電極1それぞれに接続される複数のリード線2a、2b、・・・、2s及び2t(以下、「リード線2」と総称する。)と、この複数のリード線2と接続されるとともに前記複数の表面電極1を用いて測定した表面筋電図に基づき発火した運動単位を特定しさらにこの特定した運動単位を画像化して表示する活動筋肉表示装置本体3とを具備するものである。なお、本実施形態では、地面に対して図示しない水平な台の上に被験者Mの腕を載せ、その被験者Mの薬指の張力発生時に筋長変化を伴わない等尺性収縮時における筋電図を測定し、これより発火した運動単位を特定しさらに特定した運動単位を画像化して表示する場合を一例に挙げて説明する。
表面電極ユニット1Uは、第1図及び第2図に示すように、筋の収縮運動にともなって生ずる皮膚表面上の電位の変化を検知する直径2.0mmの表面電極1と、この表面電極1を極間10mm及び4mmにて5×4のアレイ状にして取り付ける表面電極支持板11とを備えるものであって、この表面電極ユニット1Uを肘窩より約10cmのところから配置することにより、薬指の動作によって生じる筋の収縮運動にともなって生ずる皮膚表面上の電位の変化を好適に検知するようにしている。そして、5×4のアレイ状に配置した表面電極1において、極間10mmにて隣接する一対の表面電極1を1チャンネルとし、16チャンネルそれぞれのチャンネルにおける電位差を筋電位信号として活動筋肉表示装置本体3に出力するように設定している。
活動筋肉表示装置本体3は、一般的な情報処理機能を有するコンピュータであって、第3図に示すように、CPU101、内部メモリ102、HDD等の外部記憶装置103、前記リード線2と接続される通信インタフェイス104、ディスプレイ105、マウスやキーボードといったユーザインタフェイス106等を主な構成要素としている。
一方、この活動筋肉表示装置本体3を機能面で説明すると、前記各部が動作することにより、第4図に示すように、フィルタ部31と、表面筋電図計測部32と、運動単位分離部33と、コンダクタンス分布モデル格納部34と、運動単位位置推定部35と、筋肉分布モデル格納部36と、計測監視部37と、表示部38、運動単位発火パターン格納部3a、運動単位脱分極モデル格納部3b等としての機能を有している。
以下、各部を詳述する。
フィルタ部31は、前記表面電極1からリード線2を介して取得する筋電位信号において所定の周波数より高い周波数成分を通過させるものであって、本実施形態では、皮膚の動きにともなう接触抵抗の変化・リード線2の揺れなどにより生じる低周波の変動を前記筋電位信号から好適に除去できるように、カットオフ周波数2.5Hzのハイパスフィルタで構成している。そして、このフィルタ部31を通過後に第5図に示すような16チャンネル各々の表面筋電図で前記ディスプレイ105に表示するように構成している。
表面筋電図計測部32は、表面電極1により計測した信号を増幅し、アンチエイリアシングフィルターをかけた後で、前記皮膚表面上における表面筋電図を計測するものである。なお、本実施形態では、前記筋電位信号をサンプリング周波数1kHz及び12ビットA/D変換にてサンプリングを行う。
運動単位分離部33は、前記表面筋電図計測部32で計測した表面筋電図に基づき発火した筋を構成する個々の運動単位を推定するものであって、本実施形態では、多チャンネルブラインドデコンボルーション法に基づき、前記表面筋電図計測部32で計測した表面筋電図から所定の発火パターンを示す個々の運動単位を分離するように設定している。
より具体的に多チャンネルブラインドデコンボルーション法を説明すると、この方法は高次統計量を利用して信号を統計的独立な成分へと分離可能な独立成分分析に分類される手法の一つであって、時間的に独立な信号s(t)=[s(t)、・・・、S(t)]が混合フィルタに通されたものとして観測される多チャンネルの各時刻tでの信号をx(t)=[x(t)、・・・、x(t)]と表したとき、
Figure 0003831788
により信号を独立成分y(t)=[y(t)、・・・、y(t)]に分離することができる。ここで、W(Z−1)は、
Figure 0003831788
と表される。z−1はz−τx(t)=x(t−τ)のように動作する時間遅れ演算子を表す。
そして、逆フィルタを求めやすくするためにW(z )を2つの片側のみのFIRフィルタL(causual)、R(non−causual)に分解する。このように分解されたフィルタにおけるブラインドデコンボリューションの過程を第6図に示す。混合フィルタは時空間的に一定であると仮定し、その逆フィルタの推定は、
Figure 0003831788
によって学習される。ここでR(0)は単位行列、
Figure 0003831788
である。
以上によって分離された独立成分の各出力信号の例を第9図に示す。この例では、4、7、15番目の各成分に単独の運動単位に相当する信号が現れている。この信号は、ディスプレイに表示され、計測者がこれらを選択する。
次に、各独立成分に対応するMUAPの各表面電極への現れ方を次のようにして調べる。i番目の独立成分のインパルス出力のみ、y=[0、・・・、0、y(t)、0、・・・、0]、y(t)=[0、・・・、0、δ(t)、0、・・・、0]に対する入力x(i)は、y(t)=W(Z−1)x(t)より、
Figure 0003831788
で与えられる。なお、ここでδ(t)は、t=0の時だけ1で、その他では0をとるものとする。これはi番目の独立成分に対応する運動単位から発生したMUAPが、各表面電極上でどのように入力されたかを示すインパルス応答となっている。4、7、15番目、そして比較のため、運動単位とは違ったものとして推定されている独立成分のうち16番目の独立成分に対して式(5)によって算出されるインパルス応答を第10図〜第13図に示す。第10図〜第12図の結果は、単独の運動単位に相当するインパルス応答を示していることが確認できる。しかしながら、第13図の結果は,特に有意な信号を分離したとは見なせないことが分かる。第10図〜第12図のインパルス応答を観察すると、肘に近い上側に配置された電極と、手先に近い下側に配置された電極とで、インパルス応答の位相が反転していることが確認できる。MUAPは運動終板から筋繊維の末端に向かって両側に伝搬していくため、運動終板の前後の筋電図は位相が反転することが知られている。したがって、ちょうど位相が反転する部分において運動単位のインパルス応答が非常に弱い電極が存在している原因は、これらの電極付近に運動終板があったためであると考えられる。また、第10図〜第12図において、運動終板の位置および最大振幅を示す電極位置がそれぞれ異なることから、これらは異なる運動単位を抽出したものであると推定できる。一方、第13図では特に目立った特徴が見られず、16番目の独立成分はノイズとして抽出されていると考えられる。以上より、独立成分に通される混合フィルタの特性という観点から、4、7、15番目の独立成分は運動単位であると特定できる。
このような多チャンネルブラインドデコンボリューション法を用いることによって、前記表面筋電図計測部32で計測した表面筋電図に基づき、発火した運動単位を分離する。なお、本実施形態において、多チャンネルブラインドデコンボルーション法を行う際の学習条件として、タップ数τは20、パッチサイズは100、学習率はη(0)=0.00001からはじめて10回学習するごとにη(t+1)=0.8η(t)にしたがって更新するように設定している。また、非線形関数φ(x)は運動単位の発火統計が、スーパーガウシアン分布をしているという仮定によりφ(x)=tanh(x)を用いている。ここで、スーパーガウシアン分布とは、尖度と呼ばれるK=E[(x−μ)]/E[(x−μ]−3の4次の統計量が正の値をとる分布のことである。
運動単位発火パターン格納部3aは、生理学的知見に基づく運動単位の発火間隔の分布パターンを格納するものであって、前記外部記憶装置103や内部メモリ102の所定領域に形成している。なお、本実施形態において、この生理学的知見に基づく運動単位の発火間隔の分布パターンは、第7図に示すように、運動単位の発火間隔の分布として示すことが可能な針筋電図から得たものを格納している。
運動単位位置推定部35は、前記運動単位分離部33で分離した個々の運動単位に起因する各電極上の電位を境界条件として、静電場に関する偏微分方程式であるポアソン方程式▽・σ▽Φ=−Iで与えられる逆問題を解き、各運動単位に対して個別に対応する電流源Iの分布を求める。ここで、σは、生体組織のコンダクタンス分布を表し、コンダクタンス分布モデル格納部34によって与えられる。Φは、生体組織内の電位分布であり、皮膚表面上で、σ▽Φ・n=0という境界条件を満たす。nは、皮膚に対する法線ベクトルである。
運動単位位置推定部35において求められる各運動単位に対する電流源分布Iは、生体組織中における各運動単位を構成する筋線維の脱分極位置を示しているが、この逆問題は不良設定問題であり、そのままでは解を一意に決定することができない。そのため、運動単位がどのように脱分極して活動電位を発生させるのかをモデル化した運動単位脱分極モデルをあらかじめ運動単位脱分極モデル格納部3bに持ち、これを利用することによって、一意に解を決定する。
筋肉分布モデル格納部36は、運動単位を構成する筋線維や運動ニューロンをモデル化した筋肉分布モデルを格納するものであって、前記外部記憶装置103や内部メモリ102の所定領域に形成している。
計測監視部37は、表面筋電図の計測時に、計測中の表面筋電図を前記ディスプレイ105に画像出力するものである。なお、本実施形態では、表面筋電図の計測中に運動単位以外と推定される表面筋電図が前記ディスプレイ105に画像出力された際には、前記表面筋電図計測部32が計測を行わないように設定している。
表示部38は、前記運動単位位置推定部35で推定した運動単位の脱分極位置を、前記筋肉分布モデル格納部36に格納する筋肉分布モデルに重ねて前記ディスプレイ105に3次元画像出力するものである。
次に、以上のように構成される活動筋肉表示装置Aの動作について第8図に示すフロー図等を用いて説明する。なお、本実施形態では、次の(1)から(4)に示す手順で準備を行ったのちに活動筋肉表示装置Aの主動作を行うように設定している。(1)被験者Mを椅子に座らせ、左腕を掌が上に向くようにして台の上に固定する。(2)各チャンネルの信号にハム雑音以外の雑音が見られなくなり、また、ハム雑音が十分小さくなったことを計測者が確認する。(3)計測中における新たな運動単位の動員や停止がないように、被験者Mに対してディスプレイ105に表示される筋電図を見ながら一定の力で、所定の指に力を加えるように指示する。(4)被験者Mは計測者の合図とともに一定の力で所定の指に力を加える。
まず、表面電極1を用いて各チャンネルにおける筋電位信号を計測すると(ステップS101)、フィルタ部31によって皮膚の動きにともなう接触抵抗の変化やリード線2の揺れなどにより生じる低周波の変動等の外乱が除去され(ステップS102)、このフィルタ部31を通過した筋電位信号は、表面筋電図計測部32によって、第5図に示すようなチャンネル毎に計測した表面筋電図としてディスプレイ105に表示される(ステップS103)。次に、運動単位分離部33が、多チャンネルデコンボリューション法により、第5図に示すような筋電図より分離された独立成分を求め(ステップS104)、第9図に示すような独立成分としてディスプレイ105に表示する。ディスプレイ105に表示した独立成分から独立成分がピーク値の振幅と発火周期がほぼ一定である4、7、15番目の成分が運動単位と推定される(ステップS105)。なお、本実施形態において、この独立成分の推定は、ディスプレイ105に表示した表面筋電図から計測者が独立成分として推定されるものを選択し、前記ユーザインタフェイス106を利用して発火したと推定される運動単位を活動筋肉表示装置本体3に入力するように設定している。次に、分離した運動単位の各電極におけるインパルス応答を求め(ステップS106)、その値を境界条件として運動単位の3次元位置を推定する(ステップS107)。
そして、位置を特定した運動単位Xは、表示部38によって、筋肉分布モデル格納部36に格納している筋肉分布モデルと重ね合わされ、ディスプレイ105に画面表示されることとなる(ステップS108)。なお、本実施形態では、第14図に示すように、腕の組織をfMRI等で取った3次元構造画像を半透明にディスプレイ105に画面表示に表示するとともに、位置を特定した運動単位Xを輝線(図中斜線)等で表示するようにして設定している。
以上に詳述したように、本実施形態の活動筋肉表示装置Aは、複数の表面電極及び表面筋電図計測部32によって生体を侵襲することなく表面筋電図を計測することができるとともに、運動単位分離部33及び運動単位位置推定部35によって、時間的・空間的に加算された多数のMUAPから発火した運動単位を分離することができ、さらに、位置を特定した運動単位をディスプレイで画像化されるため、生体における制御機構の解明に非常に有用とすることができる。
また、ハイパスフィルタによって、皮膚の動きにともなう接触抵抗の変化やリード線の揺れなどにより生じる低周波の変動等の外乱を好適に除去されるため、精度よく表面筋電図を計測して発火した運動単位を特定することができる。
さらに、発火したと特定した運動単位を筋肉分布モデルに重ねて表示するため、より具体的にその動作を認識することができる。
なお、本実施形態では、地面に対して図示しない水平な台の上に被験者Mの腕を載せ、その被験者Mの薬指の張力発生時に筋長変化を伴わない等尺性収縮時における表面筋電図を測定し、これより発火した運動単位を特定しさらに特定した運動単位を画像化して表示する場合を一例に挙げて説明したが、薬指に限らずその他の部位の筋を計測し、発火した運動単位を特定して画像化可能であることは言うまでもない。
また、筋長変化を伴わない等尺性収縮時に限らず、筋長変化を伴うものであっても、発火した運動単位を特定して画像化するように対応させることもできる。
また、本実施形態において、ハイパスフィルタのカットオフ周波数を2.5Hzとしたが、カットオフ周波数はこれに限られるものではない。
また、表面電極1を極間10mm及び4mmにて5×4のアレイ状にして配置したが、配置する表面電極1の個数や配置方法はこれに限られるものではなく、使用する表面電極1の形状や寸法等も任意に設定しても構わない。
なお、本実施形態において、ディスプレイ105に表示した表面筋電図から計測者が独立成分として推定されるものを選択し、前記ユーザインタフェイス106を利用して発火したと推定される運動単位を運動単位分離部33に入力するように設定しているが、この推定する動作を活動筋肉表示装置本体3で自動化して特定してもよい。
その他、各部の具体的構成についても上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。
上述したように、本発明によれば、複数の電極及び表面筋電図計測部によって生体を侵襲することなく表面筋電図を計測することができるとともに、運動単位分離部及び運動単位位置推定部によって、時間的・空間的に加算された多数のMUAPから活動した運動単位の3次元位置を特定することができ、さらに、特定した運動単位を表示部が画像化するため、生体における制御機構の解明に非常に有用な活動筋肉表示装置を提供することができる。

Claims (13)

  1. 皮膚表面上に配置する複数の電極と、この複数の電極における皮膚表面上の表面筋電図を計測する表面筋電図計測部と、この表面筋電図計測部で計測した表面筋電図に基づき活動した筋を構成する個々の運動単位を推定する運動単位分離部と、この運動単位分離部で活動したと推定される運動単位から発火した運動単位の位置を推定する運動単位位置推定部と、この運動単位位置推定部で推定した運動単位を画像化して表示する表示部とを具備する活動筋肉表示装置。
  2. 前記運動単位分離部が、多チャンネルブラインドデコンボルーション法に基づき、前記表面筋電図計測部で計測した表面筋電図から所定の発火パターンを示す個々の運動単位を推定することを特徴とする請求の範囲第1項記載の活動筋肉表示装置。
  3. 生理学的知見に基づく運動単位の発火間隔の分布パターンおよび表面筋電図波形を格納する運動単位発火パターン格納部を備え、前記運動単位分離部が分離した各電極のおける時系列信号と照合して,一致する関係にある場合に,運動単位と特定することを特徴とする請求の範囲第1項又は第2項記載の活動筋肉表示装置。
  4. 前記運動単位分離部で得た各運動単位に対応する電極位置電位より,前記運動単位位置推定部が、その電位を再現するように静電場を与える偏微分方程式の逆問題を解くことを特徴とする請求の範囲第1項、第2項又は第3項記載の活動筋肉表示装置。
  5. 前記運動単位分離部で得た各運動単位に対応する電極位置電位より,前記運動単位位置推定部が、その電位を再現するようにポアソン方程式から電流源を推定することを特徴とする請求の範囲第1項、第2項、第3項又は第4項記載の活動筋肉表示装置。
  6. 前記運動単位位置推定部が、逆問題を解くために、電気的コンダクタンスがそれぞれ異なる生体内の脂肪、骨、筋肉等の分布、配置をモデル化したコンダクタンス分布モデルを格納するコンダクタンス分布モデル格納部を備えたことを特徴とする請求の範囲第1項、第2項、第3項、第4項、第5項又は第6項記載の活動筋肉表示装置。
  7. 前記運動単位位置推定部が、逆問題を一意に解くために、運動単位の脱分極モデルを格納する運動単位脱分極モデル格納部を備えたことを特徴とする請求の範囲第1項、第2項、第3項、第4項、第5項又は第6項記載の活動筋肉表示装置。
  8. 前記複数の電極が、アレイ状に並べて配置されたものであることを特徴とする請求の範囲第1項、第2項、第3項、第4項、第5項、第6項又は第7項記載の活動筋肉表示装置。
  9. 所定の周波数以上の周波数成分を有する信号を通過させるハイパスフィルタを設け、前記表面筋電図計測部が計測する表面筋電図が、このハイパスフィルタを通過させたものであることを特徴とする請求の範囲第1項、第2項、第3項、第4項、第5項、第6項、第7項又は第8項記載の活動筋肉表示装置。
  10. 前記表面筋電図計測部で計測した表面筋電図を、平均値が0、分散が1に正規化していることを特徴とする請求の範囲第1項、第2項、第3項、第4項、第5項、第6項、第7項、第8項又は第9項記載の活動筋肉表示装置。
  11. 前記運動単位分離部が、前記表面筋電図計測部で計測する表面筋電図を所定の条件で学習し、この学習した学習データに基づき発火した筋を構成する個々の運動単位を推定するように構成していることを特徴とする請求の範囲第1項、第2項、第3項、第4項、第5項、第6項、第7項、第8項、第9項又は第10項記載の活動筋肉表示装置。
  12. 運動単位を構成する筋繊維や運動ニューロンをモデル化した筋肉分布モデルを格納する筋肉分布モデル格納部を備え、前記表示部が前記運動単位位置推定部で特定した運動単位を前記筋肉分布モデルに重ねて表示することを特徴とする請求の範囲第1項、第2項、第3項、第4項、第5項、第6項、第7項、第8項、第9項、第10項又は第11項記載の活動筋肉表示装置。
  13. 表面筋電図の計測時に、計測中の表面筋電図を画像出力する計測監視部を設け、この計測監視部に運動単位以外と推定される表面筋電図が画像出力された際に、前記表面筋電図計測部が計測を行わないように構成していることを特徴とする請求の範囲第1項、第2項、第3項、第4項、第5項、第6項、第7項、第8項、第9項、第10項、第11項又は第12項記載の活動筋肉表示装置。
JP2004535836A 2002-09-11 2002-09-11 活動筋肉表示装置 Expired - Lifetime JP3831788B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/009302 WO2004023996A1 (ja) 2002-09-11 2002-09-11 活動筋肉表示装置

Publications (2)

Publication Number Publication Date
JPWO2004023996A1 JPWO2004023996A1 (ja) 2006-01-05
JP3831788B2 true JP3831788B2 (ja) 2006-10-11

Family

ID=31986087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004535836A Expired - Lifetime JP3831788B2 (ja) 2002-09-11 2002-09-11 活動筋肉表示装置

Country Status (4)

Country Link
US (1) US7409242B2 (ja)
EP (1) EP1537823A1 (ja)
JP (1) JP3831788B2 (ja)
WO (1) WO2004023996A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220055646A (ko) * 2020-10-27 2022-05-04 플레이스비 주식회사 햅틱 컨트롤러와 근전도 센서를 이용한 햅틱 피드백 제공 시스템 및 방법

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060079801A1 (en) * 2004-09-16 2006-04-13 Deluca Carlo J Sensor system for detecting and processing EMG signals
US20090036792A1 (en) * 2005-09-12 2009-02-05 Deluca Carlo J Sensor system for detecting and processing EMG signals
US20070276281A1 (en) * 2006-05-09 2007-11-29 Mika Sarkela Monitoring of the state of the central nervous system of a subject
US8117047B1 (en) 2007-04-16 2012-02-14 Insight Diagnostics Inc. Healthcare provider organization
US9351659B2 (en) 2009-07-28 2016-05-31 Altec, Inc. Biomedical electrode configuration for suppressing movement artifact
JP5662443B2 (ja) * 2009-07-30 2015-01-28 ユニバーシティ・オブ・ケープ・タウンUniversity Of Cape Town 非侵襲性深部筋肉筋電図検査法
US20130274583A1 (en) * 2010-11-15 2013-10-17 Sandy L. Heck Electrodes Adapted for Transmitting or Measuring Voltages Through Hair
JP6106822B2 (ja) * 2012-05-23 2017-04-05 地方独立行政法人北海道立総合研究機構 筋活動量計測装置
US20150124566A1 (en) 2013-10-04 2015-05-07 Thalmic Labs Inc. Systems, articles and methods for wearable electronic devices employing contact sensors
US10042422B2 (en) 2013-11-12 2018-08-07 Thalmic Labs Inc. Systems, articles, and methods for capacitive electromyography sensors
US11921471B2 (en) 2013-08-16 2024-03-05 Meta Platforms Technologies, Llc Systems, articles, and methods for wearable devices having secondary power sources in links of a band for providing secondary power in addition to a primary power source
WO2015081113A1 (en) 2013-11-27 2015-06-04 Cezar Morun Systems, articles, and methods for electromyography sensors
WO2016198288A1 (en) * 2015-06-12 2016-12-15 Koninklijke Philips N.V. Surface electromyography system, recorder and method
US11337652B2 (en) 2016-07-25 2022-05-24 Facebook Technologies, Llc System and method for measuring the movements of articulated rigid bodies
US11216069B2 (en) 2018-05-08 2022-01-04 Facebook Technologies, Llc Systems and methods for improved speech recognition using neuromuscular information
US10990174B2 (en) 2016-07-25 2021-04-27 Facebook Technologies, Llc Methods and apparatus for predicting musculo-skeletal position information using wearable autonomous sensors
US10409371B2 (en) 2016-07-25 2019-09-10 Ctrl-Labs Corporation Methods and apparatus for inferring user intent based on neuromuscular signals
JP6876324B2 (ja) * 2017-02-21 2021-05-26 国立大学法人電気通信大学 信号測定装置、及び信号測定方法
JP2018143353A (ja) * 2017-03-02 2018-09-20 Smk株式会社 生体用電極の誘導装置
AU2018281346A1 (en) * 2017-06-05 2020-01-02 Powell Mansfield, Inc. Transmembrane sensor to evaluate neuromuscular function
EP3697297A4 (en) 2017-10-19 2020-12-16 Facebook Technologies, Inc. SYSTEMS AND METHODS FOR IDENTIFYING BIOLOGICAL STRUCTURES ASSOCIATED WITH NEUROMUSCULAR SOURCE SIGNALS
US11907423B2 (en) 2019-11-25 2024-02-20 Meta Platforms Technologies, Llc Systems and methods for contextualized interactions with an environment
US11961494B1 (en) 2019-03-29 2024-04-16 Meta Platforms Technologies, Llc Electromagnetic interference reduction in extended reality environments
US11481030B2 (en) 2019-03-29 2022-10-25 Meta Platforms Technologies, Llc Methods and apparatus for gesture detection and classification
US10937414B2 (en) 2018-05-08 2021-03-02 Facebook Technologies, Llc Systems and methods for text input using neuromuscular information
CN112074870A (zh) 2018-01-25 2020-12-11 脸谱科技有限责任公司 重构的手部状态信息的可视化
US11493993B2 (en) 2019-09-04 2022-11-08 Meta Platforms Technologies, Llc Systems, methods, and interfaces for performing inputs based on neuromuscular control
US11150730B1 (en) 2019-04-30 2021-10-19 Facebook Technologies, Llc Devices, systems, and methods for controlling computing devices via neuromuscular signals of users
US10592001B2 (en) 2018-05-08 2020-03-17 Facebook Technologies, Llc Systems and methods for improved speech recognition using neuromuscular information
WO2019231911A1 (en) 2018-05-29 2019-12-05 Ctrl-Labs Corporation Shielding techniques for noise reduction in surface electromyography signal measurement and related systems and methods
CN112585600A (zh) 2018-06-14 2021-03-30 脸谱科技有限责任公司 使用神经肌肉标记进行用户识别和认证
US11045137B2 (en) 2018-07-19 2021-06-29 Facebook Technologies, Llc Methods and apparatus for improved signal robustness for a wearable neuromuscular recording device
CN112566553A (zh) * 2018-08-13 2021-03-26 脸谱科技有限责任公司 实时尖峰检测和识别
JP2021535465A (ja) 2018-08-31 2021-12-16 フェイスブック・テクノロジーズ・リミテッド・ライアビリティ・カンパニーFacebook Technologies, Llc 神経筋信号のカメラ誘導による解釈
CN112789577B (zh) 2018-09-20 2024-04-05 元平台技术有限公司 增强现实系统中的神经肌肉文本输入、书写和绘图
US10921764B2 (en) 2018-09-26 2021-02-16 Facebook Technologies, Llc Neuromuscular control of physical objects in an environment
WO2020072915A1 (en) 2018-10-05 2020-04-09 Ctrl-Labs Corporation Use of neuromuscular signals to provide enhanced interactions with physical objects in an augmented reality environment
CN113423341A (zh) 2018-11-27 2021-09-21 脸谱科技有限责任公司 用于可穿戴电极传感器系统的自动校准的方法和装置
US10905383B2 (en) 2019-02-28 2021-02-02 Facebook Technologies, Llc Methods and apparatus for unsupervised one-shot machine learning for classification of human gestures and estimation of applied forces
US11868531B1 (en) 2021-04-08 2024-01-09 Meta Platforms Technologies, Llc Wearable device providing for thumb-to-finger-based input gestures detected based on neuromuscular signals, and systems and methods of use thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7231254B2 (en) * 1998-08-05 2007-06-12 Bioneuronics Corporation Closed-loop feedback-driven neuromodulation
US7333850B2 (en) * 2004-05-28 2008-02-19 University Of Florida Research Foundation, Inc. Maternal-fetal monitoring system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220055646A (ko) * 2020-10-27 2022-05-04 플레이스비 주식회사 햅틱 컨트롤러와 근전도 센서를 이용한 햅틱 피드백 제공 시스템 및 방법
KR102394769B1 (ko) * 2020-10-27 2022-05-06 플레이스비 주식회사 햅틱 컨트롤러와 근전도 센서를 이용한 햅틱 피드백 제공 시스템 및 방법

Also Published As

Publication number Publication date
US7409242B2 (en) 2008-08-05
JPWO2004023996A1 (ja) 2006-01-05
EP1537823A1 (en) 2005-06-08
US20060129057A1 (en) 2006-06-15
WO2004023996A1 (ja) 2004-03-25

Similar Documents

Publication Publication Date Title
JP3831788B2 (ja) 活動筋肉表示装置
Astolfi et al. Assessing cortical functional connectivity by partial directed coherence: simulations and application to real data
US7136695B2 (en) Patient-specific template development for neurological event detection
Michelmann et al. Data-driven re-referencing of intracranial EEG based on independent component analysis (ICA)
KR101910982B1 (ko) 개인화된 생체 신호 패턴을 이용한 생체 신호의 동잡음 제거 방법 및 장치
US20070179396A1 (en) Method and System for Detecting and Classifying Facial Muscle Movements
JP7373555B2 (ja) Eeg信号を使用した運動機能の定量化
De Martino et al. Predicting EEG single trial responses with simultaneous fMRI and relevance vector machine regression
WO2017059569A1 (zh) 起搏信号处理方法、系统和心电监护仪
WO2018214523A1 (zh) 一种肌电信号采集方法及装置
CN114052668B (zh) 一种基于脑磁图数据的脑功能分析方法
Ibánez et al. An EEG-based design for the online detection of movement intention
Astolfi et al. Estimate of causality between independent cortical spatial patterns during movement volition in spinal cord injured patients
CN109585018A (zh) 信息处理方法、信息处理装置及生理检测设备
Yarici et al. Hearables: feasibility of recording cardiac rhythms from single in-ear locations
CN110569968B (zh) 基于电生理信号的创业失败恢复力评估方法及评估系统
Bull et al. A system and method for online high-resolution mapping of gastric slow-wave activity
US20210186400A1 (en) Apparatuses, systems, and methods for suppression of artifacts in non-invasive electromagnetic recordings
CN105326482B (zh) 记录生理信号的方法和装置
JP2009066186A (ja) 脳活動状態推定方法および情報処理システム
WO2020139108A1 (ru) Способ проведения когнитивных исследований с использованием системы нейровизуализации и механизма обратной связи
JP2001309898A (ja) ウェーブレット・ニューロ波形診断方法および装置
Varrecchia et al. Generalization of a wavelet-based algorithm to adaptively detect activation intervals in weak and noisy myoelectric signals
Zhu et al. Analyzing high-density ECG signals using ICA
Wang et al. Assessing the time synchronisation of EEG systems

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

R150 Certificate of patent or registration of utility model

Ref document number: 3831788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term