JP3830284B2 - Manufacturing method and equipment for sealed battery safety device - Google Patents

Manufacturing method and equipment for sealed battery safety device Download PDF

Info

Publication number
JP3830284B2
JP3830284B2 JP29368998A JP29368998A JP3830284B2 JP 3830284 B2 JP3830284 B2 JP 3830284B2 JP 29368998 A JP29368998 A JP 29368998A JP 29368998 A JP29368998 A JP 29368998A JP 3830284 B2 JP3830284 B2 JP 3830284B2
Authority
JP
Japan
Prior art keywords
plate
pressure
plate material
safety device
sealed battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29368998A
Other languages
Japanese (ja)
Other versions
JP2000123813A (en
Inventor
正 藤井
敏昭 松原
勉 秋友
宏明 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP29368998A priority Critical patent/JP3830284B2/en
Publication of JP2000123813A publication Critical patent/JP2000123813A/en
Application granted granted Critical
Publication of JP3830284B2 publication Critical patent/JP3830284B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、防爆機能を有する密閉型電池の安全装置を製造する方法及び設備に関する。
【0002】
【従来の技術】
近年、非水電解液を使用したリチウム電池やリチウムイオン電池等に非水電解液を用いた二次電池が携帯電子機器等に広く使用されつつある。
このような二次電池は高い起電力を有するという特徴がある反面、外装缶内に収納された正極及び負極を備える電極体が化学変化を起こして内圧が高くなり、破裂が生じる場合がある。例えば、リチウム二次電池のような非水電解液電池を過充電状態にしたり、誤使用による短絡状態になって大電流が流れたりすると、電極体の中の非水電解液が分解されてガスが発生する場合がある。このようなガスが外装缶内に次第に充満し、外装缶内の内圧が上昇すると、最後には電池が破裂する。
このような電池の破裂を防止するため、従来においても、例えば、正極蓋に破裂防止のための安全装置を組み込んだものがある。
【0003】
【発明が解決しようとする課題】
しかし、従来の安全装置は、ばらつきの少ない電流遮断及び破裂圧力の実現のため、安全装置を構成する個々の部品に複雑かつ高精度な加工、溶接を必要とするため、効率のよい連続一貫生産が困難であった。
本発明は、このような課題を解決しようとするものであり、安全装置の構成部品を帯又は切り板等の状態で積層状態に接着し、電流遮断部となる接点部は高精度の溶接を必要とせず、打ち抜きで最終製品とすることができ、ばらつきの少ない電流遮断及び破裂圧力を実現することができる密閉型電池の安全装置を大量生産することができる密閉型電池の安全装置の製造方法及び設備を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記した本発明の目的を達成するための第1の発明に係る密閉型電池の安全装置の製造方法は、受圧板と遮蔽板が環状の絶縁板を介して積層され、受圧板の中央部と前記遮蔽板の中央部が溶接によって接合され、受圧板と遮蔽板との間に所定以上の圧力が発生した場合に接合が剥離されるように構成した密閉型電池の安全装置を製造する方法であって、帯状又は切り板状の受圧板材と遮蔽板材を、所定長手方向ピッチで接合用開口を設けた帯状又は切り板状の絶縁板材を介して積層して積層材を形成し、積層材において受圧板材と遮蔽板材が絶縁板材の接合用開口と整合する個所を順次溶接によって接合し、その後、接合用開口を含めた形態で積層材を順次打ち抜くことによって密閉型電池の安全装置を連続的に製造する。
【0005】
また、上記した第1の発明に係る密閉型電池の安全装置の製造方法は、以下の点にも特徴を有する。
▲1▼ 受圧板材として、長手方向に所定の孔を設けた金属基板材に金属箔材をクラッドしたクラッド金属板材を用いることができる。そして、孔を封止する金属箔材の部分によって、密閉型電池の内部圧力が所定圧力以上になると破断する第1の連通部が形成されることになる。ここで、金属基板材としてはアルミニウム、鉄、銅、ステンレス等を用いることができ、その厚みは600μm程度とする。一方、金属箔材はニッケル、アルミニウム、銅等を用いることができ、その厚みは30μm程度とする。
【0006】
▲2▼ 遮蔽板材として、所定の孔を設けた金属基板材に金属箔材をクラッドしたクラッド金属板材を用いることができる。そして、第2の連通部は、孔を封止する金属箔の部分によって、密閉型電池の内部圧力がさらに高くなると破断する第2の連通部が形成されることになる。ここで、金属基板材としてはニッケル等を用いることができ、その厚みは100μm程度とする。一方、金属箔材はニッケル、アルミニウム、銅等を用いることができ、その厚みは30μm程度とすることができる。
【0007】
上記した▲1▼、▲2▼において、クラッド金属板材は、例えば、本出願人が先に特開平1−224184号公報で開示したように、1×10-1〜1×10-4 Torr の極低圧不活性ガス雰囲気中で、接合面を有する金属基板材と金属箔材をそれぞれアース接地した一方の電極Aとし、絶縁支持された他の電極Bとの間に1〜50 MHzの交流を印加してグロー放電を行わせ、かつ、前記グロー放電によって生じたプラズマ中に露出される電極の面積が、電極Bの面積の1/3以下で、スパッタエッチング処理することによって製造することができる。
【0008】
▲3▼絶縁板材はポリエチレン等の樹脂製とし、その厚みは500μm程度とすることができる。
【0009】
▲4▼ 受圧板材と遮蔽板材の溶接はスポット溶接とし、その際の溶接条件としては、例えば、溶接電圧を200V、スポット径を2mm、通電時間を10msec、スポット押圧力を80Nとする。
【0010】
また、上記本発明の目的を達成するための第2の発明に係る密閉型電池の安全装置の製造設備は、受圧板と遮蔽板が環状の絶縁板を介して積層され、受圧板の中央部と遮蔽板の中央部が溶接によって接合され、受圧板と遮蔽板との間に所定以上の圧力が発生した場合に接合が剥離されるように構成した密閉型電池の安全装置を製造する設備であって、帯状又は切り板状の受圧板材と遮蔽板材を、所定長手方向ピッチで接合用開口を設けた帯状又は切り板状の絶縁板材を、それぞれ独立して繰り出す板材繰り出し装置と、繰り出された受圧板材と、遮蔽板材と、絶縁板材を接着剤を塗布すると共に圧着状態に積層して積層材を形成する圧着積層装置と、積層材において受圧板材と遮蔽板材が絶縁板材の接合用開口と整合する個所を順次溶接によって接合する溶接装置と、接合用開口を含めた形態で積層材から安全装置を順次打ち抜く打ち抜き装置とを具備する。
【0011】
【発明の実施の形態】
以下、添付図に示す一実施の実施の形態を参照して、本発明を具体的に説明する。
まず、本発明の一実施の形態に係る密閉型電池の安全装置の製造方法によって製造することができる密閉型電池の安全装置10の構成について、図6〜図8を参照して簡単に説明する。
【0012】
図6〜図8に示すように、負極端子を兼ねる外装缶11内には電極体12が収納されている。電極体12は、正極13、セパレータ14及び負極15の積層物を渦巻状に巻回した構成になっている。そして、外装缶11の上端接合用開口部には正極蓋16が絶縁ガスケット16aを介して取り付けられており、正極蓋16は、以下に説明する構成を有する安全装置10と、端子を兼ねる封口板21とから構成されている。
【0013】
即ち、安全装置10は、実質的に、最内蓋を形成すると共に正極リード17を介して電極体12の正極13に接続される受圧板18と、受圧板18の上面に積層される環状の絶縁板20aと、絶縁板20aの上面に積層されると共に中央部に受圧板18と溶接によって電気的に接合する突起状の接点部19を有する遮蔽板20とから構成されている。
ここで、環状の絶縁板20aを密閉空受圧板18と遮蔽板20との間に介設することによって密閉空間22が形成されており、密閉空間22内にはアルゴンガスや窒素ガス等の不活性ガスが封入されている。そして、この密閉空間22において、封口板21と接点部19は受圧板18に溶接によって接合して電気的に接続されている。
【0014】
受圧板18と遮蔽板20には、外装缶11内の圧力と密閉空間22内の圧力がそれぞれ第1の設定破断圧力P1(例えば、4〜5kg/cm2 ),第2の設定破断圧力P2(例えば、20kg/cm2 )以上になると破断する第1及び第2の連通部23、24が形成されている。
受圧板18は、連通孔25を有するアルミニウムからなる厚肉(例えば、600μm)の金属基板26の下面にアルミ箔からなる薄肉(例えば、30μm)の金属箔27をクラッド技術等を用いて接着することによって構成されており、第1の連通部23は、連通孔25と、連通孔25を封止する金属箔27の部分によって形成される。
【0015】
遮蔽板20も、連通孔28を有するニッケルからなる厚肉(例えば、100μm)の金属基板29の下面にアルミ箔からなる薄肉(例えば、30μm)の金属箔30をクラッド技術等を用いて接着することによって構成されており、第2の連通部24は、連通孔28と、連通孔28を封止する金属箔30の部分によって形成される。
次に、上記した密閉型電池の安全装置を製造するための製造設備Aについて、図1〜図3を参照して説明する。
図示するように、床面31の最上流側には、帯状の絶縁板材32を繰り出すためのアンコイラーからなる第1の板材繰り出し装置33が配設されており、第1の板材繰り出し装置33の下流側には、絶縁板材32に所定ピッチで接合用開口34を設けるための中抜プレス35が配設されている。
【0016】
中抜プレス35の下流側には架台36が設置されており、架台36の上部枠37内には絶縁板材32の下流側への移送を案内する絶縁板材用ローラコンベア38が設けられている。一方、絶縁板材用ローラコンベア38の下部をなす床面31上には、帯状の受圧板材39を繰り出すためのアンコイラーからなる第2の板材繰り出し装置40が配設されている。ここで、受圧板材39は、好ましくは、長手方向に所定の孔41を設けた金属基板材42の下面に、金属箔材43をクラッドしたクラッド金属板材を用いる。一方、架台36の上部枠37上には、帯状の遮蔽板材44を繰り出すためのアンコイラーからなる第3の板材繰り出し装置45が載置されている。ここで、遮蔽板材44は、好ましくは、長手方向に所定の孔46を設けた金属基板材47の下面に、金属箔材47aをクラッドしたクラッド金属板材を用いる。
【0017】
架台36の下流側には一対の圧着ローラ48a、48bを具備する圧着積層装置48が配設されている。この圧着積層装置48によって、それぞれ上記した第1〜第3の板材繰り出し装置33、40、45から繰り出されてくる絶縁板材32、受圧板材39、遮蔽板材44にそれぞれ接着剤を塗布すると共に、中間層、下部層、上部層として圧着状態に積層して積層材49を形成するすることができる。
圧着積層装置48の下流側にはスポットウエルダーからなる溶接装置50が配設されている。この溶接装置50によって、積層材49において受圧板材39と遮蔽板材44の接合用開口34と整合する個所を順次スポット溶接によって正確かつ容易に接合することができる。
【0018】
溶接装置50の下流側には、打ち抜きプレスからなる打ち抜き装置51が配設されている。この打ち抜き装置51によって、接合用開口34を含めた形態で積層材49から上記した積層構造を有する安全装置10を、一打ち抜き動作で複数個ずつ順次打ち抜くことができる。
打ち抜き装置51の下流側には、安全装置10を打ち抜いた後の積層材49を巻き取るためのリコイラーからなる巻取装置52が配設されている。
【0019】
図示の実施の形態における密閉型電池の安全装置の製造設備Aのその他の構成について説明すると、図3に示すように、圧着積層装置48と溶接装置50との間にフィーダ装置53を設けることもできる。このフィーダ装置53の係合爪54を積層材49の両側に形成されているパイロット孔55に係合させることによって、より確実かつ正確に積層材49を溶接装置50や打ち抜き装置51に移送することができる。
【0020】
次に、上記した密閉型電池の安全装置を製造するための製造設備Aを用いた密閉型電池の安全装置の製造方法について、図1〜図5を参照して説明する。
まず、図1〜図3に示すように、第1〜第3の板材繰り出し装置33、40、45を同期して駆動して、絶縁板材32、受圧板材39、遮蔽板材44を繰り出し、その先端部を同期させながら圧着積層装置48に送り込み、それぞれ接着剤を塗布すると共に一体的に圧着・積層して強力に一体化された積層材49を形成する。
【0021】
次に、図1〜図3に示すように、積層材49を溶接装置50に送り込み、受圧板材39と遮蔽板材44の接合用開口34と整合する個所を順次スポット溶接によって正確かつ容易に接合する。
溶接完了後、図1〜図3に示すように、積層材49を打ち抜き装置51に送り込み、積層材49から安全装置10を、一打ち抜き動作で複数個ずつ順次打ち抜くことができる。図4及び図5に打ち抜き直後の安全装置10を示す。
その後、図1及び図2に示すように、打ち抜いた後の積層材49を巻取装置52によって巻き取る。
【0022】
このように、本実施の形態では、安全装置10の構成部品である絶縁板20a、受圧板18、遮蔽板20となる絶縁板材32、受圧板材39、遮蔽板材44を帯状又は切り板等の状態で積層状態に接着した状態で電流遮断部となる接点部を溶接できるので高精度の溶接を必要とせず、かつ、溶接後、多数個同時打ち抜いて最終製品である安全装置10を製造できる。従って、ばらつきの少ない電流遮断及び破裂圧力を実現することができる密閉型電池の安全装置10を安価に大量生産することができる。
【0023】
【発明の効果】
以上説明してきたように、請求項1記載の密閉型電池の安全装置の製造方法においては、安全装置の構成部品である絶縁板、受圧板、遮蔽板となる絶縁板材、受圧板材、遮蔽板材を帯状又は切り板等の状態で積層状態に接着した状態で電流遮断部となる接点部を溶接できるので高精度の溶接を必要とせず、かつ、溶接後、多数個同時打ち抜いて最終製品である安全装置を製造できる。従って、ばらつきの少ない電流遮断及び破裂圧力を実現することができる密閉型電池の安全装置を安価に大量生産することができる。
【0024】
請求項2記載の密閉型電池の安全装置の製造方法においては、所定の穴を設けた金属基板材に金属箔材をクラッドすることによって受圧板材を容易に製造することができる。
請求項3記載の密閉型電池の安全装置の製造方法においては、所定の穴を設けた金属基板材に金属箔材をクラッドすることによって遮蔽板材を容易に製造することができる。
【0025】
請求項4記載の密閉型電池の安全装置の製造設備においては、帯状又は切り板状の受圧板材と遮蔽板材を、所定長手方向ピッチで接合用開口を設けた帯状又は切り板状の絶縁板材を、それぞれ独立して繰り出す板材繰り出し装置と、繰り出された受圧板材と、遮蔽板材と、絶縁板材を接着剤を塗布すると共に圧着状態に積層して積層材を形成する圧着積層装置と、積層材において受圧板材と遮蔽板材の接合用開口に位置する個所を順次溶接によって接合する溶接装置と、接合用開口を含めた形態で前記積層材から安全装置を順次打ち抜く打ち抜き装置から構成したので、ばらつきの少ない電流遮断及び破裂圧力を実現することができる密閉型電池の安全装置を安価に大量生産することができると共に、製造設備自体も安価に製作することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る密閉型電池の安全装置の製造設備の全体側面図である。
【図2】本発明の一実施の形態に係る密閉型電池の安全装置の製造方法における絶縁板材、受圧板材、遮蔽板材の流れを示した斜視図である。
【図3】本発明の一実施の形態に係る密閉型電池の安全装置の製造方法における絶縁板材、受圧板材、遮蔽板材の流れを示した側面図である。
【図4】本発明の一実施の形態に係る密閉型電池の安全装置の製造方法によって製造された直後の密閉型電池の安全装置の断面図である。
【図5】同一部切欠斜視図である。
【図6】本発明の一実施の形態に係る密閉型電池の安全装置の製造方法によって製造された密閉型電池の安全装置の通常使用状態における使用状態説明図である。
【図7】本発明の一実施の形態に係る密閉型電池の安全装置の製造方法によって製造された密閉型電池の安全装置の第1の連通部が破断した状態における使用状態説明図である。
【図8】本発明の一実施の形態に係る密閉型電池の安全装置の製造方法によって製造された密閉型電池の安全装置の第2の連津部が破断した状態における使用状態説明図である。
【符号の説明】
A 密閉型電池の安全装置の製造設備
10 密閉型電池の安全装置
11 外装缶
18 受圧板
20 遮蔽板
20a 絶縁板
21 封口板
23 第1の連通部
24 第2の連通部
32 絶縁板材
33 第1の板材繰り出し装置
39 受圧板材
40 第2の板材繰り出し装置
41 孔
42 金属基板材
43 金属箔材
44 遮蔽板材
45 第3の板材繰り出し装置
46 孔
47 金属基板材
47a 金属箔材
48 圧着積層装置
49 積層材
50 溶接装置
51 打ち抜き装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and equipment for manufacturing a safety device for a sealed battery having an explosion-proof function.
[0002]
[Prior art]
In recent years, secondary batteries using non-aqueous electrolytes are widely used in portable electronic devices and the like for lithium batteries and lithium ion batteries using non-aqueous electrolytes.
While such a secondary battery has a characteristic of having a high electromotive force, an electrode body including a positive electrode and a negative electrode housed in an outer can may cause a chemical change to increase an internal pressure, which may cause a burst. For example, when a non-aqueous electrolyte battery such as a lithium secondary battery is overcharged, or when a large current flows due to a short circuit due to misuse, the non-aqueous electrolyte in the electrode body is decomposed and gas May occur. When such a gas gradually fills the outer can and the internal pressure in the outer can rises, the battery eventually ruptures.
In order to prevent such rupture of the battery, for example, there is a conventional battery that incorporates a safety device for preventing rupture in the positive electrode lid.
[0003]
[Problems to be solved by the invention]
However, conventional safety devices require efficient and continuous production because the individual parts that make up the safety device require complicated and high-precision processing and welding in order to achieve current interruption and burst pressure with little variation. It was difficult.
The present invention is intended to solve such a problem. The components of the safety device are bonded to each other in a laminated state in the state of a band or a cut plate, and the contact portion serving as a current interrupting portion is welded with high accuracy. A sealed battery safety device manufacturing method capable of mass-producing a sealed battery safety device that can be punched into a final product without being required and can realize current interruption and burst pressure with little variation. And to provide equipment.
[0004]
[Means for Solving the Problems]
According to a first aspect of the present invention for achieving the object of the present invention, there is provided a method for manufacturing a sealed battery safety device, wherein a pressure receiving plate and a shielding plate are laminated via an annular insulating plate, A method for manufacturing a safety device for a sealed battery, wherein the central portion of the shielding plate is joined by welding, and the joining is peeled off when a predetermined pressure or more is generated between the pressure receiving plate and the shielding plate. A laminated material is formed by laminating a band-shaped or cut-plate-shaped pressure receiving plate material and a shielding plate material via a band-shaped or cut-plate-shaped insulating plate material provided with bonding openings at a predetermined longitudinal pitch. The parts where the pressure-receiving plate material and the shielding plate material are aligned with the joint opening of the insulating plate material are joined sequentially by welding, and then the laminated battery is sequentially punched out in a form including the joint opening, thereby continuously providing the safety device for the sealed battery. To manufacture.
[0005]
In addition, the above-described method for manufacturing a sealed battery safety device according to the first invention is also characterized by the following points.
(1) As the pressure receiving plate material, a clad metal plate material obtained by cladding a metal foil material on a metal substrate material having predetermined holes in the longitudinal direction can be used. And the 1st communicating part which fractures | ruptures when the internal pressure of a sealed battery becomes more than predetermined pressure by the part of the metal foil material which seals a hole will be formed. Here, aluminum, iron, copper, stainless steel or the like can be used as the metal substrate material, and the thickness thereof is about 600 μm. On the other hand, nickel, aluminum, copper or the like can be used as the metal foil material, and the thickness thereof is about 30 μm.
[0006]
(2) As the shielding plate material, a clad metal plate material obtained by cladding a metal foil material on a metal substrate material provided with predetermined holes can be used. And the 2nd communication part will form the 2nd communication part which will fracture when the internal pressure of a sealed type battery becomes still higher by the part of metal foil which seals a hole. Here, nickel or the like can be used as the metal substrate material, and its thickness is about 100 μm. On the other hand, nickel, aluminum, copper, etc. can be used for the metal foil material, and the thickness can be about 30 μm.
[0007]
In the above (1) and (2), the clad metal plate material is, for example, 1 × 10 −1 to 1 × 10 −4 Torr as disclosed in Japanese Patent Laid-Open No. 1-222484 by the present applicant. In an extremely low pressure inert gas atmosphere, a metal substrate material having a bonding surface and a metal foil material are each grounded as one electrode A, and an alternating current of 1 to 50 MHz is provided between the other electrode B which is insulated and supported. It can be manufactured by applying glow discharge and applying the sputter etching so that the area of the electrode exposed to the plasma generated by the glow discharge is 1/3 or less of the area of the electrode B. .
[0008]
(3) The insulating plate material is made of a resin such as polyethylene, and the thickness thereof can be about 500 μm.
[0009]
(4) Welding of the pressure-receiving plate material and the shielding plate material is spot welding. As welding conditions at that time, for example, the welding voltage is 200 V, the spot diameter is 2 mm, the energization time is 10 msec, and the spot pressing force is 80 N.
[0010]
The facility for manufacturing a sealed battery safety device according to the second aspect of the present invention for achieving the object of the present invention includes a pressure receiving plate and a shielding plate laminated via an annular insulating plate, and a central portion of the pressure receiving plate. Is a facility that manufactures a safety device for a sealed battery that is configured so that the central portion of the shield plate is joined by welding and the joint is peeled off when a pressure exceeding a predetermined level is generated between the pressure receiving plate and the shield plate. A belt-shaped or cut-plate-shaped pressure receiving plate material and a shielding plate material, and a strip-shaped or cut-plate-shaped insulating plate material provided with openings for joining at a predetermined longitudinal pitch, respectively, and a plate material feeding device for feeding each independently. A pressure receiving plate material, a shielding plate material, a pressure bonding laminating apparatus that forms a laminated material by applying an adhesive to the insulating plate material and laminating it in a crimped state, and the pressure receiving plate material and the shielding plate material are aligned with the opening for joining the insulating plate material in the laminated material Sequential welding A welding device for joining Te comprises a sequential stamping punching apparatus with a safety device of a laminated material in a form including the junction opening.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described with reference to an embodiment shown in the accompanying drawings.
First, the configuration of a sealed battery safety device 10 that can be manufactured by the method for manufacturing a sealed battery safety device according to an embodiment of the present invention will be briefly described with reference to FIGS. .
[0012]
As shown in FIGS. 6-8, the electrode body 12 is accommodated in the armored can 11 which also serves as a negative electrode terminal. The electrode body 12 has a configuration in which a laminate of a positive electrode 13, a separator 14, and a negative electrode 15 is spirally wound. And the positive electrode lid | cover 16 is attached to the opening part for upper-end joining of the armored can 11 via the insulating gasket 16a, and the positive electrode lid | cover 16 has the sealing device which serves as a terminal with the safety device 10 which has the structure demonstrated below. 21.
[0013]
In other words, the safety device 10 substantially includes an annular pressure layer that is formed on the upper surface of the pressure receiving plate 18 and a pressure receiving plate 18 that forms an innermost lid and is connected to the positive electrode 13 of the electrode body 12 via the positive electrode lead 17. The insulating plate 20a is laminated on the upper surface of the insulating plate 20a and includes a pressure receiving plate 18 and a shielding plate 20 having a protruding contact portion 19 that is electrically joined by welding at the center.
Here, a sealed space 22 is formed by interposing an annular insulating plate 20 a between the sealed air pressure receiving plate 18 and the shielding plate 20, and argon gas, nitrogen gas or the like is not contained in the sealed space 22. Active gas is enclosed. In the sealed space 22, the sealing plate 21 and the contact portion 19 are joined and electrically connected to the pressure receiving plate 18 by welding.
[0014]
In the pressure receiving plate 18 and the shielding plate 20, the pressure in the outer can 11 and the pressure in the sealed space 22 are the first set breaking pressure P1 (for example, 4 to 5 kg / cm 2 ) and the second set breaking pressure P2, respectively. First and second communication portions 23 and 24 are formed which break when they are equal to or greater than (for example, 20 kg / cm 2 ).
The pressure receiving plate 18 is formed by bonding a thin (for example, 30 μm) metal foil 27 made of aluminum foil to a lower surface of a thick (for example, 600 μm) metal substrate 26 made of aluminum having communication holes 25 using a clad technique or the like. The first communication portion 23 is formed by a communication hole 25 and a portion of the metal foil 27 that seals the communication hole 25.
[0015]
The shielding plate 20 also has a thin (for example, 30 μm) metal foil 30 made of aluminum foil adhered to the lower surface of a thick (for example, 100 μm) metal substrate 29 made of nickel having the communication holes 28 using a cladding technique or the like. The second communication portion 24 is formed by a communication hole 28 and a portion of the metal foil 30 that seals the communication hole 28.
Next, a manufacturing facility A for manufacturing the above-described sealed battery safety device will be described with reference to FIGS.
As shown in the drawing, on the uppermost stream side of the floor surface 31, a first plate material feeding device 33 made of an uncoiler for feeding a strip-shaped insulating plate material 32 is disposed, and downstream of the first plate material feeding device 33. On the side, a hollow press 35 is provided for providing the openings 34 for bonding at a predetermined pitch in the insulating plate 32.
[0016]
A stand 36 is installed on the downstream side of the hollow press 35, and an insulating plate material roller conveyor 38 for guiding the transfer of the insulating plate material 32 to the downstream side is provided in the upper frame 37 of the stand 36. On the other hand, on the floor surface 31 that forms the lower part of the roller conveyor 38 for the insulating plate material, a second plate material feeding device 40 comprising an uncoiler for feeding the belt-shaped pressure receiving plate material 39 is disposed. Here, the pressure receiving plate material 39 is preferably a clad metal plate material in which a metal foil material 43 is clad on the lower surface of a metal substrate material 42 provided with predetermined holes 41 in the longitudinal direction. On the other hand, on the upper frame 37 of the gantry 36, a third plate material feeding device 45 made of an uncoiler for feeding the strip-shaped shielding plate material 44 is placed. Here, the shielding plate member 44 is preferably a clad metal plate member in which a metal foil member 47a is clad on the lower surface of a metal substrate member 47 provided with a predetermined hole 46 in the longitudinal direction.
[0017]
A pressure laminating device 48 having a pair of pressure rollers 48 a and 48 b is disposed on the downstream side of the gantry 36. The pressure bonding laminating device 48 applies an adhesive to the insulating plate 32, the pressure receiving plate 39, and the shielding plate 44 fed from the first to third plate feeding devices 33, 40, and 45, respectively. The layered material 49 can be formed by laminating layers, lower layers, and upper layers in a pressure-bonded state.
A welding device 50 including a spot welder is disposed on the downstream side of the pressure laminating device 48. With this welding apparatus 50, the portions of the laminated material 49 that are aligned with the joint openings 34 of the pressure-receiving plate material 39 and the shielding plate material 44 can be joined accurately and easily by sequential spot welding.
[0018]
On the downstream side of the welding device 50, a punching device 51 including a punching press is disposed. With this punching device 51, a plurality of safety devices 10 having the above-described laminated structure can be sequentially punched from the laminated material 49 in a form including the bonding opening 34 by a single punching operation.
On the downstream side of the punching device 51, a winding device 52 made of a recoiler for winding the laminated material 49 after punching the safety device 10 is disposed.
[0019]
The other configuration of the sealed battery safety device manufacturing facility A in the illustrated embodiment will be described. As shown in FIG. 3, a feeder device 53 may be provided between the crimping laminating device 48 and the welding device 50. it can. By engaging the engaging claws 54 of the feeder device 53 with the pilot holes 55 formed on both sides of the laminated material 49, the laminated material 49 can be transferred to the welding device 50 and the punching device 51 more reliably and accurately. Can do.
[0020]
Next, a manufacturing method of a sealed battery safety device using the manufacturing facility A for manufacturing the above-described sealed battery safety device will be described with reference to FIGS.
First, as shown in FIGS. 1 to 3, the first to third plate material feeding devices 33, 40, and 45 are driven in synchronization to feed the insulating plate material 32, the pressure receiving plate material 39, and the shielding plate material 44, and the tip thereof The parts are fed into a pressure laminating device 48 while being synchronized with each other, respectively, and an adhesive is applied thereto, and a pressure-bonding and laminating are integrally performed to form a strongly integrated laminated material 49.
[0021]
Next, as shown in FIG. 1 to FIG. 3, the laminated material 49 is fed into the welding device 50, and the portions that are aligned with the joint openings 34 of the pressure receiving plate material 39 and the shielding plate material 44 are sequentially and easily joined by spot welding. .
After the welding is completed, as shown in FIGS. 1 to 3, the laminated material 49 can be fed into the punching device 51, and the safety devices 10 can be sequentially punched from the laminated material 49 one by one by one punching operation. 4 and 5 show the safety device 10 immediately after punching.
Thereafter, as shown in FIGS. 1 and 2, the laminated material 49 after being punched is wound up by a winding device 52.
[0022]
As described above, in the present embodiment, the insulating plate 20a, the pressure receiving plate 18, and the insulating plate material 32 to be the shielding plate 20, the pressure receiving plate material 39, and the shielding plate material 44, which are components of the safety device 10, are in the state of a strip or a cut plate. Thus, since the contact portion serving as the current interrupting portion can be welded in a state of being bonded in a laminated state, high-precision welding is not required, and after the welding, a large number of the safety devices 10 that are the final product can be manufactured. Therefore, the sealed battery safety device 10 capable of realizing current interruption and burst pressure with little variation can be mass-produced at low cost.
[0023]
【The invention's effect】
As described above, in the method for manufacturing a safety device for a sealed battery according to claim 1, the insulating plate, the pressure receiving plate, the insulating plate material serving as the shielding plate, the pressure receiving plate material, and the shielding plate material, which are components of the safety device, are provided. Since the contact part that becomes the current interrupting part can be welded in the state of being bonded in a laminated state in the form of a strip or a cut plate, etc., high-precision welding is not required, and after welding, the safety is the final product by punching multiple pieces simultaneously The device can be manufactured. Therefore, it is possible to inexpensively mass-produce a sealed battery safety device that can realize current interruption and burst pressure with little variation.
[0024]
In the method of manufacturing a sealed battery safety device according to claim 2, the pressure-receiving plate material can be easily manufactured by cladding the metal foil material on the metal substrate material provided with the predetermined holes.
In the method for manufacturing a safety device for a sealed battery according to claim 3, the shielding plate material can be easily manufactured by cladding the metal foil material on the metal substrate material provided with the predetermined holes.
[0025]
In the facility for manufacturing a safety device for a sealed battery according to claim 4, a band-shaped or cut-plate-shaped pressure-receiving plate material and a shielding plate material, and a band-shaped or cut-plate-shaped insulating plate material provided with bonding openings at a predetermined longitudinal pitch. In the laminating material, the laminating device for feeding the plate material independently, the pressure receiving plate material, the shielding plate material, the pressure bonding laminating device for applying the adhesive and laminating the insulating plate material to form a laminated material There are few variations because it consists of a welding device that sequentially welds the locations located in the joint opening of the pressure receiving plate material and the shielding plate material and a punching device that sequentially punches the safety device from the laminated material in a form including the joint opening. In addition to being able to mass-produce safety devices for sealed batteries that can achieve current interruption and burst pressure, the production equipment itself can be manufactured at low cost. That.
[Brief description of the drawings]
1 is an overall side view of a manufacturing facility for a safety device for a sealed battery according to an embodiment of the present invention;
FIG. 2 is a perspective view showing the flow of an insulating plate material, a pressure receiving plate material, and a shielding plate material in a method for manufacturing a sealed battery safety device according to an embodiment of the present invention.
FIG. 3 is a side view showing the flow of an insulating plate material, a pressure receiving plate material, and a shielding plate material in the method for manufacturing a sealed battery safety device according to an embodiment of the present invention.
FIG. 4 is a cross-sectional view of a sealed battery safety device immediately after being manufactured by the sealed battery safety device manufacturing method according to an embodiment of the present invention.
FIG. 5 is a perspective view with the same part cut away.
FIG. 6 is an explanatory diagram of the use state of the sealed battery safety device manufactured by the method for manufacturing the sealed battery safety device according to the embodiment of the present invention in a normal use state.
FIG. 7 is an explanatory diagram of a usage state in a state where the first communication part of the safety device for a sealed battery manufactured by the method for manufacturing a safety device for a sealed battery according to an embodiment of the present invention is broken.
FIG. 8 is an explanatory diagram of a usage state in a state in which a second continuous portion of the safety device for a sealed battery manufactured by the method for manufacturing a safety device for a sealed battery according to an embodiment of the present invention is broken. .
[Explanation of symbols]
A Sealed Battery Safety Device Manufacturing Equipment 10 Sealed Battery Safety Device 11 Exterior Can 18 Pressure Plate 20 Shield Plate 20a Insulating Plate 21 Sealing Plate 23 First Communication Portion 24 Second Communication Portion 32 Insulating Plate Material 33 First Plate material feeding device 39 pressure receiving plate material 40 second plate material feeding device 41 hole 42 metal substrate material 43 metal foil material 44 shielding plate material 45 third plate material feeding device 46 hole 47 metal substrate material 47a metal foil material 48 pressure laminating device 49 lamination Material 50 Welding device 51 Punching device

Claims (4)

受圧板と遮蔽板が環状の絶縁板を介して積層され、前記受圧板の中央部と前記遮蔽板の中央部が溶接によって接合され、前記受圧板と前記遮蔽板との間に所定以上の圧力が発生した場合に該接合が剥離されるように構成した密閉型電池の安全装置を製造する方法であって、
帯状又は切り板状の受圧板材と遮蔽板材を、所定長手方向ピッチで接合用開口を設けた帯状又は切り板状の絶縁板材を介して積層して積層材を形成し、該積層材において前記受圧板材と前記遮蔽板材が前記絶縁板材の接合用開口と整合する個所を順次溶接によって接合し、その後、前記接合用開口を含めた形態で前記積層材を順次打ち抜くことによって前記密閉型電池の安全装置を連続的に製造することを特徴とする密閉型電池の安全装置の製造方法。
The pressure receiving plate and the shielding plate are laminated via an annular insulating plate, the central portion of the pressure receiving plate and the central portion of the shielding plate are joined by welding, and a pressure greater than a predetermined pressure is provided between the pressure receiving plate and the shielding plate. Is a method of manufacturing a sealed battery safety device configured such that the bond is peeled off when
A band-shaped or cut-plate-shaped pressure-receiving plate material and a shielding plate material are laminated via a band-shaped or cut-plate-shaped insulating plate material provided with bonding openings at a predetermined longitudinal pitch, and a laminated material is formed. The sealed battery safety device is formed by sequentially welding locations where the plate material and the shielding plate material are aligned with the joint opening of the insulating plate material, and then sequentially punching out the laminated material in a form including the joint opening. Is manufactured continuously. A method of manufacturing a sealed battery safety device.
前記受圧板材として、長手方向に間隔をあけて所定の孔を設けた金属基板材に金属箔材をクラッドしたクラッド金属板材を用いることを特徴とする請求項1記載の密閉型電池の安全装置の製造方法。The sealed battery safety device according to claim 1, wherein the pressure-receiving plate material is a clad metal plate material obtained by cladding a metal foil material on a metal substrate material provided with predetermined holes at intervals in the longitudinal direction. Production method. 前記遮蔽板材として、長手方向に間隔をあけて所定の孔を設けた金属基板材に金属箔材をクラッドしたクラッド金属板材を用いることを特徴とする請求項1又は2記載の密閉型電池の安全装置の製造方法。3. The sealed battery according to claim 1, wherein a clad metal plate obtained by cladding a metal foil material on a metal substrate material provided with predetermined holes at intervals in the longitudinal direction is used as the shielding plate material. Device manufacturing method. 受圧板と遮蔽板が環状の絶縁板を介して積層され、前記受圧板の中央部と前記遮蔽板の中央部が溶接によって接合され、前記受圧板と前記遮蔽板との間に所定以上の圧力が発生した場合に該接合が剥離されるように構成した密閉型電池の安全装置を製造する設備であって、
帯状又は切り板状の受圧板材と遮蔽板材を、所定長手方向ピッチで接合用開口を設けた帯状又は切り板状の絶縁板材を、それぞれ独立して繰り出す板材繰り出し装置と、
繰り出された前記受圧板材と、遮蔽板材と、絶縁板材を接着剤を塗布すると共に圧着状態に積層して積層材を形成する圧着積層装置と、
前記積層材において前記受圧板材と前記遮蔽板材が前記絶縁板材の接合用開口と整合する個所を順次溶接によって接合する溶接装置と、
前記接合用開口を含めた形態で前記積層材から前記安全装置を順次打ち抜く打ち抜き装置とを具備する密閉型電池の安全装置の製造設備。
The pressure receiving plate and the shielding plate are laminated via an annular insulating plate, the central portion of the pressure receiving plate and the central portion of the shielding plate are joined by welding, and a pressure greater than a predetermined pressure is provided between the pressure receiving plate and the shielding plate. Is a facility for manufacturing a safety device for a sealed battery configured to peel off the joint when
A plate material feeding device for independently feeding a belt-shaped or cut-plate-shaped pressure-receiving plate material and a shielding plate material, and a strip-shaped or cut-plate-shaped insulating plate material provided with openings for joining at a predetermined longitudinal pitch;
A pressure laminating device that forms the laminated material by applying the adhesive and laminating the insulating plate material in a pressure-bonded state; and
A welding device that sequentially welds the pressure-receiving plate material and the shielding plate material in the laminated material at positions where the insulating plate material is aligned with the joint opening;
A facility for manufacturing a safety device for a sealed battery, comprising: a punching device that sequentially punches the safety device from the laminated material in a form including the bonding opening.
JP29368998A 1998-10-15 1998-10-15 Manufacturing method and equipment for sealed battery safety device Expired - Fee Related JP3830284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29368998A JP3830284B2 (en) 1998-10-15 1998-10-15 Manufacturing method and equipment for sealed battery safety device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29368998A JP3830284B2 (en) 1998-10-15 1998-10-15 Manufacturing method and equipment for sealed battery safety device

Publications (2)

Publication Number Publication Date
JP2000123813A JP2000123813A (en) 2000-04-28
JP3830284B2 true JP3830284B2 (en) 2006-10-04

Family

ID=17797967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29368998A Expired - Fee Related JP3830284B2 (en) 1998-10-15 1998-10-15 Manufacturing method and equipment for sealed battery safety device

Country Status (1)

Country Link
JP (1) JP3830284B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101355834B1 (en) * 2010-12-02 2014-01-28 주식회사 엘지화학 Device for Laminating Electrode Assembly Used in Manufacturing Secondary Battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07105933A (en) * 1993-10-06 1995-04-21 Hitachi Maxell Ltd Anti-explosive enclosed battery
JP3294409B2 (en) * 1993-12-22 2002-06-24 ヤマキ工業株式会社 Dissimilar metal composite plate and method of manufacturing the same
JP3196607B2 (en) * 1995-10-31 2001-08-06 松下電器産業株式会社 Explosion-proof sealing plate for sealed batteries
JP3108360B2 (en) * 1996-02-15 2000-11-13 福田金属箔粉工業株式会社 Battery safety valve element and battery case lid with safety valve
KR100300383B1 (en) * 1996-02-15 2002-06-20 다나베 히로까즈 Cladding material
JPH10284033A (en) * 1997-04-07 1998-10-23 Mikuni Kogyo:Kk Manufacture of safety valve of lithium ion battery

Also Published As

Publication number Publication date
JP2000123813A (en) 2000-04-28

Similar Documents

Publication Publication Date Title
CN108475756B (en) Method for manufacturing electrode body and method for manufacturing nonaqueous electrolyte secondary battery
EP1440487B1 (en) Flexible thin battery and method of manufacturing the same
EP1339115B1 (en) Flat battery and production method therefor
CN108807854B (en) Electrode laminate and method for producing battery
US20140349167A1 (en) Method for manufacturing packed electrode, and packed electrode, secondary battery and heat sealing machine
US20160043360A1 (en) Ultrasonic welding device, manufacturing method of rechargeable battery using the same, and rechargeable battery
JP2003223880A (en) Method for connecting lead to battery tab
CN101090150A (en) Sealed battery with a film casing
KR101073319B1 (en) Electrode for secondary cell, manufacturing method thereof, and secondary cell using the same
JP7229027B2 (en) Secondary battery and manufacturing method thereof
CN210136972U (en) Secondary battery
JP2011243531A (en) Metal lead and manufacturing method thereof
WO2001059855A9 (en) Li-ION AND/OR Li-ION POLYMER BATTERY WITH SHIELDED LEADS
JP3853461B2 (en) Explosion-proof sealing plate for sealed battery and method for manufacturing the same
WO2013191218A1 (en) Process for producing stacked aluminum material, process for producing sealed battery containing same, and sealed battery
JP2003297430A (en) Method of manufacturing secondary battery and device for manufacturing secondary battery electrode
US6864014B2 (en) Connecting structure of conductive connecting tab of battery
KR20210138400A (en) The Apparatus And The Method For Welding Electrode Tabs
EP2946868B1 (en) Method of manufacturing a sealed battery
JP6088254B2 (en) Manufacturing method of laminated metal foil and manufacturing method of sealed battery including the same
JP3830284B2 (en) Manufacturing method and equipment for sealed battery safety device
JP2003007344A (en) Lithium ion battery and manufacturing method of the same
EP3508299B1 (en) Method for manufacturing laminated metal foil
JP2012069497A (en) Electrochemical device and electrical storage device
JPH06140028A (en) Negative electrode current collector and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees