JP2003297430A - Method of manufacturing secondary battery and device for manufacturing secondary battery electrode - Google Patents

Method of manufacturing secondary battery and device for manufacturing secondary battery electrode

Info

Publication number
JP2003297430A
JP2003297430A JP2002101513A JP2002101513A JP2003297430A JP 2003297430 A JP2003297430 A JP 2003297430A JP 2002101513 A JP2002101513 A JP 2002101513A JP 2002101513 A JP2002101513 A JP 2002101513A JP 2003297430 A JP2003297430 A JP 2003297430A
Authority
JP
Japan
Prior art keywords
electrode
manufacturing
cutting
secondary battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002101513A
Other languages
Japanese (ja)
Inventor
Tsutomu Hashimoto
勉 橋本
Hidehiko Tajima
英彦 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002101513A priority Critical patent/JP2003297430A/en
Publication of JP2003297430A publication Critical patent/JP2003297430A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To minimize oxidation of a lithium foil and to laminate the lithium foil on an electrode with good adhesion. <P>SOLUTION: A method of manufacturing a secondary battery accommodating positive and negative electrodes 2, 3 and an electrolyte in a case comprises steps of: providing a lithium mass between rolls for rolling the lithium mass to produce a lithium foil, superposing the lithium foil 21 on the electrode 2 and pressing the electrode and the lithium foil to integrate them; and cutting the continuous electrode by every predetermined length. Furthermore, at least two steps among electrode assembling steps are carried out, the electrode assembling comprising steps of: cutting the electrode by crossing a blade having a plane along a contour of the cut portion without the cutting line with the continuous electrode, the electrode cutting step being performed alternately with the cutting step; a arranging the positive electrode and the negative electrode alternately; disposing a separator 25 having a continuative elongated sheet shape along either side of either electrode and the other side of the other electrode; and superposing both electrodes via the separator. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、リチウム二次電
池等の二次電池の製造方法、および該二次電池に利用さ
れる電極の製造装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a secondary battery such as a lithium secondary battery, and a manufacturing apparatus for electrodes used in the secondary battery.

【0002】[0002]

【従来の技術】近年、さまざまな分野で二次電池が用い
られている。例えば、小型のものであれば、携帯電話機
やビデオカメラ等の電子機器の電源として用いられてい
る。また、大型のものであれば、電気自動車の電源や家
庭用等の電力貯蔵装置として用いられている。また、従
来から用いられている鉛二次電池やニッケル・カドミウ
ム二次電池に代わって、より軽量でコンパクトなリチウ
ム二次電池が普及しつつある。
2. Description of the Related Art In recent years, secondary batteries have been used in various fields. For example, if it is small, it is used as a power source for electronic devices such as mobile phones and video cameras. Further, if it is large, it is used as a power source for electric vehicles or a power storage device for home use. Further, in place of the lead secondary battery and the nickel-cadmium secondary battery that have been conventionally used, a lighter and more compact lithium secondary battery is becoming popular.

【0003】図6は上記リチウム二次電池の一従来例を
示すものである。このリチウム二次電池1は、いわゆる
角型と呼ばれるもので、複数の(正極)電極2と、(負
極)電極3と、これらの電極2,3の間にそれぞれ配置
されたセパレータ4とをステンレス等からなる電池ケー
ス5に収容し、該電池ケース5の内部に非水電解液を充
填した構成となっている。また前記電池ケース5の開口
部は封口体6によって閉じられている。
FIG. 6 shows a conventional example of the lithium secondary battery. This lithium secondary battery 1 is of a so-called prismatic type, and comprises a plurality of (positive electrode) electrodes 2, a (negative electrode) electrode 3, and a separator 4 arranged between these electrodes 2 and 3 made of stainless steel. The battery case 5 is made of, for example, and is filled with a non-aqueous electrolyte solution. The opening of the battery case 5 is closed by a sealing body 6.

【0004】前記正極電極2と負極電極3とは間にセパ
レータ4を挟んで交互に重ね合わせられている。また正
極電極2の一端には正極タブ12aが形成され、各正極
タブ12aは正極リード12bによって相互に接続され
ている。この正極リード12bには、正極端子7が取り
付けられ、この正極端子7の先端は前記封口体6を貫通
して外部へ突出している。また負極電極3の一端には負
極タブ13aが形成され、各負極タブ13aは負極リー
ド13bによって相互に接続されている。この負極リー
ド13bには、負極端子8が、この負極端子8の先端は
前記封口体6を貫通して外部へ突出している。
The positive electrode 2 and the negative electrode 3 are alternately stacked with a separator 4 interposed therebetween. A positive electrode tab 12a is formed at one end of the positive electrode 2 and the positive electrode tabs 12a are connected to each other by a positive electrode lead 12b. A positive electrode terminal 7 is attached to the positive electrode lead 12b, and a tip of the positive electrode terminal 7 penetrates the sealing body 6 and projects to the outside. A negative electrode tab 13a is formed at one end of the negative electrode 3, and the negative electrode tabs 13a are connected to each other by a negative electrode lead 13b. A negative electrode terminal 8 is attached to the negative electrode lead 13b, and a tip of the negative electrode terminal 8 penetrates the sealing body 6 and projects to the outside.

【0005】前記正極電極2は、例えばAl板(ないし
は箔)からなる正極集電体の表面にグラファイト等の正
極電極層を積層し、さらに、この正極電極層の表面にL
i(リチウム)イオン供給源としてのLi箔に被覆した
構成となっている。
The positive electrode 2 is formed by laminating a positive electrode layer of graphite or the like on the surface of a positive electrode current collector made of, for example, an Al plate (or foil), and further forming L on the surface of the positive electrode layer.
It has a configuration in which a Li foil as an i (lithium) ion supply source is covered.

【0006】[0006]

【発明が解決しようとする課題】ところで、前記Li
は、箔状に形成されることによって表面積が大きな状態
となり、しかも、箔状に形成した後、前記電極へ積層さ
れる迄にはある程度の時間を要するから、表面の酸化が
避けられず、この酸化の程度によっては、Li供給源と
しての機能を果たすことができないこともある。
By the way, the above-mentioned Li
Has a large surface area by being formed in a foil shape, and it takes some time before being laminated on the electrode after being formed in a foil shape, and therefore oxidation of the surface is unavoidable. Depending on the degree of oxidation, it may not be able to function as a Li source.

【0007】そこで、製造されたLi箔の表面を酸化防
止剤等により被覆することも考えられるが、この酸化防
止剤の存在が二次電池の性能に悪影響を及ぼすこともあ
る。
Therefore, it is possible to cover the surface of the manufactured Li foil with an antioxidant or the like, but the presence of this antioxidant may adversely affect the performance of the secondary battery.

【0008】本発明は上記事情に鑑みてなされたもの
で、その目的とするところは、Li箔の酸化を可及的に
防止しつつ電極に密着性良く積層すること、および、電
極の製造に際して、電池の不良の原因となり得る切り屑
の発生を可及的に減少させることを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to laminate Li foil with good adhesion while preventing oxidation of Li foil as much as possible, and to manufacture the electrode. The purpose is to reduce as much as possible the generation of chips that may cause defective batteries.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明の製造方法は、正極および負極の電極を電解
液とともに電池ケースに収容してなる二次電池の製造方
法において、前記電極を所定方向へ連続的に製造する工
程と、リチウム塊をロール間へ供給して箔状に圧延する
工程と、該前記ロールの間から送り出されたリチウム箔
を前記連続的に製造された電極に重ね合わせる工程と、
該重ね合わせられた電極とリチウム箔とを厚さ方向へ加
圧して一体化する工程とを有することを特徴とする。ま
た、正極および負極の電極を電解液とともに電池ケース
に収容してなる二次電池の製造方法において、前記電極
を所定方向へ連続的に製造する工程と、連続的に製造さ
れた電極を所定長さ毎に切断する切断工程とを有し、該
切断工程による切断線を除いた前記電極の輪郭に沿う平
面形状を有する刃物を前記連続的な電極と交差させるこ
とにより切断する打抜工程を前記切断工程と交互に行う
ことを特徴とする。また、正極および負極の電極を電解
液とともに電池ケースに収容してなる二次電池の製造方
法において、前記電極を製造する工程と、前記正極およ
び負極の電極を交互に配置する工程と、何れか一方の電
極の一方の側面といずれか他方の電極の他方の側面とに
沿わせて、長尺シート状に連続するセパレータを配置す
る工程と、前記正極および負極の電極を前記セパレータ
を間に介在させて重ね合わせる工程とからなることを特
徴とする。また、上記各製造方法における、リチウム箔
が積層された電極を製造するリチウム積層工程、電極切
断工程、電極組立工程のうち少なくとも2つの工程を行
うことを特徴とする。また本発明の電極装置は、正極お
よび負極の電極を電解液とともに電池ケースに収容して
なる二次電池の製造装置において、リチウム塊をロール
間へ供給して箔状に圧延する圧延手段と、該圧延手段の
前記ロールの間から送り出されたリチウム箔を前記連続
的に製造された電極に重ね合わせて加圧する加圧手段と
から構成されてなり、前記圧延手段は、連続的に送り出
される電極の両側にそれぞれ設けられ、前記加圧手段
は、電極とその両側に送り出されたリチウム箔とを両側
から圧縮する一対のローラからなることを特徴とする。
また、前記ローラは外周面に凹凸を有することを特徴と
する。また、前記ローラの表面に弾性変形層を設けたこ
とを特徴とする。
In order to achieve the above object, the manufacturing method of the present invention is a method for manufacturing a secondary battery in which a positive electrode and a negative electrode are housed together with an electrolytic solution in a battery case. A step of continuously producing in a predetermined direction, a step of supplying a lithium ingot between rolls and rolling into a foil shape, and a lithium foil sent out from between the rolls is overlaid on the continuously produced electrode. The process of matching,
And pressing the stacked electrodes and the lithium foil in the thickness direction to integrate them. Further, in a method for manufacturing a secondary battery in which a positive electrode and a negative electrode are housed in a battery case together with an electrolytic solution, a step of continuously manufacturing the electrodes in a predetermined direction, and a step of continuously manufacturing the electrodes for a predetermined length And a punching step of cutting by cutting a blade having a planar shape along the contour of the electrode excluding a cutting line by the cutting step with the continuous electrode. It is characterized in that it is carried out alternately with the cutting step. Further, in a method for manufacturing a secondary battery in which a positive electrode and a negative electrode are housed in a battery case together with an electrolyte, a step of manufacturing the electrode and a step of alternately arranging the positive electrode and the negative electrode A step of arranging a continuous separator in a long sheet shape along one side surface of one electrode and the other side surface of the other electrode, and interposing the positive electrode and the negative electrode between the separators. It is characterized by comprising a step of allowing them to be superposed. Further, in each of the above-mentioned manufacturing methods, at least two steps of a lithium stacking step of manufacturing an electrode on which a lithium foil is stacked, an electrode cutting step, and an electrode assembling step are performed. Further, the electrode device of the present invention is a secondary battery manufacturing apparatus in which the positive electrode and the negative electrode are housed in a battery case together with an electrolytic solution, and a rolling unit that supplies a lithium ingot between rolls and rolls it into a foil, And a pressing means for pressing the lithium foil fed from between the rolls of the rolling means onto the continuously manufactured electrode, wherein the rolling means is a continuously fed electrode. Each of the pressing means is provided on both sides of the electrode, and the pressing means is composed of a pair of rollers for compressing the electrode and the lithium foil fed to both sides thereof from both sides.
Further, the roller is characterized in that it has irregularities on its outer peripheral surface. Also, an elastically deformable layer is provided on the surface of the roller.

【0010】図1は本発明の一実施形態にかかる製造方
法を示すものである。イは積層工程であって、連続的に
送り出される電極(図示例では正極電極2)に両側から
リチウム箔21を供給し、これらを一対の圧着ローラ2
2によって圧縮して一体に圧着している。ロは切断工程
であって、前記イの積層工程によってリチウム箔21が
積層された電極2を長手方向(図1の右方向)へ移動さ
せ、ダイカッターなどの切断手段23により、該電極2
の厚さ方向へ所定形状の刃物を交差させて所定の輪郭に
切断し、さらに、カッター24によって電極2を幅方向
(図1の紙面方向)への切断線によって切断し、一枚ず
つ切り離された電極2を得る。負極電極についても同様
である。ハは電極組立工程であって、前記ロの工程によ
って得られた正極電極2と負極電極3とを、例えば5
組、交互に重ね合わせ、これらの間に葛折り状に折り曲
げながらセパレータ25を介在させることにより、図6
に従来例として示したものと同様、正極電極2と負極電
極3とを間にセパレータ25を介在させて重ね合わせた
電極組立体を得ることができる。二は電池組立工程であ
って、前記ハの工程により重ね合わせられた正極電極2
および負極電極3を従来例と同様に電解液とともに電池
ケースに収容し、所定の端子を取り付けるとともに該端
子と電極とをリード導体によって接続することにより、
リチウム二次電池が完成する。
FIG. 1 shows a manufacturing method according to an embodiment of the present invention. (A) is a laminating step, in which the lithium foil 21 is supplied from both sides to the electrode (the positive electrode 2 in the illustrated example) that is continuously fed out, and these are fed to the pair of pressure bonding rollers 2
It is compressed by 2 and pressed together. B is a cutting step, in which the electrode 2 on which the lithium foil 21 is laminated is moved in the longitudinal direction (rightward in FIG. 1) by the laminating step of (a), and the electrode 2 is cut by a cutting means 23 such as a die cutter.
A blade having a predetermined shape is crossed in the thickness direction to cut it into a predetermined contour, and the electrode 2 is further cut by a cutter 24 along a cutting line in the width direction (the paper surface direction of FIG. 1) and separated one by one. The electrode 2 is obtained. The same applies to the negative electrode. C is an electrode assembling step, in which the positive electrode 2 and the negative electrode 3 obtained in the above step B are separated by, for example, 5
As shown in FIG. 6, by interposing the separators 25 while interposing them in pairs and alternately folding them in a zigzag shape.
Similar to the conventional example, an electrode assembly can be obtained in which the positive electrode 2 and the negative electrode 3 are superposed with the separator 25 interposed therebetween. The second is a battery assembling step, in which the positive electrode 2 is superposed by the above step c.
By accommodating the negative electrode 3 and the negative electrode 3 in the battery case together with the electrolytic solution as in the conventional example, attaching a predetermined terminal and connecting the terminal and the electrode by a lead conductor,
The lithium secondary battery is completed.

【0011】上記イの積層工程で使用される装置は図2
に示す構成となっている。符号30はリチウム供給部で
あって、このリチウム供給部30には、金属塊としての
リチウム31が貯蔵されて下方へ送り出されるようにな
っている。前記リチウム供給部30の下方には一対の繰
り出しロール32が設けられ、これらによって前記リチ
ウム31が所定厚さで引き出されるようになっている。
前記繰り出しロール32の下方には、一対の圧延ロール
33が設けられており、これらの圧延ロール33によっ
て所定厚さのリチウム箔21が形成されるようになって
いる。
The apparatus used in the above-mentioned laminating step is shown in FIG.
The configuration is shown in. Reference numeral 30 denotes a lithium supply unit, and the lithium supply unit 30 stores lithium 31 as a metal block and sends it out downward. A pair of delivery rolls 32 are provided below the lithium supply unit 30 so that the lithium 31 can be pulled out with a predetermined thickness.
Below the delivery roll 32, a pair of rolling rolls 33 are provided, and the lithium foil 21 having a predetermined thickness is formed by these rolling rolls 33.

【0012】図2における両側のリチウム箔供給系の間
には、電極(図示例では正極電極2)が下方へ向けて移
動しており、この正極電極2は、一般的な、アルミニウ
ム等の金属からなる正極集電体2aの表面に、グラファ
イト等の粉末からなる正極電極層2bを設けた構成とな
っている。前記正極電極2は、両側から供給されるリチ
ウム箔21とともに一対の圧着ロール22の間に送り込
まれ、厚さ方向へ圧縮されることにより、一体に圧着さ
れるようになっている。
An electrode (positive electrode 2 in the illustrated example) moves downward between the lithium foil supply systems on both sides in FIG. 2, and the positive electrode 2 is made of a general metal such as aluminum. The positive electrode current collector 2a is composed of a positive electrode current collector 2a and a positive electrode layer 2b made of powder such as graphite is provided on the surface of the positive electrode collector 2a. The positive electrode 2 is fed together with a lithium foil 21 supplied from both sides between a pair of pressure-bonding rolls 22 and is compressed in the thickness direction so as to be pressure-bonded integrally.

【0013】前記圧着ロール22の表面は、例えば樹脂
やゴムのような軟質材料により構成されており、これに
より、リチウム箔21や電極2の厚さのばらつきを吸収
するようになっている。なお圧着ロール22の表面形状
は、平坦に限られるものではなく、図3に示すように円
周方向に所定間隔をおいて、複数の凸部34を設けたも
のや、ローレット加工などによって細かい凹凸を設けた
ものであってもよい。このように、圧着ロール22の表
面に凹凸を設けることにより、部分的に大きな圧着力に
てリチウム箔21を電極2(または3)に圧着すること
ができる。また、圧着個所が凹凸状に塑性変形している
から、リチウム箔21と電極2(または3)との面方向
へのずれを確実に防止することができる。
The surface of the pressure-bonding roll 22 is made of a soft material such as resin or rubber, and absorbs variations in the thickness of the lithium foil 21 and the electrode 2. The surface shape of the pressure-bonding roll 22 is not limited to a flat shape, and as shown in FIG. 3, a plurality of convex portions 34 are provided at predetermined intervals in the circumferential direction, or fine irregularities are formed by knurling or the like. May be provided. As described above, the unevenness is provided on the surface of the pressure-bonding roll 22, so that the lithium foil 21 can be pressure-bonded to the electrode 2 (or 3) with a partially large pressure-bonding force. Further, since the crimping portion is plastically deformed in an uneven shape, it is possible to reliably prevent the lithium foil 21 and the electrode 2 (or 3) from being displaced in the surface direction.

【0014】上記リチウム箔の供給にあっては、圧延に
よってリチウムの表面積が大きくなって酸化されやすい
状態となるため、圧延ロール33と圧接ロール22とを
できるだけ近接させるなどして、圧延されたリチウム箔
の走行経路をできるだけ短くすることが望ましい。すな
わち、圧延後直ちにリチウム箔を積層することによりそ
の酸化を可及的に抑制することができる。
In the supply of the lithium foil, since the surface area of lithium is increased by rolling and the lithium foil is easily oxidized, the rolled lithium is rolled by bringing the rolling roll 33 and the pressure contact roll 22 as close as possible to each other. It is desirable to keep the foil travel path as short as possible. That is, by laminating the lithium foil immediately after rolling, the oxidation can be suppressed as much as possible.

【0015】図4は上記ロの切断工程に用いられる切断
用の刃40を示すものである。この刃40は、図4に実
線および鎖線で示すように、電極2または3の輪郭に対
応する平面形状をなしている。なお、実際に刃40が存
在するのは図4に実線で示す範囲であって、この範囲を
切断することによって複数の電極2または3を連ねた形
状への切断が行われ、その後、カッター24によって鎖
線Cの部分を直線的に切断することにより、電極2また
は3の輪郭に対応する平面形状に形成される。すなわ
ち、切断手段23とカッター24とによって連続的な電
極を切断することにより、図5に示すように、平面視に
おいて、正極タブ12aを有する正極集電体2aに正極
電極層2bが積層され、さらにその一部にリチウム箔2
1が積層された正極電極2(または負極電極3)が形成
される。
FIG. 4 shows a cutting blade 40 used in the above cutting step (b). The blade 40 has a planar shape corresponding to the contour of the electrode 2 or 3 as shown by the solid line and the chain line in FIG. Note that the blade 40 actually exists in the range shown by the solid line in FIG. 4, and by cutting this range, cutting into a shape in which a plurality of electrodes 2 or 3 are connected is performed, and then the cutter 24 By cutting the portion of the chain line C linearly with, a planar shape corresponding to the contour of the electrode 2 or 3 is formed. That is, by cutting the continuous electrode with the cutting means 23 and the cutter 24, as shown in FIG. 5, the positive electrode layer 2b is laminated on the positive electrode current collector 2a having the positive electrode tab 12a in plan view, Furthermore, lithium foil 2 is used as part of it.
The positive electrode 2 (or the negative electrode 3) in which 1 is laminated is formed.

【0016】以上のようにして形成された正極電極2お
よび負極電極3を用い、上記ハの電極組立工程におい
て、正極タブ12aおよび負極タブ13aを互いに逆の
向きとして、これらの間に葛折り状のセパレータ25を
介在させながら交互に重ね合わせることにより、正極電
極2と負極電極3とを間に葛折り状にセパレータ25を
折り曲げて介在させながら重ね合わせた電極組立体を得
ることができる。このように葛折り状に折り曲げてセパ
レータ25を介在させることにより、正極電極2と負極
電極3との間にズレが生じた場合であっても、これらの
間に必ずセパレータ25を介在させることができる。そ
して、このようにして形成された電極組立体を電解液と
ともに電池ケースに収容し、端子を取り付けるとともに
該端子と配線することにより、リチウム二次電池が完成
する。
Using the positive electrode 2 and the negative electrode 3 formed as described above, the positive electrode tab 12a and the negative electrode tab 13a are set in the directions opposite to each other in the electrode assembling process of the above C, and a zigzag shape is formed between them. By alternately stacking the separators 25 with the separators 25 interposed therebetween, it is possible to obtain an electrode assembly in which the positive electrode 2 and the negative electrode 3 are folded in a zigzag shape and are stacked with the separators 25 interposed therebetween. By thus folding the separator 25 in a zigzag manner and interposing the separator 25 therebetween, even if there is a deviation between the positive electrode 2 and the negative electrode 3, the separator 25 can be interposed between them. it can. Then, the electrode assembly thus formed is housed in a battery case together with an electrolytic solution, and a terminal is attached and wired to the terminal, thereby completing a lithium secondary battery.

【0017】なお、本発明の製造方法およびリチウム箔
の積層装置の具体的構成は上記実施形態に限定されるも
のではなく、本発明の要旨を逸脱しない範囲で適宜変更
してもよいのはもちろんである。
The specific structures of the manufacturing method and the lithium foil laminating apparatus of the present invention are not limited to the above-mentioned embodiment, and may be appropriately changed without departing from the scope of the present invention. Is.

【0018】[0018]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、リチウム塊をロール間へ供給して箔状に圧延し
て電極に重ね合わせ、これらを加圧して一体化するか
ら、リチウム二次電池の電極へのリチウムの積層を、リ
チウムの酸化を最小限に抑制しつつ行うことができる。
また、電極の輪郭に沿う平面形状を有する刃物を前記連
続的な電極と交差させることにより切断して電極を形成
するので、切断に際して発生する切り屑の発生を最少限
にして、電極間の短絡の原因を可及的に減少させること
ができる。また、リチウム塊をロール間へ供給して箔状
に圧延する圧延手段と、該圧延手段の前記ロールの間か
ら送り出されたリチウム箔を前記連続的に製造された電
極に重ね合わせて加圧する加圧手段とから構成し、前記
圧延手段は、連続的に送り出される電極の両側にそれぞ
れ設けられ、前記加圧手段は、電極とその両側に送り出
されたリチウム箔とを両側から圧縮する一対のローラか
らなるリチウム箔積層装置により、電極の表面にリチウ
ム箔を設けてなるリチウム二次電池を効率よく生産する
ことができる。
As is apparent from the above description, according to the present invention, the lithium ingot is fed between the rolls, rolled into a foil shape and superposed on the electrodes, and these are pressed and integrated, Lamination of lithium on the electrodes of the lithium secondary battery can be performed while suppressing oxidation of lithium to the minimum.
Moreover, since the electrode is formed by cutting by cutting a blade having a planar shape along the contour of the electrode with the continuous electrode, the generation of chips generated at the time of cutting is minimized, and a short circuit between electrodes is made. The cause of can be reduced as much as possible. Further, a rolling means for supplying a lithium ingot between the rolls and rolling it into a foil shape, and a lithium foil fed from between the rolls of the rolling means are superposed on the continuously manufactured electrodes and pressed. The rolling means is provided on both sides of the electrode that is continuously fed, and the pressing means is a pair of rollers that compresses the electrode and the lithium foil fed to both sides thereof from both sides. With the lithium foil laminating apparatus consisting of, it is possible to efficiently produce a lithium secondary battery in which a lithium foil is provided on the surface of an electrode.

【図面の簡単な説明】[Brief description of drawings]

【図1】 一実施形態の工程説明図。FIG. 1 is a process explanatory diagram of an embodiment.

【図2】 リチウム箔積層装置の側面図。FIG. 2 is a side view of a lithium foil laminating device.

【図3】 圧着ロールの変形例の斜視図。FIG. 3 is a perspective view of a modified example of a pressure bonding roll.

【図4】 一実施形態に用いられる刃の平面図。FIG. 4 is a plan view of a blade used in one embodiment.

【図5】 図4の刃によって切断された電極の平面図。5 is a plan view of an electrode cut by the blade of FIG.

【図6】 リチウム二次電池の一従来例の一部を断面と
した斜視図。
FIG. 6 is a perspective view showing a cross section of a part of a conventional lithium secondary battery.

【符号の説明】[Explanation of symbols]

2 正極電極(電極) 3 負極電極(電極) 2a 正極集電体 2b 正極電極層 12a 正極タブ 13a 負極タブ 21 リチウム箔 22 圧着ロール 23 切断手段 24 カッター 25 セパレータ 30 供給手段 31 リチウム 33 圧延ロール 40 刃 2 Positive electrode (electrode) 3 Negative electrode (electrode) 2a Positive electrode current collector 2b Positive electrode layer 12a positive electrode tab 13a negative electrode tab 21 Lithium foil 22 Crimping roll 23 cutting means 24 cutter 25 separator 30 supply means 31 Lithium 33 Rolling roll 40 blades

フロントページの続き Fターム(参考) 5H029 AJ12 AJ13 AJ14 AK06 AL12 BJ02 BJ13 BJ15 BJ24 CJ03 CJ04 CJ06 CJ16 CJ30 DJ14 HJ12 5H050 AA15 AA18 AA19 BA16 BA17 CA15 CB12 FA04 FA15 GA03 GA04 GA08 GA18 GA29 HA12Continued front page    F term (reference) 5H029 AJ12 AJ13 AJ14 AK06 AL12                       BJ02 BJ13 BJ15 BJ24 CJ03                       CJ04 CJ06 CJ16 CJ30 DJ14                       HJ12                 5H050 AA15 AA18 AA19 BA16 BA17                       CA15 CB12 FA04 FA15 GA03                       GA04 GA08 GA18 GA29 HA12

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 正極および負極の電極を電解液とともに
電池ケースに収容してなる二次電池の製造方法におい
て、前記電極を所定方向へ連続した状態で製造する工程
と、リチウム塊をロール間へ供給して箔状に圧延する工
程と、該前記ロールの間から送り出されたリチウム箔を
前記連続的な電極に重ね合わせる工程と、該重ね合わせ
られた電極とリチウム箔とを厚さ方向へ加圧して一体化
する工程とを有することを特徴とする二次電池の製造方
法。
1. A method of manufacturing a secondary battery, wherein a positive electrode and a negative electrode are housed in a battery case together with an electrolytic solution, a step of manufacturing the electrodes in a continuous state in a predetermined direction, and a lithium block between rolls. A step of supplying and rolling into a foil shape, a step of superposing the lithium foil fed from between the rolls on the continuous electrode, and a step of applying the superposed electrode and the lithium foil in the thickness direction. And a step of integrating by pressing.
【請求項2】 正極および負極の電極を電解液とともに
電池ケースに収容してなる二次電池の製造方法におい
て、前記電極を所定方向へ連続的に製造する工程と、連
続的に製造された電極を所定長さ毎に切断する切断工程
とを有し、該切断工程による切断線を除いた前記電極の
輪郭に沿う平面形状を有する刃物を前記連続的な電極と
交差させることにより切断する打抜工程を前記切断工程
と交互に行うことを特徴とする二次電池の製造方法。
2. A method of manufacturing a secondary battery, in which a positive electrode and a negative electrode are housed in a battery case together with an electrolytic solution, a step of continuously manufacturing the electrodes in a predetermined direction, and continuously manufactured electrodes. And a cutting step of cutting the electrode into predetermined lengths, and punching for cutting by cutting a blade having a planar shape along the contour of the electrode excluding a cutting line by the cutting step with the continuous electrode. A method of manufacturing a secondary battery, wherein the steps are performed alternately with the cutting step.
【請求項3】 正極および負極の電極を電解液とともに
電池ケースに収容してなる二次電池の製造方法におい
て、前記電極を製造する工程と、前記正極および負極の
電極を交互に配置する工程と、何れか一方の電極の一方
の側面といずれか他方の電極の他方の側面とに沿わせ
て、長尺シート状に連続するセパレータを配置する工程
と、前記正極および負極の電極を前記セパレータを間に
介在させて重ね合わせる工程とからなることを特徴とす
る二次電池の製造方法。
3. A method of manufacturing a secondary battery in which a positive electrode and a negative electrode are housed in a battery case together with an electrolytic solution, and a step of manufacturing the electrode and a step of alternately arranging the positive electrode and the negative electrode. , A step of arranging a continuous separator in the form of a long sheet along one side surface of one of the electrodes and the other side surface of the other electrode, and the separator of the positive electrode and the negative electrode. A method of manufacturing a secondary battery, characterized by comprising a step of interposing them and superimposing them.
【請求項4】 正極および負極の電極を電解液とともに
電池ケースに収容してなる二次電池の製造方法におい
て、 前記電極を所定方向へ連続的な状態で製造する工程と、
リチウム塊をロール間へ供給して箔状に圧延する工程
と、該前記ロールの間から送り出されたリチウム箔を前
記連続的な電極に重ね合わせる工程と、該重ね合わせら
れた電極とリチウム箔とを厚さ方向へ加圧して一体化す
る工程とによりリチウム箔が積層された電極を製造する
リチウム積層工程、 連続的に製造された電極を所定長さ毎に切断する切断工
程を有し、該切断工程による切断線を除いた前記電極の
輪郭に沿う平面形状を有する刃物を前記連続的な電極と
交差させることにより切断する打抜工程を前記切断工程
と交互に行う電極切断工程、 前記正極および負極の電極を交互に配置する工程と、何
れか一方の電極の一方の側面といずれか他方の電極の他
方の側面とに沿わせて、長尺シート状に連続するセパレ
ータを配置する工程と、前記正極および負極の電極を前
記セパレータを間に介在させて重ね合わせる工程とから
なる電極組立工程のうち少なくとも2つの工程を行うこ
とを特徴とする二次電池の製造方法。
4. A method of manufacturing a secondary battery, wherein a positive electrode and a negative electrode are housed in a battery case together with an electrolytic solution, and a step of manufacturing the electrodes continuously in a predetermined direction,
A step of supplying a lithium ingot between rolls to roll it into a foil, a step of superposing the lithium foil fed from between the rolls on the continuous electrode, and the superposed electrode and lithium foil. A lithium lamination step of producing an electrode in which a lithium foil is laminated by a step of pressurizing and integrating in a thickness direction, and a cutting step of cutting the continuously produced electrode into predetermined lengths, An electrode cutting step of alternately performing a punching step of cutting a blade having a planar shape along the contour of the electrode excluding the cutting line by the cutting step by intersecting the continuous electrode with the cutting step, the positive electrode and A step of alternately arranging the electrodes of the negative electrode, a step of arranging one of the side surfaces of one of the electrodes and the other side surface of the other electrode, and arranging the continuous separators in a long sheet shape, Serial positive electrode and method of manufacturing a secondary battery, characterized by performing at least two steps of the electrode assembly process comprising the step of bringing the negative electrode superimposed by interposing between the separators.
【請求項5】 正極および負極の電極を電解液とともに
電池ケースに収容してなる二次電池の製造装置におい
て、リチウム塊をロール間へ供給して箔状に圧延する圧
延手段と、該圧延手段の前記ロールの間から送り出され
たリチウム箔を前記連続的に製造された電極に重ね合わ
せて加圧する加圧手段とから構成されてなり、前記圧延
手段は、連続的に送り出される電極の両側にそれぞれ設
けられ、前記加圧手段は、電極とその両側に送り出され
たリチウム箔とを両側から圧縮する一対のローラからな
ることを特徴とする二次電池電極の製造装置。
5. A secondary battery manufacturing apparatus in which a positive electrode and a negative electrode are housed in a battery case together with an electrolytic solution, and a rolling unit for feeding a lithium ingot between rolls and rolling it into a foil, and the rolling unit. Of the lithium foil sent from between the rolls and the pressurizing means for superposing and pressurizing on the electrode produced continuously, the rolling means, on both sides of the electrode continuously sent out. An apparatus for manufacturing a secondary battery electrode, wherein each of the pressurizing means is provided with a pair of rollers for compressing an electrode and a lithium foil sent to both sides thereof from both sides.
【請求項6】 前記ローラは外周面に凹凸を有すること
を特徴とする請求項5に記載の二次電池電極の製造装
置。
6. The apparatus for manufacturing a secondary battery electrode according to claim 5, wherein the roller has irregularities on an outer peripheral surface.
【請求項7】 前記ローラの表面に弾性変形層を設けた
ことを特徴とする請求項5または6に記載の二次電池電
極の製造装置。
7. An apparatus for manufacturing a secondary battery electrode according to claim 5, wherein an elastic deformation layer is provided on the surface of the roller.
JP2002101513A 2002-04-03 2002-04-03 Method of manufacturing secondary battery and device for manufacturing secondary battery electrode Withdrawn JP2003297430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002101513A JP2003297430A (en) 2002-04-03 2002-04-03 Method of manufacturing secondary battery and device for manufacturing secondary battery electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002101513A JP2003297430A (en) 2002-04-03 2002-04-03 Method of manufacturing secondary battery and device for manufacturing secondary battery electrode

Publications (1)

Publication Number Publication Date
JP2003297430A true JP2003297430A (en) 2003-10-17

Family

ID=29388693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002101513A Withdrawn JP2003297430A (en) 2002-04-03 2002-04-03 Method of manufacturing secondary battery and device for manufacturing secondary battery electrode

Country Status (1)

Country Link
JP (1) JP2003297430A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009530778A (en) * 2006-03-20 2009-08-27 中信国安盟固利新能源科技有限公司 Soft package large capacity lithium ion battery and method of manufacturing the same
KR101023700B1 (en) 2009-05-08 2011-03-25 주식회사 나래나노텍 An Apparatus and A Method of Manufacturing Electrode Assembly for Secondary Cell
DE102010055611A1 (en) 2010-12-22 2012-06-28 Daimler Ag Method for manufacturing electrode stacks of e.g. cathode for lithium ion battery utilized in lithium ion technology, involves inserting cathode and separator alternating from one side or another side into recess during storage
DE102010055608A1 (en) 2010-12-22 2012-06-28 Daimler Ag Method for manufacturing electrode stack of lithium-ion battery, involves folding continuous material between rods of two regions in alternative manner, and inserting sides of anode and cathode into pockets in continuous material
CN107731547A (en) * 2016-08-12 2018-02-23 株式会社捷太格特 Multilayer electrode manufacture device and multilayer electrode manufacture method
CN107910499A (en) * 2017-12-05 2018-04-13 中航锂电技术研究院有限公司 The pre- lithium method of cathode of lithium battery and pre- lithium device
WO2018186561A1 (en) * 2017-04-03 2018-10-11 주식회사 엘지화학 Pre-lithiation apparatus, method for manufacturing negative electrode part using same, and negative electrode part
KR20180112659A (en) * 2017-04-03 2018-10-12 주식회사 엘지화학 Pre-lithiation apparatus, method of producing negative electrode unit and negative electrode unit
JP2019036419A (en) * 2017-08-10 2019-03-07 株式会社豊田自動織機 Pressure bonding device and pressure-bonded body manufacturing method
CN109742390A (en) * 2018-12-10 2019-05-10 龙能科技(宁夏)有限责任公司 A kind of cathode mends the preparation method of the nickelic lithium ion power battery core of lithium
US20210126250A1 (en) * 2017-04-17 2021-04-29 Robert Bosch Gmbh Pre-Lithiated Silicon-Based Anode, and Manufacturing Method Thereof
WO2023035780A1 (en) * 2021-09-07 2023-03-16 蜂巢能源科技股份有限公司 Lithium supplementing device
WO2023067905A1 (en) * 2021-10-22 2023-04-27 パナソニックIpマネジメント株式会社 Roll press device and pressing method
JP7488911B2 (en) 2021-04-27 2024-05-22 寧徳時代新能源科技股▲分▼有限公司 Lithium supplementation equipment

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009530778A (en) * 2006-03-20 2009-08-27 中信国安盟固利新能源科技有限公司 Soft package large capacity lithium ion battery and method of manufacturing the same
KR101023700B1 (en) 2009-05-08 2011-03-25 주식회사 나래나노텍 An Apparatus and A Method of Manufacturing Electrode Assembly for Secondary Cell
DE102010055611A1 (en) 2010-12-22 2012-06-28 Daimler Ag Method for manufacturing electrode stacks of e.g. cathode for lithium ion battery utilized in lithium ion technology, involves inserting cathode and separator alternating from one side or another side into recess during storage
DE102010055608A1 (en) 2010-12-22 2012-06-28 Daimler Ag Method for manufacturing electrode stack of lithium-ion battery, involves folding continuous material between rods of two regions in alternative manner, and inserting sides of anode and cathode into pockets in continuous material
CN107731547B (en) * 2016-08-12 2021-05-14 株式会社捷太格特 Laminated electrode manufacturing apparatus and laminated electrode manufacturing method
CN107731547A (en) * 2016-08-12 2018-02-23 株式会社捷太格特 Multilayer electrode manufacture device and multilayer electrode manufacture method
US11329312B2 (en) 2017-04-03 2022-05-10 Lg Energy Solution, Ltd. Pre-lithiation apparatus, method of producing negative electrode unit and negative electrode unit
WO2018186561A1 (en) * 2017-04-03 2018-10-11 주식회사 엘지화학 Pre-lithiation apparatus, method for manufacturing negative electrode part using same, and negative electrode part
KR102253785B1 (en) * 2017-04-03 2021-05-21 주식회사 엘지화학 Pre-lithiation apparatus, method of producing negative electrode unit and negative electrode unit
KR20180112659A (en) * 2017-04-03 2018-10-12 주식회사 엘지화학 Pre-lithiation apparatus, method of producing negative electrode unit and negative electrode unit
CN110476275A (en) * 2017-04-03 2019-11-19 株式会社Lg化学 Prelithiation equipment, the method and negative electrode unit for producing negative electrode unit
EP3591742A4 (en) * 2017-04-03 2020-04-22 LG Chem, Ltd. Pre-lithiation apparatus, method for manufacturing negative electrode part using same, and negative electrode part
US20210126250A1 (en) * 2017-04-17 2021-04-29 Robert Bosch Gmbh Pre-Lithiated Silicon-Based Anode, and Manufacturing Method Thereof
US11923532B2 (en) * 2017-04-17 2024-03-05 Robert Bosch Gmbh Pre-lithiated silicon-based anode, and manufacturing method thereof
JP2019036419A (en) * 2017-08-10 2019-03-07 株式会社豊田自動織機 Pressure bonding device and pressure-bonded body manufacturing method
JP7069596B2 (en) 2017-08-10 2022-05-18 株式会社豊田自動織機 Crimping body manufacturing method
CN107910499A (en) * 2017-12-05 2018-04-13 中航锂电技术研究院有限公司 The pre- lithium method of cathode of lithium battery and pre- lithium device
CN109742390A (en) * 2018-12-10 2019-05-10 龙能科技(宁夏)有限责任公司 A kind of cathode mends the preparation method of the nickelic lithium ion power battery core of lithium
JP7488911B2 (en) 2021-04-27 2024-05-22 寧徳時代新能源科技股▲分▼有限公司 Lithium supplementation equipment
WO2023035780A1 (en) * 2021-09-07 2023-03-16 蜂巢能源科技股份有限公司 Lithium supplementing device
WO2023067905A1 (en) * 2021-10-22 2023-04-27 パナソニックIpマネジメント株式会社 Roll press device and pressing method

Similar Documents

Publication Publication Date Title
EP1339115B1 (en) Flat battery and production method therefor
CN108475756B (en) Method for manufacturing electrode body and method for manufacturing nonaqueous electrolyte secondary battery
JP4140311B2 (en) Method for manufacturing case for power storage element
KR101235355B1 (en) Device and Method of Feeding Electrodes, and Apparatus an Method of Stacking Electrodes Having the Same
JP2003297430A (en) Method of manufacturing secondary battery and device for manufacturing secondary battery electrode
CN108807854B (en) Electrode laminate and method for producing battery
CN107154312B (en) Electrochemical device and method for manufacturing electrochemical device
WO2013031889A1 (en) Method for manufacturing cell electrode
JP2008269819A (en) Nonaqueous electrolytic solution secondary battery
JP4374870B2 (en) Power storage device in which terminal and electrode foil are plastically bonded, and manufacturing method thereof
CN108695537A (en) The manufacturing method of all-solid-state battery and all-solid-state battery
JP5761576B2 (en) Multilayer battery and method for manufacturing multilayer electrode body
EP4005722A1 (en) Ultrasonic horn, secondary battery, and method for manufacturing secondary battery
JP2010129450A (en) Battery and manufacturing method of battery
JP4603857B2 (en) Lithium ion secondary battery and manufacturing method thereof
EP2637238A1 (en) Rechargeable battery and battery module
JP2010020986A (en) Electrode plate, battery, vehicle, battery-equipped apparatus, and manufacturing method for electrode plate
US20230330885A1 (en) Electrode Assembly Manufacturing Apparatus Including Ultrasonic Cutter and Method Using the Same
US6864014B2 (en) Connecting structure of conductive connecting tab of battery
JP2870037B2 (en) Lithium negative electrode manufacturing equipment
JP5862508B2 (en) Electrode manufacturing method and electrode manufacturing apparatus
JP2000164243A (en) Manufacture of laminated electrode
US20190193186A1 (en) Method for Manufacturing Laminated Metal Foil
JP7205723B2 (en) Ultrasonic bonding method
JP2000182594A (en) Manufacture of layered electrodes

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607