JP3830176B2 - Electric vehicle control equipment - Google Patents

Electric vehicle control equipment Download PDF

Info

Publication number
JP3830176B2
JP3830176B2 JP00194495A JP194495A JP3830176B2 JP 3830176 B2 JP3830176 B2 JP 3830176B2 JP 00194495 A JP00194495 A JP 00194495A JP 194495 A JP194495 A JP 194495A JP 3830176 B2 JP3830176 B2 JP 3830176B2
Authority
JP
Japan
Prior art keywords
output
accelerator operation
operation amount
motor
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00194495A
Other languages
Japanese (ja)
Other versions
JPH08191503A (en
Inventor
孝史 鳥井
弘 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP00194495A priority Critical patent/JP3830176B2/en
Publication of JPH08191503A publication Critical patent/JPH08191503A/en
Application granted granted Critical
Publication of JP3830176B2 publication Critical patent/JP3830176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、電気自動車用制御装置、特に電気自動車の走行駆動用電動機の制御装置に関するものである。
【0002】
【従来の技術】
近年、実開平6ー70498号公報等に示されるように、永久磁石の高性能化により、回転子に永久磁石を用い、回転子の位置を検出して最適な固定子への通電制御を行う、同期電動機(ブラシレスモータ)を用いた電気自動車走行駆動用システムが多数提案されている。
【0003】
【発明が解決しようとする課題】
ところが電気自動車における走行駆動用電動機において脱輪等で電動機の回転子がロックした場合、特定の固定子に電流が連続的に供給されてしまうので、パワー回路の損失が増大してしまう問題があった。
そこで本発明は、上記問題点に鑑み、電動機のロック状態あるいは過負荷状態を的確に検出して、パワー回路の損失の低減を図ることを目的とする。
【0004】
【課題を解決するための手段】
本発明は上記目的を達成するために、請求項1の構成によれば、電動機と、該電動機の回転子位置を検出する位置検出手段と、上記位置検出手段の出力に応じて前記電動機に通電するパワー回路と、運転者のアクセル操作量を検出するアクセル操作量検出手段と、該アクセル操作量検出手段の出力に応じて前記パワー回路の通電量を制御する制御回路とを備え、前記アクセル操作量検出手段の出力値が所定値以上で、かつ電動機の回転信号がない場合に基づきロック状態を検出した場合に、上記パワー回路の通電量を制限する通電量制限手段を備えるという技術的手段を採用するものである。
【0005】
また、請求項2にあるように、車両を制動する制動装置と前記制動装置の作動を検出する制動装置作動検出手段とを備えて、パワー回路の通電量制御を制動装置が作動している場合に行うよう構成してもよい。
また、前記通電量制限手段を前記パワー回路の電流制限の設定値を現状の設定値より低い値に切り替えるよう構成してもよい。
【0006】
また、前記通電量制限手段を、前記パワー回路の温度保護検出の設定値を現状の設定値より低い値に切り替えるよう構成してもよい。
また、前記通電量制限手段を、断続通電する第1の期間と、連続休止する第2の期間とを設けるよう構成してもよい。
さらに、前記通電量制限手段を、前記位置検出手段の出力をキャンセルし、所定の擬似回転子位置検出信号を前記制御回路へ入力するよう構成してもよい。
【0007】
【作用】
本発明は以上のような構成を有するので、運転者のアクセル操作量を検出するアクセル操作量検出手段と、該アクセル操作量検出手段の出力に応じて前記パワー回路の通電量を制御する制御回路とを備え、通電量制限手段は、前記アクセル操作量検出手段の出力値が所定値以上で、かつ電動機の回転信号がない場合に基づきロック状態を検出した場合に、上記パワー回路の通電量を制限する。また、車両を制動する制動装置と前記制動装置の作動を検出する制動装置作動検出手段とを備えて、アクセル操作量検出手段の出力値が所定値以上で、制動装置が作動している場合に、パワー回路の通電量を制限する。
【0008】
【実施例】
以下本発明を図に示す実施例により説明する。
図1は本発明の第1実施例を示す電気結線図であり、1はバッテリ、2はパワー回路としての公知のインバータで、半導体スイッチ4、5、6、7、8、9と、該半導体スイッチに逆並列接続されたダイオード10、11、12、13、14及び15で構成される。16は同期電動機(以下モータという)、3はモータ16の回転子位置を検出する公知のレゾルバ、17はこれらインバータ2、モータ16を制御する制御回路、20はアクセルの操作量を検出するアクセル操作量検出手段、21、22は比較器、23はダイオード、24、25はコンデンサ、26、27、28は抵抗器、29はトランジスタ、30は電流センサである。
【0009】
上記構成についてその作動を説明する。
制御回路17はアクセル操作量検出手段20からの指令信号、電流センサ30からのフィードバック信号、レゾルバ3の回転子位置信号をそれぞれ入力信号とし、所定の半導体スイッチ4〜9にPWMゲート信号を供給する公知の回路である。また半導体スイッチ4〜9ダイオード10から15で構成されるパワー回路は公知の三相インバータ回路を構成している。
【0010】
アクセル操作量検出手段20は図示していないアクセルペダルを踏み込むと、アクセルの踏み込み量と連動して移動する可動端子が上方へ移動し、アクセル操作量検出手段20の出力電圧が高くなる。比較器21は、アクセル操作量検出手段20の出力電圧が所定値に達するまでは出力が0なので、所定値に達するまでの期間はダイオード23を介してコンデンサ24を放電する。一方コンデンサ25と抵抗28により構成される微分回路はレゾルバ3の出力信号の電圧変化(モータの回転状態)を検出してトランジスタ29をオン、オフする。
【0011】
以上の結果アクセル操作量検出手段20の出力電圧が所定値以上で、かつモータ16のレゾルバ3からの回転検出信号が無いと、コンデンサ24は抵抗26を介して充電され、所定電圧に達すると、比較器22の出力が1に反転する。比較器22の出力は制御回路17に入力され、通常のパルス幅より短いパルス幅となるよう各半導体スイッチへのゲート信号のオン時間が短くなるよう制御する。
【0012】
図2は第2の実施例を示す電気結線図であり、40は車両の制動装置の制動装置作動検出手段、41及び42は比較器43はAND回路である。なお、それら以外の構成については、図1に示す第1の実施例と構成が同一であるので、各構成に同一の符号を付すとともに、その詳細な説明は省略する。
比較器41はアクセル操作量検出手段20の出力が所定値以上になると出力が1になる。制動装置作動検出手段40は図示しないサイドブレーキに連動するもので、作動状態で図示スイッチがオンする。この結果比較器42の出力は1になる。以上の結果、サイドブレーキを作動させた状態でアクセル手段20を所定値以上踏み込むとAND回路43の出力が1になってその信号が制御装置17に入力され、通常のパルス幅より、短いパルス幅となるよう各半導体スイッチへのゲート信号のオン時間が短くなるよう制御する。
【0013】
図3は、通電量制限手段としての他の実施例の要部を示したもので、電流制限設定値を切り替えるように構成したものである。
50は比較器、51、52、53、54は抵抗器、55はトランジスタである。比較器50は図1と同様、インバータからの出力信号を検出する電流センサ30の出力と抵抗51、52とからなる分圧回路の設定値としての電圧とを比較して、設定値よりも電流センサ30の出力が高くなると比較器50の出力を1にしてゲート信号を遮断するよう制御回路17にその信号が入力される。
【0014】
ここで比較器22の出力が1になるとトランジスタ55がオンして比較器50のマイナス側入力端子電圧(比較電圧)を下げるので電流制限設定値が低くなるのでこの比較器22に必要に応じて信号を入力することにより、必要に応じて電流制限設定値を切り替えることが可能となる。
図4は通電量制限手段のさらに他の実施例の要部を示した図であり、温度保護設定値を切り替える一実施例を示す。
【0015】
図4は、図3における電流センサ30を温度センサ60に置き換えたものであり、他の構成については図3のものと同様であるため、同一の構成については、同一の符号を付すとともにその詳細な説明は省略する。
温度センサ60はインバータ内の半導体スイッチ等の温度を検出しており、温度が高くなるとその出力電圧すなわち比較器50への入力電圧が高くなるものである。以下の作動については、図3のものと同様である。
【0016】
温度センサ60と半導体スイッチ間の温度差は半導体スイッチの損失×温度センサ60と半導体スイッチ間の熱抵抗で表わされる。ここで回転子がロックするような過負荷状態となると半導体スイッチの損失は通常時の2倍から3倍に増大するので、上記式から温度センサ60の検出レベルを低くすることにより、半導体スイッチの最大温度を負荷状態にかかわらず所定の値で保護することができる。
図5は通電量制限手段として休止区間を設けるようにしたものである。
【0017】
70は発信器71は抵抗器、72はトランジスタ、73〜78はダイオードである。比較器22の出力が1になると発信器70は例えば100msec周期でオン、オフを繰り返すので、たとえ制御回路17が特定の半導体スイッチにPWM信号を出し続けていても図6(b)に示すようにt1期間休止することとなる。
図6は通電量制限手段として、レゾルバ3の出力状態にかかわらず一定の周期でインバータを作動させるものである。80は発振器、81、82は抵抗器、83はトランジスタである。比較器22の出力が1になるとトランジスタ83がオンしてレゾルバの出力を遮断する。その一方発振器80が発振を始めて、制御回路17に回転信号をレゾルバ3に代わり、制御回路17へ回転信号を供給する。この結果、回転子がロックしているにもかかわらずインバータは発振器80の回転信号にもとづいて一定の周期で作動する。
【0018】
以上、インバータ2においては半導体スイッチとして説明したが、半導体スイッチは、トランジスタ、IGBT,MOSFET等のいずれでも、本発明における同様の作用、効果を生じるものである。
【0019】
【効果】
以上述べたように、本発明においては、上記のような構成とすることにより、脱輪等で特定の電動機がロック状態となった場合においてもその状態を検出することが可能となり、パワー回路の損失が増大することを防ぐことができる。
【図面の簡単な説明】
【図1】本発明における電気自動車用電動機の制御装置の全体構成を示す電気結線図。
【図2】他の通電量制限手段の構成を示す電気自動車用電動機の制御装置の全体構成を示す電気結線図。
【図3】他の実施例における通電量制限手段の要部を示す電気結線図。
【図4】他の実施例における通電量制限手段の要部を示す電気結線図。
【図5】(a)は他の通電量制限手段の要部を示す電気結線図であり、(b)その時のインバータへのゲート信号の、出力状態を示す図。
【図6】他の実施例における通電量制限手段の要部を示す電気結線図。
【符号の説明】
1 バッテリ
2 インバータ
3 レゾルバ
4、5、6、7、8、9 半導体スイッチ
16 同期電動機(モータ)
17 制御回路
20 アクセル操作量検出手段
30 電流センサ
40 制動装置作動検出手段
[0001]
[Industrial application fields]
The present invention relates to a control device for an electric vehicle, and more particularly to a control device for an electric drive motor for driving an electric vehicle.
[0002]
[Prior art]
In recent years, as disclosed in Japanese Utility Model Publication No. Hei 6-70498, etc., by improving the performance of the permanent magnet, the permanent magnet is used for the rotor, and the position of the rotor is detected to perform optimum control of energization to the stator. Many electric vehicle travel drive systems using synchronous motors (brushless motors) have been proposed.
[0003]
[Problems to be solved by the invention]
However, when the rotor of the motor is locked due to wheel removal or the like in a motor for driving driving in an electric vehicle, a current is continuously supplied to a specific stator, resulting in an increase in power circuit loss. It was.
In view of the above problems, an object of the present invention is to accurately detect a lock state or an overload state of an electric motor and reduce power circuit loss.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, an electric motor, position detecting means for detecting a rotor position of the electric motor, and energization of the electric motor in accordance with an output of the position detecting means. The accelerator operation amount detecting means for detecting the accelerator operation amount of the driver, and a control circuit for controlling the energization amount of the power circuit in accordance with the output of the accelerator operation amount detecting means. the output value of the quantity detection means is equal to or greater than a predetermined value, and when it detects a lock state based on the absence rotation signal of the motor, the technical means that includes a current amount limiting means for limiting the current amount of the power circuit Adopted.
[0005]
According to a second aspect of the present invention, the vehicle includes a braking device that brakes the vehicle and a braking device operation detecting unit that detects the operation of the braking device, and the power supply amount control of the power circuit is operated. You may comprise so that it may be performed.
Further, the energization amount limiting means may be configured to switch the current limit setting value of the power circuit to a value lower than the current setting value.
[0006]
Further, the energization amount limiting means may be configured to switch the set value of temperature protection detection of the power circuit to a value lower than the current set value.
Further, the energization amount limiting means may be configured to provide a first period for intermittent energization and a second period for continuous pause.
Further, the energization amount limiting means may be configured to cancel the output of the position detection means and input a predetermined pseudo rotor position detection signal to the control circuit.
[0007]
[Action]
Since the present invention has the configuration as described above, an accelerator operation amount detection means for detecting the driver's accelerator operation amount, and a control circuit for controlling the energization amount of the power circuit in accordance with the output of the accelerator operation amount detection means. with the door, energization amount limiting means, when the output value of the accelerator operation amount detecting means detects the locked state on the basis of the case where there is no rotation signal at a predetermined value or more, and an electric motor, the current amount of the power circuit Restrict. And a braking device for braking the vehicle and a braking device operation detecting means for detecting the operation of the braking device, wherein the output value of the accelerator operation amount detecting means is equal to or greater than a predetermined value and the braking device is operating. Limit the amount of current in the power circuit.
[0008]
【Example】
Hereinafter, the present invention will be described with reference to embodiments shown in the drawings.
FIG. 1 is an electrical connection diagram showing a first embodiment of the present invention, where 1 is a battery, 2 is a known inverter as a power circuit, semiconductor switches 4, 5, 6, 7, 8, 9 and the semiconductor It consists of diodes 10, 11, 12, 13, 14 and 15 connected in antiparallel to the switch. Reference numeral 16 is a synchronous motor (hereinafter referred to as a motor), 3 is a known resolver for detecting the rotor position of the motor 16, 17 is a control circuit for controlling the inverter 2 and the motor 16, and 20 is an accelerator operation for detecting the operation amount of the accelerator. Quantity detection means, 21 and 22 are comparators, 23 are diodes, 24 and 25 are capacitors, 26, 27 and 28 are resistors, 29 is a transistor, and 30 is a current sensor.
[0009]
The operation of the above configuration will be described.
The control circuit 17 uses the command signal from the accelerator operation amount detection means 20, the feedback signal from the current sensor 30, and the rotor position signal of the resolver 3 as input signals, and supplies PWM gate signals to predetermined semiconductor switches 4-9. This is a known circuit. The power circuit constituted by the semiconductor switches 4 to 9 diodes 10 to 15 constitutes a known three-phase inverter circuit.
[0010]
When the accelerator operation amount detection means 20 depresses an accelerator pedal (not shown), the movable terminal that moves in conjunction with the accelerator depression amount moves upward, and the output voltage of the accelerator operation amount detection means 20 increases. Since the output of the comparator 21 is 0 until the output voltage of the accelerator operation amount detection means 20 reaches a predetermined value, the capacitor 24 is discharged through the diode 23 until the output voltage reaches the predetermined value. On the other hand, a differential circuit composed of the capacitor 25 and the resistor 28 detects a voltage change (rotational state of the motor) of the output signal of the resolver 3 and turns the transistor 29 on and off.
[0011]
As a result, when the output voltage of the accelerator operation amount detection means 20 is equal to or higher than a predetermined value and there is no rotation detection signal from the resolver 3 of the motor 16, the capacitor 24 is charged via the resistor 26 and when the predetermined voltage is reached, The output of the comparator 22 is inverted to 1. The output of the comparator 22 is input to the control circuit 17 and is controlled so that the ON time of the gate signal to each semiconductor switch is shortened so that the pulse width is shorter than the normal pulse width.
[0012]
FIG. 2 is an electrical connection diagram showing a second embodiment, wherein 40 is a braking device operation detecting means of a vehicle braking device, 41 and 42 are comparators 43 and an AND circuit. Since the other configurations are the same as those of the first embodiment shown in FIG. 1, the same reference numerals are given to the respective components, and detailed descriptions thereof are omitted.
The output of the comparator 41 becomes 1 when the output of the accelerator operation amount detection means 20 exceeds a predetermined value. The braking device operation detecting means 40 is interlocked with a side brake (not shown), and the illustrated switch is turned on in the operating state. As a result, the output of the comparator 42 becomes 1. As a result, when the accelerator means 20 is depressed more than a predetermined value while the side brake is operated, the output of the AND circuit 43 becomes 1, and the signal is input to the control device 17, and the pulse width is shorter than the normal pulse width. Control is performed so that the ON time of the gate signal to each semiconductor switch is shortened.
[0013]
FIG. 3 shows a main part of another embodiment as the energization amount limiting means, and is configured to switch the current limit set value.
50 is a comparator, 51, 52, 53 and 54 are resistors, and 55 is a transistor. As in FIG. 1, the comparator 50 compares the output of the current sensor 30 that detects the output signal from the inverter with the voltage as the set value of the voltage dividing circuit composed of the resistors 51 and 52, and compares the output with the current that is higher than the set value. When the output of the sensor 30 increases, the signal is input to the control circuit 17 so that the output of the comparator 50 is set to 1 and the gate signal is cut off.
[0014]
Here, when the output of the comparator 22 becomes 1, the transistor 55 is turned on and the minus side input terminal voltage (comparison voltage) of the comparator 50 is lowered, so that the current limit set value becomes low. By inputting a signal, the current limit set value can be switched as necessary.
FIG. 4 is a diagram showing a main part of still another embodiment of the energization amount limiting means, and shows an embodiment for switching the temperature protection set value.
[0015]
FIG. 4 is obtained by replacing the current sensor 30 in FIG. 3 with a temperature sensor 60. The other configurations are the same as those in FIG. 3, and therefore the same configurations are denoted by the same reference numerals and details thereof. The detailed explanation is omitted.
The temperature sensor 60 detects the temperature of a semiconductor switch or the like in the inverter. When the temperature increases, the output voltage, that is, the input voltage to the comparator 50 increases. The following operations are the same as those in FIG.
[0016]
The temperature difference between the temperature sensor 60 and the semiconductor switch is represented by the loss of the semiconductor switch × the thermal resistance between the temperature sensor 60 and the semiconductor switch. Here, when an overload state occurs in which the rotor is locked, the loss of the semiconductor switch increases from two times to three times the normal time. Therefore, by lowering the detection level of the temperature sensor 60 from the above formula, The maximum temperature can be protected at a predetermined value regardless of the load state.
FIG. 5 shows an example in which a pause section is provided as the energization amount limiting means.
[0017]
Reference numeral 70 denotes a transmitter 71, a resistor, 72 a transistor, and 73 to 78 a diode. When the output of the comparator 22 becomes 1, the transmitter 70 is repeatedly turned on and off in a cycle of, for example, 100 msec. Therefore, even if the control circuit 17 continues to output a PWM signal to a specific semiconductor switch, as shown in FIG. Will be suspended for t1.
FIG. 6 shows an operation of an inverter with a constant period as an energization amount limiting means regardless of the output state of the resolver 3. 80 is an oscillator, 81 and 82 are resistors, and 83 is a transistor. When the output of the comparator 22 becomes 1, the transistor 83 is turned on to block the resolver output. On the other hand, the oscillator 80 starts oscillating, and supplies the rotation signal to the control circuit 17 instead of the resolver 3 to the control circuit 17. As a result, the inverter operates at a constant cycle based on the rotation signal of the oscillator 80 even though the rotor is locked.
[0018]
As described above, the inverter 2 is described as a semiconductor switch. However, the semiconductor switch produces the same function and effect in the present invention in any of transistors, IGBTs, MOSFETs, and the like.
[0019]
【effect】
As described above, in the present invention, the configuration as described above makes it possible to detect the state even when a specific motor is locked due to wheel removal or the like. An increase in loss can be prevented.
[Brief description of the drawings]
FIG. 1 is an electrical connection diagram illustrating an overall configuration of a control device for an electric vehicle motor according to the present invention.
FIG. 2 is an electrical connection diagram illustrating the overall configuration of a control device for an electric vehicle motor, showing the configuration of another energization amount limiting means.
FIG. 3 is an electrical connection diagram showing a main part of energization amount limiting means in another embodiment.
FIG. 4 is an electrical connection diagram showing a main part of energization amount limiting means in another embodiment.
FIG. 5A is an electrical connection diagram illustrating a main part of another energization amount limiting unit, and FIG. 5B is a diagram illustrating an output state of a gate signal to an inverter at that time.
FIG. 6 is an electrical connection diagram showing a main part of energization amount limiting means in another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Battery 2 Inverter 3 Resolver 4, 5, 6, 7, 8, 9 Semiconductor switch 16 Synchronous motor (motor)
17 Control circuit 20 Accelerator operation amount detection means 30 Current sensor 40 Braking device operation detection means

Claims (1)

電動機と、該電動機の回転子位置を検出する位置検出手段と、上記位置検出手段の出力に応じて前記電動機に通電するパワー回路と、運転者のアクセル操作量を検出するアクセル操作量検出手段と、該アクセル操作量検出手段の出力に応じて前記パワー回路の通電量を制御する制御回路とを備え、
前記アクセル操作量検出手段の出力値が所定値以上で、かつ電動機の回転信号がない場合に、上記パワー回路の通電量を制限する通電量制限手段を備え
前記通電量制限手段は、前記位置検出手段の出力をキャンセルし、所定の擬似回転子位置検出信号を前記制御回路へ入力することを特徴とする電気自動車用制御装置。
An electric motor, position detecting means for detecting a rotor position of the electric motor, a power circuit for energizing the electric motor in accordance with an output of the position detecting means, and an accelerator operation amount detecting means for detecting an accelerator operation amount of a driver And a control circuit for controlling the energization amount of the power circuit in accordance with the output of the accelerator operation amount detection means,
When the output value of the accelerator operation amount detection means is equal to or greater than a predetermined value and there is no rotation signal of the motor , the power supply amount limiting means for limiting the power supply amount of the power circuit is provided ,
The electric vehicle control device, wherein the energization amount limiting means cancels the output of the position detection means and inputs a predetermined pseudo rotor position detection signal to the control circuit .
JP00194495A 1995-01-10 1995-01-10 Electric vehicle control equipment Expired - Fee Related JP3830176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00194495A JP3830176B2 (en) 1995-01-10 1995-01-10 Electric vehicle control equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00194495A JP3830176B2 (en) 1995-01-10 1995-01-10 Electric vehicle control equipment

Publications (2)

Publication Number Publication Date
JPH08191503A JPH08191503A (en) 1996-07-23
JP3830176B2 true JP3830176B2 (en) 2006-10-04

Family

ID=11515734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00194495A Expired - Fee Related JP3830176B2 (en) 1995-01-10 1995-01-10 Electric vehicle control equipment

Country Status (1)

Country Link
JP (1) JP3830176B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3695023B2 (en) * 1996-11-27 2005-09-14 日産自動車株式会社 Electric vehicle overload prevention device
JP3465569B2 (en) * 1998-01-26 2003-11-10 日産自動車株式会社 Electric vehicle overload prevention device
JP2004129411A (en) 2002-10-03 2004-04-22 Honda Motor Co Ltd Driving force controller of motor-driven vehicle
JP2004140889A (en) * 2002-10-15 2004-05-13 Yamaha Motor Co Ltd Electrically-operated vehicle
JP4710545B2 (en) * 2005-10-25 2011-06-29 トヨタ自動車株式会社 Motor drive device
JP4887738B2 (en) 2005-11-01 2012-02-29 トヨタ自動車株式会社 Motor drive device
DE102013219743A1 (en) * 2013-09-30 2015-04-02 Siemens Aktiengesellschaft Method for controlling a startup process

Also Published As

Publication number Publication date
JPH08191503A (en) 1996-07-23

Similar Documents

Publication Publication Date Title
KR101290888B1 (en) Power supply device for an electric motor method for operation of an electric motor
US6060859A (en) Motor driver having a booster circuit and an inverter both controlled by pulse width modulation
US9680405B2 (en) Onboard motor controller
US5254935A (en) Monitoring circuit for a system for recharging a motor vehicle battery
US7355361B2 (en) Motor control apparatus
EP2876809B1 (en) Electric power converter
KR101149125B1 (en) Apparatus of controlling the motor for driving an electric forklift truck
KR20070027608A (en) Motor drive apparatus
JP2019198139A (en) Control circuit of power converter
US6469462B2 (en) Control apparatus for electric vehicle
CN111656666B (en) power conversion device
JP3830176B2 (en) Electric vehicle control equipment
JP6983305B2 (en) Vehicle control device
RU2146074C1 (en) Electric drive system for lifting carriages
JP6129676B2 (en) VEHICLE ELECTRIC MOTOR CONTROL DEVICE AND ELECTRIC POWER STEERING CONTROL DEVICE
JPH06315201A (en) Driver for electric automobile
JP2001045740A (en) Drive circuit of power semiconductor element
US6963182B2 (en) Motor control device and motor control method
JP2004289903A (en) Inverter device
JP2002013566A (en) Motor-driven disc brake device
JPH08266087A (en) Inverter device
US20200287482A1 (en) Control circuit for electric tool
KR100209309B1 (en) Device of sensing plug signal and method for controlling brake speed in a fork-lift truck
WO2018173591A1 (en) Motor drive device, electric assist device, and electric vehicle
JP3203663B2 (en) Power supply device for electric vehicles

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040902

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20041015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees