JP3829976B2 - Wet flue gas desulfurization equipment - Google Patents

Wet flue gas desulfurization equipment Download PDF

Info

Publication number
JP3829976B2
JP3829976B2 JP2000369791A JP2000369791A JP3829976B2 JP 3829976 B2 JP3829976 B2 JP 3829976B2 JP 2000369791 A JP2000369791 A JP 2000369791A JP 2000369791 A JP2000369791 A JP 2000369791A JP 3829976 B2 JP3829976 B2 JP 3829976B2
Authority
JP
Japan
Prior art keywords
absorption tower
outlet
flue gas
gas desulfurization
tower outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000369791A
Other languages
Japanese (ja)
Other versions
JP2002172312A (en
Inventor
浩通 島津
利夫 勝部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2000369791A priority Critical patent/JP3829976B2/en
Publication of JP2002172312A publication Critical patent/JP2002172312A/en
Application granted granted Critical
Publication of JP3829976B2 publication Critical patent/JP3829976B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は湿式排煙脱硫装置に係り、特に排ガス中の硫黄酸化物(以下、SOxと記す)、煤塵を低減する吸収塔出口部への固形物堆積防止を図るのに好適な湿式排煙脱硫装置に関する。
【0002】
【従来の技術】
従来の湿式排煙脱硫装置の系統を図3と図4に示す。図示しないボイラ等からの排ガス1は入口煙道3により吸収塔4に導入され、吸収塔4内に設置されたスプレ段8を介して、該スプレ段8に設置されたスプレノズル11より噴霧される吸収剤の液滴と接触することにより、排ガス1中の煤塵や塩化水素(HCl)、フッ化水素(HF)等の酸性ガスとともに、排ガス1中のSOxが吸収剤液滴表面で吸収される。ガスに同伴される固形物を含んだミスト60の一部は吸収塔出口部50の底面に落下して吸収塔4に戻り、残りの固形物を含んだミスト60はミストエリミネータ5により除去されてミストエリミネータドレン配管61を経由して吸収塔4に戻される。ミストエリミネータ5を出た清浄な排ガス2は出口煙道6を経て、必要により再加熱されて煙突(図示せず)より排出される。また、このときの吸収塔4入口排ガス1中のSOx濃度は入口SOx計41で測定され、吸収塔出口排ガス中のSOx濃度は、出口煙道6に設けられた出口SOx計42により測定され、これらの測定結果から脱硫率が算出される。
【0003】
SOxの吸収剤である石灰石は石灰石スラリとして石灰石スラリ槽15から石灰石スラリポンプ17により吸収塔4内の液溜部に供給される。このときの石灰石スラリ供給量はSOx吸収量に応じて石灰石スラリ流量調節弁18で調節される。吸収液は吸収塔循環ポンプ7により昇圧され、吸収塔4内のスプレ段8に供給される。吸収塔4内で除去されたSOxは吸収液中のカルシウムと反応し、中間生成物として亜硫酸カルシウム(重亜硫酸カルシウムを含む)になり、吸収塔4内の液溜部に導入される酸化用空気により、石膏に酸化されて最終生成物(石膏)となる。このように吸収塔4内に空気を直接供給することにより、排ガス中のSOxの吸収反応と、生成した亜硫酸カルシウムの酸化反応を同時に進行させることにより反応全体が促進され、脱硫性能が向上する。なお、その際吸収塔4に供給される酸化用空気は、酸化用攪拌機26により微細化することにより、酸化空気の利用率を高めている。
【0004】
その後、吸収塔4の液溜部の吸収液スラリは抜出しポンプ9により生成石膏量に応じて抜出されるが、その一部はpH計タンク30に送られ、該pH計タンク30に設置されたpH計31により吸収液のpHが測定される。その他の吸収液は、石膏脱水設備10に送られ、粉体の石膏として回収される。
【0005】
一方、石膏脱水設備10で分離された水12はろ液槽19に貯えられ、ろ液ポンプ20により石灰石スラリ槽15等に送られて系内補給水13として再利用される一方、一部は塩素等の濃縮を防ぐために排水14として抜き出され、排水処理設備16に送られる。ろ液槽19には液レベルを一定に保つために、調整弁64により補給水が供給される。
【0006】
排水処理設備16では排水14中に含まれる各成分に対して排水基準値以下となるように、薬品が添加されたり、イオン吸着樹脂等を通すことによる化学的処理や、菌類による生物的処理が行われ、排水中の有害物質の除去処理が行われる。
【0007】
上記従来技術において、吸収塔出口部50は図4に示すように吸収塔出口部ガス流れ51に沿って昇り傾斜を設けていた。
【0008】
【発明が解決しようとする課題】
上記従来技術においては、図4に示すように、吸収塔出口部50は吸収塔出口部ガス流れ51に沿って上り傾斜が設けてあり、吸収塔出口部50の底面に落下した固形物を含むミスト60が吸収塔出口ドレン52となって吸収塔4に戻る際に吸収塔出口部ガス流れ51と吸収塔出口ドレン流れ53が逆向きのため、吸収塔出口部50の底面に固形物の堆積が起きやすい。吸収塔出口部50の底面への固形物の堆積を防止するためには該底面の傾斜角を大きくする必要があるが、このために吸収塔4の塔高が高くなるという問題点があった。
【0009】
本発明の課題は、吸収塔の塔高を上げることなく吸収塔出口部に固定物の堆積が起こるのを防止することにある。
【0010】
【課題を解決するための手段】
本発明の上記課題は、ボイラを含む燃焼装置から排出される燃焼排ガス中に含まれる煤塵や硫黄酸化物を石灰石または石灰等を含む吸収剤スラリよりなる吸収液により吸収・除去する吸収塔を備えた湿式排煙脱硫装置において、吸収塔出口部の天井面を水平面とし、吸収塔出口部の底面の始端部からガス流れと同じ方向に下向きに傾斜した傾斜部を設け湿式排煙脱硫装置で解決される。
【0011】
【作用】
吸収塔出口部の底面に吸収塔出口部ガス流れに沿って下り方向の傾斜部を設けることにより、該底面に落下した固形物を含むミストが吸収塔出口ドレンとなって吸収塔に戻る際に吸収塔出口部ガス流れと吸収塔出口ドレン流れが同じ向きになるため、吸収塔出口ドレンが流れやすくなり、吸収塔出口部の底面に固形物の堆積が起きにくくなる。また、吸収塔出口部の底面の傾斜部を吸収塔出口部ガス流れに沿って下向きにしていることから吸収塔の塔高が高くなることがない。
【0012】
【発明の実施の形態】
本発明の実施の形態について図面と共に説明する。
本発明による湿式排煙脱硫装置の吸収塔出口部50の構造について図1に示す。なお、図1に示す構成は、図3で説明した従来の湿式排煙脱硫装置の系統の吸収塔部分に適用される。
【0013】
図示しないボイラ等からの排ガス1は入口煙道3により吸収塔4に導入され、吸収塔4内に設置されたスプレ段8を介して、該スプレ段8に設置されたスプレノズル11より噴霧される吸収剤の液滴と接触することにより、排ガス1中の煤塵や塩化水素(HCl)、フッ化水素(HF)等の酸性ガスとともに、排ガス1中のSOxが吸収剤液滴表面で吸収される。ガスに同伴される固形物を含んだミスト60の一部は吸収塔出口部50の底面に落下して吸収塔4に戻り、残りの固形物を含んだミスト60はミストエリミネータ5により除去されてミストエリミネータドレン配管61を経由して吸収塔4に戻される。ミストエリミネータ5を出た清浄な排ガス2は出口煙道6を経て、必要により再加熱されて煙突(図示せず)より排出される。
【0014】
また、SOxの吸収剤である石灰石は石灰石スラリとして石灰石スラリ槽15(図3参照)から石灰石スラリポンプ17(図3参照)により吸収塔4内の液溜部に供給される。このときの石灰石スラリ供給量はSOx吸収量に応じて石灰石スラリ流量調節弁18(図3参照)で調節される。吸収液は吸収塔循環ポンプ7により昇圧され、吸収塔4内のスプレ段8に供給される。吸収塔4内で除去されたSOxは吸収液中のカルシウムと反応し、中間生成物として亜硫酸カルシウム(重亜硫酸カルシウムを含む)になり、導入される酸化用空気から吸収塔4に供給される空気により、石膏に酸化されて最終生成物(石膏)となる。このように吸収塔4内に空気を直接供給することにより、排ガス中のSOxの吸収反応と、生成した亜硫酸カルシウムの酸化反応を同時に進行させることにより反応全体が促進され、脱硫性能が向上する。なお、その際吸収塔4に供給される酸化用空気は、酸化用攪拌機26により微細化することにより、酸化空気の利用率を高めている。
【0015】
図1に示す構成では吸収塔出口部50に吸収塔出口部ガス流れ51と同じ方向に下り勾配の傾斜部を設け、傾斜部下端に吸収塔出口ドレン52を吸収塔4に戻すために吸収塔出口ドレン配管54を設けている。
【0016】
吸収塔出口部50の底面に吸収塔出口部ガス流れ51に沿って下り方向の傾斜を設けることにより、前記底面に落下した固形物を含むミスト60が吸収塔出口ドレン52となって前記底面を流れる際に吸収塔出口部ガス流れ51と吸収塔出口ドレン流れ53が同じ向きになるため、吸収塔出口ドレン52が流れやすくなる。
【0017】
このように吸収塔出口ドレン流れ53が吸収塔出口部ガス流れ51と同じ向きに流れるため、吸収塔出口ドレン52が流れやすくなり、吸収塔出口部50底面に固形物の堆積が起きにくくなる。その後、吸収塔出口ドレン52は吸収塔出口ドレン配管54を経由して吸収塔4に戻される。尚、吸収塔出口部50の底面の傾斜部を吸収塔出口部ガス流れ51に沿って下向きにしていることから吸収塔4の塔高を低くすることが可能となる。
【0018】
また、図2に示すようにミストエリミネータドレン配管61をミストエリミネータ5の前流側に設置することにより、吸収塔出口ドレン配管54と兼用する構成にしても良い。
【0019】
【発明の効果】
本発明によれば、吸収塔出口部底面に固形物が堆積するのを防止できるので、装置の定期点検時に行う堆積固形物除去作業を低減することができるとともに、吸収塔の塔高を低減できる効果がある。
【図面の簡単な説明】
【図1】 本発明になる実施の形態の湿式排煙脱硫装置の吸収塔出口部の構造を示す。
【図2】 本発明になる実施の形態の湿式排煙脱硫装置の吸収塔出口部の構造を示す。
【図3】 従来の湿式排煙脱硫装置の系統を示す。
【図4】 従来の湿式排煙脱硫装置の吸収塔出口部の構造を示す。
【符号の説明】
1 ボイラ等からの燃焼排ガス 2 清浄な排ガス
3 入口煙道 4 吸収塔
5 ミストエリミネータ 6 出口煙道
7 吸収塔循環ポンプ 8 スプレ段
9 抜出しポンプ 10 石膏脱水設備
11 スプレノズル 12 石膏脱水設備で分離された水
13 系内補給水 14 排水
15 石灰石スラリ槽 16 排水処理設備
17 石灰石スラリポンプ 18 石灰石スラリ流量調整弁
19 ろ液槽 20 ろ液ポンプ
26 酸化用攪拌機 30 pH計タンク
31 pH計 41 入口SOx計
42 出口SOx計 50 吸収塔出口部
51 吸収塔出口部ガス流れ 52 吸収塔出口ドレン
53 吸収塔出口ドレン流れ 54 吸収塔出口ドレン配管
60 固形物を含むミスト 61 ミストエリミネータドレン配管
64 調整弁
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a wet flue gas desulfurization apparatus, and in particular, wet flue gas desulfurization suitable for preventing solid oxide accumulation at an outlet portion of an absorption tower that reduces sulfur oxide (hereinafter referred to as SOx) and dust in exhaust gas. Relates to the device.
[0002]
[Prior art]
The system of the conventional wet flue gas desulfurization apparatus is shown in FIG. 3 and FIG. Exhaust gas 1 from a boiler or the like (not shown) is introduced into the absorption tower 4 through the inlet flue 3 and is sprayed from the spray nozzle 11 installed in the spray stage 8 through the spray stage 8 installed in the absorption tower 4. By contacting with the droplets of the absorbent, SOx in the exhaust gas 1 is absorbed on the surface of the absorbent droplets together with soot dust in the exhaust gas 1 and acidic gases such as hydrogen chloride (HCl) and hydrogen fluoride (HF). . A part of the mist 60 containing the solid substance accompanying the gas falls to the bottom surface of the absorption tower outlet 50 and returns to the absorption tower 4, and the mist 60 containing the remaining solid substance is removed by the mist eliminator 5. It is returned to the absorption tower 4 via the mist eliminator drain pipe 61. The clean exhaust gas 2 that has exited the mist eliminator 5 passes through the outlet flue 6 and is reheated as necessary to be discharged from a chimney (not shown). In addition, the SOx concentration in the exhaust gas at the inlet 4 of the absorption tower 4 at this time is measured by the inlet SOx meter 41, and the SOx concentration in the exhaust gas at the outlet of the absorption tower is measured by the outlet SOx meter 42 provided in the outlet flue 6, The desulfurization rate is calculated from these measurement results.
[0003]
Limestone, which is an SOx absorbent, is supplied as a limestone slurry from a limestone slurry tank 15 to a liquid reservoir in the absorption tower 4 by a limestone slurry pump 17. The limestone slurry supply amount at this time is adjusted by the limestone slurry flow rate control valve 18 in accordance with the SOx absorption amount. The absorption liquid is pressurized by the absorption tower circulation pump 7 and supplied to the spray stage 8 in the absorption tower 4. The SOx removed in the absorption tower 4 reacts with calcium in the absorption liquid to become calcium sulfite (including calcium bisulfite) as an intermediate product, and the oxidizing air introduced into the liquid reservoir in the absorption tower 4 As a result, it is oxidized to gypsum to form a final product (gypsum). By supplying air directly into the absorption tower 4 in this manner, the entire reaction is promoted by simultaneously progressing the SOx absorption reaction in the exhaust gas and the oxidation reaction of the generated calcium sulfite, and the desulfurization performance is improved. At that time, the oxidizing air supplied to the absorption tower 4 is refined by the oxidizing stirrer 26 to increase the utilization rate of the oxidizing air.
[0004]
Thereafter, the absorption liquid slurry in the liquid storage section of the absorption tower 4 is extracted according to the amount of gypsum produced by the extraction pump 9, but a part thereof is sent to the pH meter tank 30 and installed in the pH meter tank 30. A pH meter 31 measures the pH of the absorbing solution. The other absorbing liquid is sent to the gypsum dewatering equipment 10 and collected as powder gypsum.
[0005]
On the other hand, the water 12 separated by the gypsum dewatering facility 10 is stored in the filtrate tank 19 and sent to the limestone slurry tank 15 and the like by the filtrate pump 20 and reused as the makeup water 13 in the system. In order to prevent such concentration, the waste water 14 is extracted and sent to the waste water treatment facility 16. In order to keep the liquid level constant, the filtrate tank 19 is supplied with make-up water by the adjusting valve 64.
[0006]
In the wastewater treatment facility 16, chemical treatment by adding chemicals or passing an ion-adsorbing resin or the like and biological treatment with fungi are performed so that each component contained in the wastewater 14 is less than the wastewater standard value. It is performed and the removal processing of the harmful substance in the waste water is performed.
[0007]
In the above prior art, the absorption tower outlet 50 is provided with an upward slope along the absorption tower outlet gas flow 51 as shown in FIG.
[0008]
[Problems to be solved by the invention]
In the above prior art, as shown in FIG. 4, the absorption tower outlet 50 is provided with an upward slope along the absorption tower outlet gas flow 51, and contains solids that have fallen on the bottom surface of the absorption tower outlet 50. When the mist 60 becomes the absorption tower outlet drain 52 and returns to the absorption tower 4, the absorption tower outlet gas flow 51 and the absorption tower outlet drain flow 53 are reversed, so that solids are deposited on the bottom surface of the absorption tower outlet 50. Is prone to occur. In order to prevent the accumulation of solid matter on the bottom surface of the absorption tower outlet 50, it is necessary to increase the inclination angle of the bottom surface. However, there is a problem that the height of the absorption tower 4 is increased. .
[0009]
An object of the present invention is to prevent the accumulation of fixed matter at the absorption tower outlet without increasing the tower height of the absorption tower.
[0010]
[Means for Solving the Problems]
The above-described problem of the present invention includes an absorption tower that absorbs and removes dust and sulfur oxides contained in combustion exhaust gas discharged from a combustion apparatus including a boiler with an absorbent liquid made of an absorbent slurry containing limestone or lime. In the wet flue gas desulfurization device, the ceiling surface of the absorption tower outlet is a horizontal surface, and the wet flue gas desulfurization device is provided with an inclined portion that is inclined downward in the same direction as the gas flow from the bottom end of the absorption tower outlet. Solved.
[0011]
[Action]
By providing a downwardly inclined portion along the absorption tower outlet gas flow at the bottom of the absorption tower outlet, when the mist containing the solids falling on the bottom becomes an absorption tower outlet drain and returns to the absorption tower Since the absorption tower outlet gas flow and the absorption tower outlet drain flow are in the same direction, the absorption tower outlet drain easily flows, and solids are less likely to deposit on the bottom surface of the absorption tower outlet. In addition, since the inclined portion of the bottom surface of the absorption tower outlet is directed downward along the gas flow at the absorption tower outlet, the tower height of the absorption tower does not increase.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
The structure of the absorption tower outlet 50 of the wet flue gas desulfurization apparatus according to the present invention is shown in FIG. The configuration shown in FIG. 1 is applied to the absorption tower portion of the system of the conventional wet flue gas desulfurization apparatus described in FIG.
[0013]
Exhaust gas 1 from a boiler or the like (not shown) is introduced into the absorption tower 4 through the inlet flue 3 and is sprayed from the spray nozzle 11 installed in the spray stage 8 through the spray stage 8 installed in the absorption tower 4. By contacting with the droplets of the absorbent, SOx in the exhaust gas 1 is absorbed on the surface of the absorbent droplets together with soot dust in the exhaust gas 1 and acidic gases such as hydrogen chloride (HCl) and hydrogen fluoride (HF). . A part of the mist 60 containing the solid substance accompanying the gas falls to the bottom surface of the absorption tower outlet 50 and returns to the absorption tower 4, and the mist 60 containing the remaining solid substance is removed by the mist eliminator 5. It is returned to the absorption tower 4 via the mist eliminator drain pipe 61. The clean exhaust gas 2 that has exited the mist eliminator 5 passes through the outlet flue 6 and is reheated as necessary to be discharged from a chimney (not shown).
[0014]
Limestone, which is an SOx absorbent, is supplied as a limestone slurry from a limestone slurry tank 15 (see FIG. 3) to a liquid reservoir in the absorption tower 4 by a limestone slurry pump 17 (see FIG. 3). The limestone slurry supply amount at this time is adjusted by the limestone slurry flow rate control valve 18 (see FIG. 3) according to the SOx absorption amount. The absorption liquid is pressurized by the absorption tower circulation pump 7 and supplied to the spray stage 8 in the absorption tower 4. The SOx removed in the absorption tower 4 reacts with calcium in the absorption liquid to become calcium sulfite (including calcium bisulfite) as an intermediate product, and the air supplied to the absorption tower 4 from the introduced oxidizing air As a result, it is oxidized to gypsum to form a final product (gypsum). By supplying air directly into the absorption tower 4 in this manner, the entire reaction is promoted by simultaneously progressing the SOx absorption reaction in the exhaust gas and the oxidation reaction of the generated calcium sulfite, and the desulfurization performance is improved. At that time, the oxidizing air supplied to the absorption tower 4 is refined by the oxidizing stirrer 26 to increase the utilization rate of the oxidizing air.
[0015]
In the configuration shown in FIG. 1, the absorption tower outlet 50 is provided with an inclined part having a downward slope in the same direction as the absorption tower outlet gas flow 51, and the absorption tower outlet drain 52 is returned to the absorption tower 4 at the lower end of the inclined part. An outlet drain pipe 54 is provided.
[0016]
By providing a downward slope along the absorption tower outlet gas flow 51 at the bottom surface of the absorption tower outlet section 50, the mist 60 containing the solid matter falling on the bottom surface becomes the absorption tower outlet drain 52 and the bottom surface. When flowing, the absorption tower outlet gas flow 51 and the absorption tower outlet drain flow 53 are in the same direction, so that the absorption tower outlet drain 52 easily flows.
[0017]
Since the absorption tower outlet drain flow 53 flows in the same direction as the absorption tower outlet gas flow 51 in this way, the absorption tower outlet drain 52 easily flows, and solids do not easily accumulate on the bottom surface of the absorption tower outlet 50. Thereafter, the absorption tower outlet drain 52 is returned to the absorption tower 4 via the absorption tower outlet drain pipe 54. In addition, since the inclined part of the bottom face of the absorption tower outlet 50 is directed downward along the absorption tower outlet gas flow 51, the tower height of the absorption tower 4 can be lowered.
[0018]
In addition, as shown in FIG. 2, a mist eliminator drain pipe 61 may be installed on the upstream side of the mist eliminator 5 so that it can also be used as the absorption tower outlet drain pipe 54.
[0019]
【The invention's effect】
According to the present invention, since it is possible to prevent solids from being deposited on the bottom surface of the absorption tower outlet, it is possible to reduce the work of removing accumulated solids during periodic inspection of the apparatus and to reduce the tower height of the absorption tower. effective.
[Brief description of the drawings]
FIG. 1 shows the structure of an absorption tower outlet of a wet flue gas desulfurization apparatus according to an embodiment of the present invention.
FIG. 2 shows the structure of the absorption tower outlet of the wet flue gas desulfurization apparatus according to the embodiment of the present invention.
FIG. 3 shows a system of a conventional wet flue gas desulfurization apparatus.
FIG. 4 shows a structure of an absorption tower outlet of a conventional wet flue gas desulfurization apparatus.
[Explanation of symbols]
1 Combustion exhaust gas from boilers, etc. 2 Clean exhaust gas 3 Inlet flue 4 Absorption tower 5 Mist eliminator 6 Outlet flue 7 Absorption tower circulation pump 8 Spray stage 9 Extraction pump 10 Gypsum dewatering equipment 11 Spray nozzle 12 Separated by gypsum dewatering equipment Water 13 Replenishment water in system 14 Drainage 15 Limestone slurry tank 16 Wastewater treatment facility 17 Limestone slurry pump 18 Limestone slurry flow control valve 19 Filtration tank 20 Filtrate pump 26 Oxidizing stirrer 30 pH meter tank 31 pH meter 41 Inlet SOx meter 42 Outlet SOx meter 50 Absorption tower outlet 51 Absorption tower outlet gas flow 52 Absorption tower outlet drain 53 Absorption tower outlet drain flow 54 Absorption tower outlet drain pipe 60 Mist containing solid matter 61 Mist eliminator drain pipe 64 Regulating valve

Claims (3)

ボイラを含む燃焼装置から排出される燃焼排ガス中に含まれる煤塵や硫黄酸化物を石灰石または石灰等を含む吸収剤スラリよりなる吸収液により吸収・除去する吸収塔を備えた湿式排煙脱硫装置において、
吸収塔出口部の天井面を水平面とし、吸収塔出口部の底面の始端部からガス流れと同じ方向に下向きに傾斜した傾斜部を設けことを特徴とする湿式排煙脱硫装置。
In a wet-type flue gas desulfurization apparatus equipped with an absorption tower that absorbs and removes dust and sulfur oxides contained in combustion exhaust gas discharged from a combustion apparatus including a boiler by an absorbent liquid made of an absorbent slurry containing limestone or lime. ,
The ceiling surface of the absorption tower outlet to the horizontal plane, the absorption tower wet flue gas desulfurization apparatus is characterized in that the provided inclined portion inclined downward from the starting end of the bottom face in the same direction as the gas flow in the outlet portion.
吸収塔出口部の底面の前記傾斜部の下端にドレン抜きラインを設置することを特徴とする請求項1記載の湿式排煙脱硫装置。 The wet flue gas desulfurization apparatus according to claim 1, wherein a drain line is installed at a lower end of the inclined portion at the bottom of the absorption tower outlet. 前記傾斜部の下流側にミストエリミネータを配置し、該ミストエリミネータのドレン配管を前記傾斜部の下端に設けたドレン抜きラインと共用したことを特徴とする請求項1記載の湿式排煙脱硫装置。 The wet flue gas desulfurization apparatus according to claim 1, wherein a mist eliminator is disposed downstream of the inclined portion, and a drain pipe of the mist eliminator is shared with a drain line provided at a lower end of the inclined portion.
JP2000369791A 2000-12-05 2000-12-05 Wet flue gas desulfurization equipment Expired - Lifetime JP3829976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000369791A JP3829976B2 (en) 2000-12-05 2000-12-05 Wet flue gas desulfurization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000369791A JP3829976B2 (en) 2000-12-05 2000-12-05 Wet flue gas desulfurization equipment

Publications (2)

Publication Number Publication Date
JP2002172312A JP2002172312A (en) 2002-06-18
JP3829976B2 true JP3829976B2 (en) 2006-10-04

Family

ID=18839780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000369791A Expired - Lifetime JP3829976B2 (en) 2000-12-05 2000-12-05 Wet flue gas desulfurization equipment

Country Status (1)

Country Link
JP (1) JP3829976B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8292992B2 (en) 2008-01-29 2012-10-23 Mitsubishi Heavy Industries, Ltd. Flue gas desulfurization apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8292992B2 (en) 2008-01-29 2012-10-23 Mitsubishi Heavy Industries, Ltd. Flue gas desulfurization apparatus

Also Published As

Publication number Publication date
JP2002172312A (en) 2002-06-18

Similar Documents

Publication Publication Date Title
JP5479741B2 (en) Wet flue gas desulfurization equipment
JP4785006B2 (en) Wet flue gas desulfurization equipment
CA2180110C (en) Flue gas scrubbing apparatus
US5512072A (en) Flue gas scrubbing apparatus
US9468885B2 (en) Method and apparatus for wet desulfurization spray towers
JP5234783B2 (en) Wet flue gas desulfurization equipment
WO2014156985A1 (en) Seawater flue-gas desulfurization device and method for operating same
JP6230818B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
US20080038173A1 (en) System and process for cleaning a flue gas stream
CN107138038A (en) A kind of wet desulphurization denitration dust collecting integrated technique and device
KR100865574B1 (en) The wet scrubber with waste water self-treatment
JP4381064B2 (en) Exhaust gas treatment apparatus and treatment method
SI9520071A (en) Improved wet scrubbing method and apparatus for removing sulfur oxides from combustion effluents
CN105056678B (en) The dust removal integrated flue gas cleaner of desulphurization denitration, demercuration
CN108380033A (en) Flue gas desulfurization condensation dedusting takes off white integral system and its application method
JP4587197B2 (en) Wet flue gas desulfurization method and apparatus
JP3829976B2 (en) Wet flue gas desulfurization equipment
JP2013039527A (en) Wet-type flue gas desulfurization apparatus, and thermal power generation plant provided with the same
JP2006320828A (en) Wet-type flue gas desulfurization apparatus
JP4514029B2 (en) Flue gas desulfurization method and apparatus
JP2012196611A (en) Flue gas desulfurization apparatus and flue gas desulfurization method
JPH0328896Y2 (en)
JP3525369B2 (en) Spray absorption tower and flue gas desulfurization unit
JPH11147024A (en) Flue-gas treatment method
JP3878382B2 (en) Wet flue gas desulfurization method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3829976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term