JP3829604B2 - Fuel injection device - Google Patents

Fuel injection device Download PDF

Info

Publication number
JP3829604B2
JP3829604B2 JP2000260779A JP2000260779A JP3829604B2 JP 3829604 B2 JP3829604 B2 JP 3829604B2 JP 2000260779 A JP2000260779 A JP 2000260779A JP 2000260779 A JP2000260779 A JP 2000260779A JP 3829604 B2 JP3829604 B2 JP 3829604B2
Authority
JP
Japan
Prior art keywords
pressure control
control chamber
pressure
valve
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000260779A
Other languages
Japanese (ja)
Other versions
JP2002070684A (en
Inventor
和広 大前
義正 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000260779A priority Critical patent/JP3829604B2/en
Priority to EP20010119222 priority patent/EP1184563B1/en
Priority to DE2001607332 priority patent/DE60107332T2/en
Publication of JP2002070684A publication Critical patent/JP2002070684A/en
Application granted granted Critical
Publication of JP3829604B2 publication Critical patent/JP3829604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0026Valves characterised by the valve actuating means electrical, e.g. using solenoid using piezoelectric or magnetostrictive actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/12Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship providing a continuous cyclic delivery with variable pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は燃料噴射装置に関する。
【0002】
【従来の技術】
従来、燃料噴射用噴孔を開閉する噴孔開閉弁と、噴孔開閉弁を閉弁側に付勢する閉弁側付勢手段と、噴孔開閉弁を開弁側に付勢する開弁側付勢手段とを具備し、閉弁側付勢手段が圧力制御室を有し、圧力制御室内の圧力を制御するための圧力制御弁を圧力制御弁室内に配置し、絞り部を備えた第一連通路によって圧力制御室と圧力制御弁室とを連通し、圧力制御弁の開弁期間中に、圧力制御室内の燃料が、絞り部を備えた第一連通路及び圧力制御弁室を介して低圧燃料リーク通路内に排出されるようにした燃料噴射装置が知られている。この種の燃料噴射装置の例としては、例えばWO97/48900号公報のFIG.3、FIG.5、FIG.6に記載されたものがある。WO97/48900号公報に記載された燃料噴射装置では、圧力制御弁の開弁期間中に圧力制御室内の圧力を減少させることによって噴孔開閉弁が開弁せしめられ、圧力制御弁の閉弁期間中に圧力制御室内の圧力を増加させることによって噴孔開閉弁が閉弁せしめられる。また、WO97/48900号公報に記載された燃料噴射装置では、圧力制御室と圧力制御弁室とが絞り部を備えた第一連通路によって連通されているため、圧力制御弁の開弁期間中に圧力制御室から流出する燃料流量が絞り部によって決定される。その結果、圧力制御弁の開弁量を正確に制御しなくても、圧力制御室から流出する燃料流量を所望の燃料流量に一致させることができる。
【0003】
【発明が解決しようとする課題】
ところが、WO97/48900号公報に記載された燃料噴射装置では、圧力制御室内に燃料を供給するための通路が、高圧燃料供給通路と圧力制御室との間に配置されているものの、高圧燃料供給通路と圧力制御弁室との間には配置されていない。つまり、WO97/48900号公報に記載された燃料噴射装置では、燃料が、高圧燃料供給通路から圧力制御弁室及び絞り部を備えた第一通路を介して圧力制御室内に供給されるのではなく、高圧燃料供給通路から圧力制御室内に直接供給される。従って、噴孔開閉弁を開弁させるために圧力制御室内の圧力を減少させようとしても、高圧燃料供給通路から圧力制御室内に燃料が供給され続けているために、圧力制御室内の圧力を迅速に減少させることができない。
【0004】
そこで、圧力制御室内の圧力を迅速に減少させて噴孔開閉弁を迅速に開弁させるために、高圧燃料供給通路から供給される燃料流量を比較的少ない流量に設定することが考えられる。ところが、そのように設定した場合には、圧力制御弁の閉弁期間中に圧力制御室内の圧力を増加させるのに比較的長い時間を要してしまい、噴孔開閉弁を迅速に閉弁させることができない。一方、圧力制御弁の閉弁期間中に圧力制御室内の圧力を迅速に増加させて噴孔開閉弁を迅速に閉弁させるために、高圧燃料供給通路から供給される燃料流量を比較的多い流量に設定した場合には、上述した理由から、圧力制御弁の開弁期間中に圧力制御室内の圧力を減少させるのに比較的長い時間を要してしまい、噴孔開閉弁を迅速に開弁させることができない。つまり、WO97/48900号公報に記載された燃料噴射装置では、燃料が高圧燃料供給通路から圧力制御室内に直接供給されるため、噴孔開閉弁が迅速に開弁できるようにしつつ噴孔開閉弁が迅速に閉弁できるようにすることができない。
【0005】
前記問題点に鑑み、本発明は、噴孔開閉弁が迅速に開弁できるようにしつつ噴孔開閉弁が迅速に閉弁できるようにした燃料噴射装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
請求項1に記載の発明によれば、燃料噴射用噴孔を開閉する噴孔開閉弁と、前記噴孔開閉弁を閉弁側に付勢する閉弁側付勢手段と、前記噴孔開閉弁を開弁側に付勢する開弁側付勢手段とを具備し、前記閉弁側付勢手段が圧力制御室を有し、前記圧力制御室内の圧力を制御するための圧力制御弁を圧力制御弁室内に配置し、絞り部を備えた第一連通路によって前記圧力制御室と前記圧力制御弁室とを連通し、前記圧力制御弁の開弁期間中に、前記圧力制御室内の燃料が、前記絞り部を備えた第一連通路及び前記圧力制御弁室を介して低圧燃料リーク通路内に排出されるようにした燃料噴射装置において、前記圧力制御室内に燃料を供給するための第二連通路を高圧燃料供給通路と前記圧力制御弁室との間に配置し、前記噴孔開閉弁の全開時のリフト量である最大リフト量を調節する最大リフト量調節手段を設け、最大リフト量を大きくする側に前記最大リフト量調節手段を付勢する第一圧力制御室と、最大リフト量を小さくする側に前記最大リフト量調節手段を付勢する第二圧力制御室とに前記圧力制御室を分割すると共に、前記第一連通路を第一圧力制御室用連通路と第二圧力制御室用連通路とに分割し、前記第一圧力制御室内の圧力と前記第二圧力制御室内の圧力との関係を変更することにより最大リフト量を変更するようになっていて、前記第一圧力制御室内の圧力を増加させると共に前記第二圧力制御室内の圧力を増加させる第一モードと、前記第一圧力制御室内の圧力を減少させると共に前記第二圧力制御室内の圧力を減少させる第二モードと、前記第一圧力制御室内の圧力を減少させると共に前記第二圧力制御室内の圧力を増加させる第三モードとを前記圧力制御弁が有する燃料噴射装置が提供される。
【0008】
請求項1に記載の燃料噴射装置では、圧力制御室内に燃料を供給するための第二連通路が高圧燃料供給通路と圧力制御弁室との間に配置される。そのため、高圧燃料供給通路から第二連通路を介して圧力制御弁室に供給される燃料流量を比較的多い流量に設定することにより、圧力制御弁の閉弁期間中に、圧力制御弁室に供給された燃料が第一連通路を介して圧力制御室内に迅速に流入せしめられる。それゆえ、圧力制御室内の圧力を迅速に増加させて噴孔開閉弁を迅速に閉弁させることができる。一方、圧力制御弁の開弁期間中には、高圧燃料供給通路から第二連通路を介して圧力制御弁室に供給された燃料は、圧力制御弁室と低圧燃料リーク通路との間の隙間が十分に大きいために圧力制御弁室内の圧力が圧力制御室内の圧力よりも低くなることにより、圧力制御室内に流入することなく低圧燃料リーク通路内に排出される。その結果、圧力制御室内の燃料が第一連通路及び圧力制御弁室を介して低圧燃料リーク通路内に排出されるのが促進され、圧力制御室内の燃料が圧力制御室から迅速に流出せしめられる。それゆえ、圧力制御室内の圧力を迅速に減少させて噴孔開閉弁を迅速に開弁させることができる。つまり、噴孔開閉弁が迅速に開弁できるようにしつつ噴孔開閉弁が迅速に閉弁できるようにすることができる。
【0010】
また、請求項1に記載の燃料噴射装置では、最大リフト量を大きくする側に最大リフト量調節手段を付勢する第一圧力制御室内の圧力と、最大リフト量を小さくする側に最大リフト量調節手段を付勢する第二圧力制御室内の圧力との関係を変更することにより、噴孔開閉弁の全開時の最大リフト量が変更せしめられる。つまり、最大リフト量を変更するために、第一圧力制御室内の圧力と第二圧力制御室内の圧力との関係が変更されればよく、高圧燃料供給通路内の圧力を変更する必要がない。また、最大リフト量を変更するために変更される対象が第一圧力制御室及び第二圧力制御室内の圧力であるため、例えばピエゾ式アクチュエータの伸長量を変更することにより最大リフト量を変更する場合のように温度変化に伴って最大リフト量が変化してしまうことがない。そのため、高圧燃料供給通路内の圧力を変更する必要なく噴孔開閉弁の全開時の最大リフト量を変更することができると共に、温度が変化した場合であっても噴孔開閉弁の全開時の最大リフト量を正確に制御することができる。
【0012】
更に、請求項1に記載の燃料噴射装置では、第一圧力制御室内の圧力を増加させると共に第二圧力制御室内の圧力を増加させる第一モードと、第一圧力制御室内の圧力を減少させると共に第二圧力制御室内の圧力を減少させる第二モードと、第一圧力制御室内の圧力を減少させると共に第二圧力制御室内の圧力を増加させる第三モードとを圧力制御弁が有するため、圧力制御弁のモードを切り換えることにより、噴孔開閉弁を全閉せしめる状態と、最大リフト量を大きくして噴孔開閉弁を全開せしめる状態と、最大リフト量を小さくして噴孔開閉弁を全開せしめる状態とを切り換えることができる。
【0013】
請求項2に記載の発明によれば、燃料が前記第一圧力制御室内に流入するための通路を前記第一圧力制御室用連通路のみによって構成した請求項1に記載の燃料噴射装置が提供される。
【0014】
請求項2に記載の燃料噴射装置では、燃料が第一圧力制御室内に流入するための通路が第一圧力制御室用連通路のみによって構成される。そのため、高圧燃料供給通路と第一圧力制御室とを直接連通する通路を加工する必要性を排除することができ、燃料噴射装置のコストを低減することができる。また、高圧燃料供給通路と第一圧力制御室とを直接連通する通路を設けた場合よりも、第一圧力制御室内の圧力を迅速に減少させることができる。
【0015】
請求項3に記載の発明によれば、燃料が前記第二圧力制御室内に流入するための通路を前記第二圧力制御室用連通路のみによって構成した請求項1に記載の燃料噴射装置が提供される。
【0016】
請求項3に記載の燃料噴射装置では、燃料が第二圧力制御室内に流入するための通路が第二圧力制御室用連通路のみによって構成される。そのため、高圧燃料供給通路と第二圧力制御室とを直接連通する通路を加工する必要性を排除することができ、燃料噴射装置のコストを低減することができる。また、高圧燃料供給通路と第二圧力制御室とを直接連通する通路を設けた場合よりも、第二圧力制御室内の圧力を迅速に減少させることができる。
【0017】
【発明の実施の形態】
以下、添付図面を用いて本発明の実施形態について説明する。
【0018】
図1は本発明の燃料噴射装置の第一の実施形態の全体構成図、図2は図1の拡大図である。図1及び図2において、1は燃料噴射用噴孔、2は燃料噴射用噴孔1を開閉するニードル弁、2aはニードル弁2の上側に配置されたコマンドピストン、3はニードル弁2及びコマンドピストン2aを閉弁側に付勢する第一圧力制御室、4はニードル弁2及びコマンドピストン2aを開弁側に付勢する燃料だまり室である。5はニードル弁2の全開時のリフト量である最大リフト量を調節するリフトロックピストンである。つまり、所定の位置に位置せしめられたリフトロックピストン5にコマンドピストン2aが突き当てられた時のニードル弁2の位置が最大リフト位置となる。リフトロックピストン5は、第一圧力制御室3内の圧力により最大リフト量を大きくする側に付勢され、第二圧力制御室6内の圧力により最大リフト量を小さくする側に付勢される。
【0019】
7はリフトロックピストン5を案内するシリンダであり、このシリンダ7は第一シリンダ部材7aと第二シリンダ部材7bとにより構成されている。第一圧力制御室3内の圧力が第二圧力制御室6内の圧力よりも低い時、リフトロックピストン5は下側に付勢され、下側突き当て面7cに突き当たるまで下側に移動せしめられる。一方、第一圧力制御室3内の圧力が第二圧力制御室6内の圧力よりも高い時、リフトロックピストン5は上側に付勢され、上側突き当て面7dに突き当たるまで上側に移動せしめられる。10は第一圧力制御室3及び第二圧力制御室6内の圧力を調節するための圧力制御弁、10aは圧力制御弁10を構成する棒状部材、10bは圧力制御弁10を構成する球状部材、40は圧力制御弁10を包囲している圧力制御弁室である。11は圧力制御弁10を駆動するためのピエゾ式アクチュエータ、12は圧力制御弁10とピエゾ式アクチュエータ11との間に配置された中間油圧室、13はニードル弁2を閉弁側に付勢するばねである。
【0020】
20は高圧の燃料(作動油)が流れる高圧燃料供給通路、21及び22は高圧燃料供給通路20内よりも低圧の燃料が流れる低圧燃料リーク通路である。高圧燃料供給通路20内には、コモンレール(図示せず)から一定の圧力の燃料が供給されている。30は第一圧力制御室3内に燃料が流入するための第一圧力制御室用入口通路である。第一圧力制御室用入口通路30には絞り部30’が形成されている。31は第一圧力制御室3と圧力制御弁室40とを連通する第一圧力制御室用連通路である。第一圧力制御室用連通路31にも絞り部31’が形成されている。32は第二圧力制御室6内に燃料が流入するための第二圧力制御室用入口通路である。第一圧力制御室用入口通路32にも絞り部32’が形成されている。33は第二圧力制御室6と圧力制御弁室40とを連通する第二圧力制御室用連通路である。第二圧力制御室用連通路33にも絞り部33’が形成されている。34は高圧燃料供給通路20と圧力制御弁室40とを直接連通する第三連通路である。第三連通路34にも絞り部34’が形成されている。50は第三連通路34が形成されている部材、51は第二圧力制御室用入口通路32が形成されている部材である。
【0021】
図3は圧力制御弁10の作動状態を比較して示した図である。詳細には、図3(a)は第一圧力制御室3からの燃料の流出及び第二圧力制御室6からの燃料の流出が共に遮断された第一状態を示した図、図3(b)は第一圧力制御室3からの燃料の流出及び第二圧力制御室6からの燃料の流出が共に遮断されていない第二状態を示した図、図3(c)は第一圧力制御室3からの燃料の流出が遮断されておらず第二圧力制御室6からの燃料の流出が遮断された第三状態を示した図である。図3(a)に示すように、第一状態では、圧力制御弁室40から低圧燃料リーク通路21内に燃料が流出するのが、圧力制御弁10の棒状部材10aによって遮断される。その結果、第一圧力制御室3内の燃料は第一圧力制御室3から流出できなくなり、同様に、第二圧力制御室6内の燃料も第二圧力制御室6から流出できなくなる。図3(b)に示すように、第二状態では、圧力制御弁室40から低圧燃料リーク通路21内に燃料が流出するのが、圧力制御弁10の棒状部材10aによって遮断されない。また、第二圧力制御室6から圧力制御弁室40内に燃料が流入するのも、圧力制御弁10の球状部材10bによって遮断されない。その結果、第一圧力制御室3内の燃料は第一圧力制御室3から流出することができ、同様に、第二圧力制御室6内の燃料も第二圧力制御室6から流出することができる。図3(c)に示すように、第三状態では、圧力制御弁室40から低圧燃料リーク通路21内に燃料が流出するのが、圧力制御弁10の棒状部材10aによって遮断されないものの、第二圧力制御室6から圧力制御弁室40内に燃料が流入するのが、圧力制御弁10の球状部材10bによって遮断される。その結果、第一圧力制御室3内の燃料は第一圧力制御室3から流出することができるが、第二圧力制御室6内の燃料は第二圧力制御室6から流出できなくなる。
【0022】
図4はリフトロックピストン5の作動状態を比較して示した図である。詳細には、図4(a)はリフトロックピストン5が下側突き当て面7cに突き当てられた状態を示した図、図4(b)はリフトロックピストン5が上側突き当て面7dに突き当てられた状態を示した図、図4(c)はリフトロックピストン5の底面図である。図4において、5aは、リフトロックピストン5の底面に突き当てられたコマンドピストン2aの頂面がリフトロックピストン5の底面に張りつくのを阻止し、ニードル弁2の閉弁動作開始時にリフトロックピストン5の底面からコマンドピストン2aの頂面が分離するのを促進するための分離促進溝である。5bは分離促進溝5aと同様の目的で形成された分離促進穴である。
【0023】
図1〜図4に示すように、まず燃料噴射を開始すべき時、詳細には、小さい最大リフト量にて燃料を噴射すべき時、ピエゾ式アクチュエータ11が伸長せしめられ、圧力制御弁10が第三状態(図3(c))に配置される。この第三状態では、第一圧力制御室3から燃料が流出せしめられる。その結果、第一圧力制御室3内の燃料がニードル弁2を閉弁側に付勢する力と、ばね13がニードル弁2を閉弁側に付勢する力との合力は、燃料だまり室4内の燃料がニードル弁2を開弁側に付勢する力よりも小さくなり、それゆえ、ニードル弁2が開弁せしめられる。またこの第三状態では、第二圧力制御室6からの燃料の流出が遮断される。その結果、第二圧力制御室6内の圧力が第一圧力制御室3内の圧力よりも高くなり、それゆえ、リフトロックピストン5は、下側突き当て面7cに突き当てられ、小さい最大リフト量を画定する(図4(a))。つまり、図4(a)の状態に配置されたリフトロックピストン5にニードル弁2及びコマンドピストン2aが突き当てられ、燃料噴射が行われる。
【0024】
次いで、大きい最大リフト量にて燃料を噴射すべき時、ピエゾ式アクチュエータ11が少し収縮せしめられ、圧力制御弁10が第二状態(図3(b))に配置される。この第二状態では、上述した第三状態と同様に、第一圧力制御室3から燃料が流出せしめられる結果、第一圧力制御室3内の燃料がニードル弁2を閉弁側に付勢する力と、ばね13がニードル弁2を閉弁側に付勢する力との合力は、燃料だまり室4内の燃料がニードル弁2を開弁側に付勢する力よりも小さくなり、それゆえ、ニードル弁2の開弁状態がそのまま維持される。またこの第二状態では、第二圧力制御室6からも燃料が流出せしめられる結果、第二圧力制御室6内の圧力も第一圧力制御室3内の圧力と同程度まで低下する。それゆえ、燃料だまり室4内の圧力により、ニードル弁2及びコマンドピストン2aだけでなくリフトロックピストン5も上側に付勢され、リフトロックピストン5が上側突き当て面7dに突き当たるまでニードル弁2、コマンドピストン2a及びリフトロックピストン5が共に上側に移動せしめられる。つまり、最大リフト量が、リフトロックピストン5のストローク量t(図4(b))だけ図4(a)に示したものよりも増加せしめられ、大きい最大リフト量の下で燃料噴射が行われる。
【0025】
次いで、燃料噴射を停止すべき時、ピエゾ式アクチュエータ11が更に収縮せしめられ、圧力制御弁10が第一状態(図3(a))に配置される。この第一状態では、第一圧力制御室3及び第二圧力制御室6から低圧燃料リーク通路21への燃料の流出が遮断される。その結果、第一圧力制御室3内の燃料がニードル弁2を閉弁側に付勢する力と、ばね13がニードル弁2を閉弁側に付勢する力との合力は、燃料だまり室4内の燃料がニードル弁2を開弁側に付勢する力よりも大きくなり、それゆえ、ニードル弁2が閉弁せしめられる。また、上述した第二状態からこの第一状態に切り換えられた時、第一圧力制御室3内よりも第二圧力制御室6内の方が早期に圧力上昇するように、第一圧力制御室3及び絞り部30’と、第二圧力制御室6及び絞り部32’とが形成されている。詳細には、第二圧力制御室6の容積が第一圧力制御室3の容積よりも小さくされている。その結果、次回の燃料噴射開始時に小さい最大リフト量にて燃料噴射を行うために、リフトロックピストン5は、今回の燃料噴射終了時までに下側突き当て面7cに突き当たるように下側に移動せしめられる(図4(a))。
【0026】
図2〜図4に示したように、本実施形態では、高圧燃料供給通路20と圧力制御弁室40が第三連通路34によって連通されている。そのため、圧力制御弁10の第一状態(図3(a))において、第一圧力制御室3には、第一圧力制御室用入口通路30を介して燃料が供給されるのみならず、第三連通路34及び第一圧力制御室用連通路31を介して燃料が供給される。また、第二圧力制御室6には、第二圧力制御室用入口通路32を介して燃料が供給されるのみならず、第三連通路34及び第二圧力制御室用連通路33を介して燃料が供給される。そのため、高圧燃料供給通路20から第三連通路34を介して圧力制御弁室40に供給される燃料流量を比較的多い流量に設定することにより、圧力制御弁10の閉弁期間中(図3(a))に、圧力制御弁室40に供給された燃料が第一圧力制御室用連通路31を介して第一圧力制御室3内に迅速に流入せしめられると共に、第二圧力制御室用連通路33を介して第二圧力制御室6内に迅速に流入せしめられる。それゆえ、第一圧力制御室3内の圧力及び第二圧力制御室6内の圧力を迅速に増加させてニードル弁2を迅速に閉弁させることができる。
【0027】
一方、圧力制御弁10の第二状態の下での開弁期間中(図3(b))には、高圧燃料供給通路20から第三連通路34を介して圧力制御弁室40に供給された燃料は、第一圧力制御室用連通路31を介して第一圧力制御室3内に流入してしまうのが絞り部31’によって抑制されると共に、第二圧力制御室用連通路33を介して第二圧力制御室6内に流入してしまうのが絞り部33’によって抑制され、第一圧力制御室3及び第二圧力制御室6内に流入することなく低圧燃料リーク通路21内に排出される。その結果、第一圧力制御室3内の燃料が第一圧力制御室用連通路31及び圧力制御弁室40を介して低圧燃料リーク通路21内に排出されるのが促進されると共に、第二圧力制御室6内の燃料が第二圧力制御室用連通路33及び圧力制御弁室40を介して低圧燃料リーク通路21内に排出されるのが促進される。そのため、第一圧力制御室3内の燃料が第一圧力制御室3から迅速に流出せしめられると共に、第二圧力制御室6内の燃料が第二圧力制御室6から迅速に流出せしめられる。それゆえ、第一圧力制御室3及び第二圧力制御室6内の圧力を迅速に減少させてニードル弁2を迅速に開弁させることができる。詳細には、ニードル弁を大きい最大リフト位置まで迅速に移動させることができる。
【0028】
また、圧力制御弁10の第三状態の下での開弁期間中(図3(c))には、高圧燃料供給通路20から第三連通路34を介して圧力制御弁室40に供給された燃料は、第一圧力制御室用連通路31を介して第一圧力制御室3内に流入してしまうのが絞り部31’によって抑制され、第一圧力制御室3内に流入することなく低圧燃料リーク通路21内に排出される。その結果、第一圧力制御室3内の燃料が第一圧力制御室用連通路31及び圧力制御弁室40を介して低圧燃料リーク通路21内に排出されるのが促進される。そのため、第一圧力制御室3内の燃料が第一圧力制御室3から迅速に流出せしめられる。それゆえ、第一圧力制御室3内の圧力を迅速に減少させてニードル弁2を迅速に開弁させることができる。詳細には、ニードル弁を小さい最大リフト位置まで迅速に移動させることができる。
【0029】
つまり本実施形態によれば、ニードル弁2が迅速に開弁できるようにしつつニードル弁2が迅速に閉弁できるようにすることができる。
【0030】
詳細には、まず第一に、圧力制御弁10を備えた本実施形態の燃料噴射装置の場合、圧力制御弁10の開弁期間中に第一圧力制御室3から流出する燃料流量が圧力制御弁10の開弁量によってではなく、第一圧力制御室用連通路31の絞り部31’によって定まるようにするために、絞り部31’の絞り度合いを比較的強い値に設定する必要がある。第二に、高圧燃料供給通路20を備えた本実施形態の燃料噴射装置の場合、アイドル付近での燃焼騒音を低下させるために、アイドル付近(低負荷側)において低圧で燃料を噴射する必要がある。高圧燃料供給通路20内の圧力を比較的低い値に設定する場合には、第一圧力制御室3内の燃料がニードル弁2を閉弁側に付勢する力と、ばね13がニードル弁2を閉弁側に付勢する力と、燃料だまり室4内の燃料がニードル弁2を開弁側に付勢する力とのうち、ばね13がニードル弁2を閉弁側に付勢する力が占める割合が大きくなる。その結果、第三に、ニードル弁2の開弁動作時に、ばね13がニードル弁2を閉弁側に付勢する力に打ち勝ってニードル弁2を迅速に開弁させるためには、ニードル弁2の開弁動作時、つまり、圧力制御弁10の開弁期間中に第一圧力制御室3から流出する燃料流量と第一圧力制御室3内に流入する燃料流量との比をかなり大きい値に設定する必要がある。
【0031】
一方で上述したように第一圧力制御室用連通路31の絞り部31’の絞り度合いを比較的強い値に設定する必要があるため、圧力制御弁10の開弁期間中に第一圧力制御室3から流出する燃料流量と第一圧力制御室3内に流入する燃料流量との比をかなり大きい値に設定するためには、圧力制御弁10の開弁期間中に第一圧力制御室3内に流入する燃料流量をかなり小さい値に設定することが必要になる。第四に、ニードル弁2の閉弁動作時、つまり、圧力制御弁10の閉弁期間中にニードル弁2を迅速に閉弁させるためには、圧力制御弁10の閉弁期間中に第一圧力制御室3内に流入する燃料流量をかなり大きい値に設定することが必要になる。
【0032】
これらの要求に基づき、本実施形態の燃料噴射装置は次のように構成されている。まず第一の要求に基づき、圧力制御弁10の開弁量よりも第一圧力制御室用連通路31の絞り部31’の開口が小さくなるように絞り部31’の絞り度合いが比較的強い値に設定されている。次に第二の要求に基づき、高圧燃料供給通路20内の圧力が比較的低い値に設定される。更に第三の要求に基づき、第一圧力制御室用入口通路30の絞り部30’の絞り度合いが比較的強い値に設定される。あるいは、後述する第二の実施形態の燃料噴射装置のように第一圧力制御室用入口通路30を排除し、圧力制御弁10の開弁期間中に第一圧力制御室3内に流入する燃料流量をゼロにすることも可能である。また第四の要求に基づき、圧力制御弁10の閉弁期間中に第一圧力制御室3内に流入する燃料流量を多くするために、高圧燃料供給通路20から第三連通路34及び圧力制御弁室40を介して第一圧力制御弁室3内に流入する燃料流量が多くなるように第三連通路34の絞り部34’の絞り度合いが比較的弱い値に設定される。
【0033】
このようにして、ニードル弁2が迅速に開弁できるようにしつつニードル弁2が迅速に閉弁できるようにすることが達成される。
【0034】
また本実施形態によれば、最大リフト量を大きくする側にリフトロックピストン5を付勢する第一圧力制御室3内の圧力と、最大リフト量を小さくする側にリフトロックピストン5を付勢する第二圧力制御室6内の圧力との関係をピエゾ式アクチュエータ11によって変更することにより、ニードル弁2の全開時の最大リフト量が変更せしめられる。つまり、最大リフト量を変更するために、第一圧力制御室3内の圧力と第二圧力制御室6内の圧力との関係が変更されればよく、高圧燃料供給通路20内の圧力を変更する必要がない。また、最大リフト量を変更するために変更される対象が第一圧力制御室3及び第二圧力制御室6内の圧力であるため、ピエゾ式アクチュエータの伸長量を変更することにより最大リフト量を変更する場合のように温度変化に伴って最大リフト量が変化してしまうことがない。そのため、高圧燃料供給通路20内の圧力を変更する必要なくニードル弁2の全開時の最大リフト量を変更することができると共に、温度が変化した場合であってもニードル弁2の全開時の最大リフト量を正確に制御することができる。
【0035】
更に本実施形態によれば、第一圧力制御室3内の圧力を増加させると共に第二圧力制御室6内の圧力を増加させる第一状態(図3(a))と、第一圧力制御室3内の圧力を減少させると共に第二圧力制御室6内の圧力を減少させる第二状態(図3(b))と、第一圧力制御室3内の圧力を減少させると共に第二圧力制御室6内の圧力を増加させる第三状態(図3(c))とを圧力制御弁10が有するため、圧力制御弁10の状態を切り換えることにより、ニードル弁2を全閉せしめる状態と、最大リフト量を大きくしてニードル弁2を全開せしめる状態と、最大リフト量を小さくしてニードル弁2を全開せしめる状態とを切り換えることができる。
【0036】
図5は本発明の燃料噴射装置の第二の実施形態の図2と同様の拡大図である。図5において、図1〜図4に示した参照番号と同一の参照番号は図1〜図4に示した部品又は部分と同一の部品又は部分を示しており、2a’はニードル弁2の上側に配置されたコマンドピストンである。つまり本実施形態では、第一の実施形態の第一圧力制御室用入口通路30及びその絞り部30’が排除されている。
【0037】
本実施形態では、高圧燃料供給通路20と圧力制御弁室40が第三連通路34によって連通されているため、圧力制御弁10の第一状態(図3(a))において、第一圧力制御室3には、第三連通路34及び第一圧力制御室用連通路31を介して燃料が供給される。また、第二圧力制御室6には、第二圧力制御室用入口通路32を介して燃料が供給されるのみならず、第三連通路34及び第二圧力制御室用連通路33を介して燃料が供給される。そのため、高圧燃料供給通路20から第三連通路34を介して圧力制御弁室40に供給される燃料流量を比較的多い流量に設定することにより、圧力制御弁10の閉弁期間中(図3(a))に、圧力制御弁室40に供給された燃料が第一圧力制御室用連通路31を介して第一圧力制御室3内に迅速に流入せしめられると共に、第二圧力制御室用連通路33を介して第二圧力制御室6内に迅速に流入せしめられる。それゆえ、第一圧力制御室3内の圧力及び第二圧力制御室6内の圧力を迅速に増加させてニードル弁2を迅速に閉弁させることができる。
【0038】
一方、圧力制御弁10の第二状態の下での開弁期間中(図3(b))には、高圧燃料供給通路20から第三連通路34を介して圧力制御弁室40に供給された燃料は、第一圧力制御室用連通路31を介して第一圧力制御室3内に流入してしまうのが絞り部31’によって抑制されると共に、第二圧力制御室用連通路33を介して第二圧力制御室6内に流入してしまうのが絞り部33’によって抑制され、第一圧力制御室3又は第二圧力制御室6内に流入することなく低圧燃料リーク通路21内に排出される。その結果、第一圧力制御室3内の燃料が第一圧力制御室用連通路31及び圧力制御弁室40を介して低圧燃料リーク通路21内に排出されるのが促進されると共に、第二圧力制御室6内の燃料が第二圧力制御室用連通路33及び圧力制御弁室40を介して低圧燃料リーク通路21内に排出されるのが促進される。そのため、第一圧力制御室3内の燃料が第一圧力制御室3から迅速に流出せしめられると共に、第二圧力制御室6内の燃料が第二圧力制御室6から迅速に流出せしめられる。それゆえ、第一圧力制御室3及び第二圧力制御室6内の圧力を迅速に減少させてニードル弁2を迅速に開弁させることができる。詳細には、ニードル弁を大きい最大リフト位置まで迅速に移動させることができる。
【0039】
また、圧力制御弁10の第三状態の下での開弁期間中(図3(c))には、高圧燃料供給通路20から第三連通路34を介して圧力制御弁室40に供給された燃料は、第一圧力制御室用連通路31を介して第一圧力制御室3内に流入してしまうのが絞り部31’によって抑制され、第一圧力制御室3内に流入することなく低圧燃料リーク通路21内に排出される。その結果、第一圧力制御室3内の燃料が第一圧力制御室用連通路31及び圧力制御弁室40を介して低圧燃料リーク通路21内に排出されるのが促進される。そのため、第一圧力制御室3内の燃料が第一圧力制御室3から迅速に流出せしめられる。それゆえ、第一圧力制御室3内の圧力を迅速に減少させてニードル弁2を迅速に開弁させることができる。詳細には、ニードル弁を小さい最大リフト位置まで迅速に移動させることができる。
【0040】
つまり本実施形態によっても、ニードル弁2が迅速に開弁できるようにしつつニードル弁2が迅速に閉弁できるようにすることができる。
【0041】
更に本実施形態によれば、燃料が第一圧力制御室3内に流入するための通路が第一圧力制御室用連通路31のみによって構成されるため、高圧燃料供給通路20と第一圧力制御室3とを直接連通する通路(第一の実施形態の第一圧力制御室用入口通路30)を加工する必要性を排除することができ、燃料噴射装置のコストを低減することができる。また、高圧燃料供給通路20と第一圧力制御室3とを直接連通する通路(第一の実施形態の第一圧力制御室用入口通路30)を設けた場合よりも、第一圧力制御室3内の圧力を迅速に減少させることができる。
【0042】
図6は本発明の燃料噴射装置の第三の実施形態の図2及び図5と同様の拡大図である。図6において、図1〜図5に示した参照番号と同一の参照番号は図1〜図5に示した部品又は部分と同一の部品又は部分を示しており、50’は第三連通路34が形成されている部材である。つまり本実施形態では、第二の実施形態の第二圧力制御室用入口通路32及びその絞り部32’が排除されている。
【0043】
本実施形態では、高圧燃料供給通路20と圧力制御弁室40が第三連通路34によって連通されているため、圧力制御弁10の第一状態(図3(a))において、第一圧力制御室3には、第三連通路34及び第一圧力制御室用連通路31を介して燃料が供給される。また、第二圧力制御室6には、第三連通路34及び第二圧力制御室用連通路33を介して燃料が供給される。そのため、高圧燃料供給通路20から第三連通路34を介して圧力制御弁室40に供給される燃料流量を比較的多い流量に設定することにより、圧力制御弁10の閉弁期間中(図3(a))に、圧力制御弁室40に供給された燃料が第一圧力制御室用連通路31を介して第一圧力制御室3内に迅速に流入せしめられると共に、第二圧力制御室用連通路33を介して第二圧力制御室6内に迅速に流入せしめられる。それゆえ、第一圧力制御室3内の圧力及び第二圧力制御室6内の圧力を迅速に増加させてニードル弁2を迅速に閉弁させることができる。
【0044】
一方、圧力制御弁10の第二状態の下での開弁期間中(図3(b))には、高圧燃料供給通路20から第三連通路34を介して圧力制御弁室40に供給された燃料は、第一圧力制御室用連通路31を介して第一圧力制御室3内に流入してしまうのが絞り部31’によって抑制されると共に、第二圧力制御室用連通路33を介して第二圧力制御室6内に流入してしまうのが絞り部33’によって抑制され、第一圧力制御室3又は第二圧力制御室6内に流入することなく低圧燃料リーク通路21内に排出される。その結果、第一圧力制御室3内の燃料が第一圧力制御室用連通路31及び圧力制御弁室40を介して低圧燃料リーク通路21内に排出されるのが促進されると共に、第二圧力制御室6内の燃料が第二圧力制御室用連通路33及び圧力制御弁室40を介して低圧燃料リーク通路21内に排出されるのが促進される。そのため、第一圧力制御室3内の燃料が第一圧力制御室3から迅速に流出せしめられると共に、第二圧力制御室6内の燃料が第二圧力制御室6から迅速に流出せしめられる。それゆえ、第一圧力制御室3及び第二圧力制御室6内の圧力を迅速に減少させてニードル弁2を迅速に開弁させることができる。詳細には、ニードル弁を大きい最大リフト位置まで迅速に移動させることができる。
【0045】
また、圧力制御弁10の第三状態の下での開弁期間中(図3(c))には、高圧燃料供給通路20から第三連通路34を介して圧力制御弁室40に供給された燃料は、第一圧力制御室用連通路31を介して第一圧力制御室3内に流入してしまうのが絞り部31’によって抑制され、第一圧力制御室3内に流入することなく低圧燃料リーク通路21内に排出される。その結果、第一圧力制御室3内の燃料が第一圧力制御室用連通路31及び圧力制御弁室40を介して低圧燃料リーク通路21内に排出されるのが促進される。そのため、第一圧力制御室3内の燃料が第一圧力制御室3から迅速に流出せしめられる。それゆえ、第一圧力制御室3内の圧力を迅速に減少させてニードル弁2を迅速に開弁させることができる。詳細には、ニードル弁を小さい最大リフト位置まで迅速に移動させることができる。
【0046】
つまり本実施形態によっても、ニードル弁2が迅速に開弁できるようにしつつニードル弁2が迅速に閉弁できるようにすることができる。
【0047】
更に本実施形態によれば、燃料が第二圧力制御室6内に流入するための通路が第二圧力制御室用連通路33のみによって構成されるため、高圧燃料供給通路20と第二圧力制御室6とを直接連通する通路(第一及び第二の実施形態の第二圧力制御室用入口通路32)を加工する必要性を排除することができ、燃料噴射装置のコストを低減することができる。また、高圧燃料供給通路20と第二圧力制御室6とを直接連通する通路(第一及び第二の実施形態の第二圧力制御室用入口通路32)を設けた場合よりも、第二圧力制御室6内の圧力を迅速に減少させることができる。
【0048】
尚、上述した実施形態の燃料噴射装置はリフトロックピストン5を有する、つまり、二つの圧力制御室3、6を有するタイプのものであるが、本発明は、リフトロックピストンを有しない、つまり、圧力制御室を一つのみ有する燃料噴射装置にも適用可能である。
【0049】
【発明の効果】
請求項1に記載の発明によれば、高圧燃料供給通路から第二連通路を介して圧力制御弁室に供給される燃料流量を比較的多い流量に設定することにより、圧力制御弁の閉弁期間中に、圧力制御弁室に供給された燃料が第一連通路を介して圧力制御室内に迅速に流入せしめられる。それゆえ、圧力制御室内の圧力を迅速に増加させて噴孔開閉弁を迅速に閉弁させることができる。一方、圧力制御弁の開弁期間中には、高圧燃料供給通路から第二連通路を介して圧力制御弁室に供給された燃料は、第一連通路を介して圧力制御室内に流入してしまうのが絞り部によって抑制され、圧力制御室内に流入することなく低圧燃料リーク通路内に排出される。その結果、圧力制御室内の燃料が第一連通路及び圧力制御弁室を介して低圧燃料リーク通路内に排出されるのが促進され、圧力制御室内の燃料が圧力制御室から迅速に流出せしめられる。それゆえ、圧力制御室内の圧力を迅速に減少させて噴孔開閉弁を迅速に開弁させることができる。つまり、噴孔開閉弁が迅速に開弁できるようにしつつ噴孔開閉弁が迅速に閉弁できるようにすることができる。
【0050】
また、請求項1に記載の発明によれば、高圧燃料供給通路内の圧力を変更する必要なく噴孔開閉弁の全開時の最大リフト量を変更することができると共に、温度が変化した場合であっても噴孔開閉弁の全開時の最大リフト量を正確に制御することができる。
【0051】
更に、請求項1に記載の発明によれば、圧力制御弁のモードを切り換えることにより、噴孔開閉弁を全閉せしめる状態と、最大リフト量を大きくして噴孔開閉弁を全開せしめる状態と、最大リフト量を小さくして噴孔開閉弁を全開せしめる状態とを切り換えることができる。
【0052】
請求項2に記載の発明によれば、高圧燃料供給通路と第一圧力制御室とを直接連通する通路を加工する必要性を排除することができ、燃料噴射装置のコストを低減することができる。また、高圧燃料供給通路と第一圧力制御室とを直接連通する通路を設けた場合よりも、第一圧力制御室内の圧力を迅速に減少させることができる。
【0053】
請求項3に記載の発明によれば、高圧燃料供給通路と第二圧力制御室とを直接連通する通路を加工する必要性を排除することができ、燃料噴射装置のコストを低減することができる。また、高圧燃料供給通路と第二圧力制御室とを直接連通する通路を設けた場合よりも、第二圧力制御室内の圧力を迅速に減少させることができる。
【図面の簡単な説明】
【図1】本発明の燃料噴射装置の第一の実施形態の全体構成図である。
【図2】図1の拡大図である。
【図3】圧力制御弁10の作動状態を比較して示した図である。
【図4】リフトロックピストン5の作動状態を比較して示した図である。
【図5】本発明の燃料噴射装置の第二の実施形態の図2と同様の拡大図である。
【図6】本発明の燃料噴射装置の第三の実施形態の図2及び図5と同様の拡大図である。
【符号の説明】
1…噴孔
2…ニードル弁
3…第一圧力制御室
4…燃料だまり室
5…リフトロックピストン
6…第二圧力制御室
10…圧力制御弁
13…ばね
20…高圧燃料供給通路
21…低圧燃料リーク通路
31…第一圧力制御室用連通路
31’,33’,34’…絞り部
33…第一圧力制御室用連通路
34…第三連通路
40…圧力制御弁室
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel injection device.
[0002]
[Prior art]
Conventionally, a nozzle opening / closing valve that opens and closes a fuel injection nozzle hole, valve closing side biasing means that biases the nozzle hole opening / closing valve toward the valve closing side, and valve opening that biases the nozzle hole opening / closing valve toward the valve opening side. Side biasing means, the valve closing side biasing means has a pressure control chamber, a pressure control valve for controlling the pressure in the pressure control chamber is disposed in the pressure control valve chamber, and a throttle portion is provided. The pressure control chamber and the pressure control valve chamber communicate with each other through the first series passage, and during the valve opening period of the pressure control valve, the fuel in the pressure control chamber passes through the first series passage and the pressure control valve chamber having the throttle portion. There is known a fuel injection device that is discharged into a low-pressure fuel leak passage. Examples of this type of fuel injection device include, for example, FIG. 3, FIG. 5, FIG. There is what is described in 6. In the fuel injection device described in WO97 / 48900, the nozzle opening / closing valve is opened by reducing the pressure in the pressure control chamber during the opening period of the pressure control valve, and the closing period of the pressure control valve is closed. The nozzle hole opening / closing valve is closed by increasing the pressure in the pressure control chamber. Further, in the fuel injection device described in WO97 / 48900, the pressure control chamber and the pressure control valve chamber are communicated with each other by a first series passage having a throttle portion, so that the pressure control valve is open during the valve opening period. The flow rate of the fuel flowing out from the pressure control chamber is determined by the throttle unit. As a result, the fuel flow rate flowing out from the pressure control chamber can be matched with the desired fuel flow rate without accurately controlling the valve opening amount of the pressure control valve.
[0003]
[Problems to be solved by the invention]
However, in the fuel injection device described in WO 97/48900, the passage for supplying fuel into the pressure control chamber is arranged between the high pressure fuel supply passage and the pressure control chamber. It is not arranged between the passage and the pressure control valve chamber. That is, in the fuel injection device described in WO97 / 48900, the fuel is not supplied from the high-pressure fuel supply passage into the pressure control chamber via the first passage having the pressure control valve chamber and the throttle portion. The pressure is supplied directly from the high pressure fuel supply passage. Therefore, even if an attempt is made to reduce the pressure in the pressure control chamber in order to open the nozzle hole opening / closing valve, the fuel continues to be supplied from the high pressure fuel supply passage into the pressure control chamber, so that the pressure in the pressure control chamber is quickly increased. Can not be reduced.
[0004]
Therefore, in order to quickly reduce the pressure in the pressure control chamber and quickly open the nozzle hole opening / closing valve, it is conceivable to set the flow rate of fuel supplied from the high pressure fuel supply passage to a relatively small flow rate. However, in such a setting, it takes a relatively long time to increase the pressure in the pressure control chamber during the closing period of the pressure control valve, and the nozzle opening / closing valve is quickly closed. I can't. On the other hand, the flow rate of fuel supplied from the high-pressure fuel supply passage is relatively high in order to quickly increase the pressure in the pressure control chamber and close the nozzle hole opening / closing valve quickly during the closing period of the pressure control valve. For the reasons described above, it takes a relatively long time to reduce the pressure in the pressure control chamber during the opening period of the pressure control valve, and the nozzle opening / closing valve is quickly opened. I can't let you. That is, in the fuel injection device described in WO97 / 48900, the fuel is directly supplied from the high-pressure fuel supply passage into the pressure control chamber, so that the nozzle hole opening / closing valve can be opened quickly. Cannot be closed quickly.
[0005]
In view of the above problems, an object of the present invention is to provide a fuel injection device in which a nozzle hole opening / closing valve can be quickly opened while the nozzle hole opening / closing valve can be quickly opened.
[0006]
[Means for Solving the Problems]
According to the first aspect of the present invention, the nozzle hole opening / closing valve for opening and closing the fuel injection nozzle hole, the valve closing side biasing means for biasing the nozzle hole opening / closing valve toward the valve closing side, and the nozzle hole opening / closing A valve opening side biasing means for biasing the valve toward the valve opening side, the valve closing side biasing means having a pressure control chamber, and a pressure control valve for controlling the pressure in the pressure control chamber. The pressure control chamber is disposed in the pressure control valve chamber and communicates with the pressure control valve chamber by a first passage having a throttle portion, and the fuel in the pressure control chamber is opened during the opening period of the pressure control valve. In the fuel injection device that is discharged into the low-pressure fuel leak passage through the first series passage having the throttle portion and the pressure control valve chamber, a fuel injection device for supplying fuel into the pressure control chamber A two-way passage is arranged between the high-pressure fuel supply passage and the pressure control valve chamber. And a first pressure control for providing a maximum lift amount adjusting means for adjusting a maximum lift amount that is a lift amount when the nozzle hole opening / closing valve is fully opened, and energizing the maximum lift amount adjusting means toward the side of increasing the maximum lift amount. The pressure control chamber is divided into a chamber and a second pressure control chamber for energizing the maximum lift amount adjusting means on the side where the maximum lift amount is reduced, and the first series passage is connected to the first pressure control chamber. It is divided into a passage and a communication passage for the second pressure control chamber, and the maximum lift amount is changed by changing the relationship between the pressure in the first pressure control chamber and the pressure in the second pressure control chamber. A first mode for increasing the pressure in the first pressure control chamber and increasing the pressure in the second pressure control chamber; and reducing the pressure in the first pressure control chamber and pressure in the second pressure control chamber Reduce the second mode And a third mode for increasing the pressure of the second pressure control chamber while decreasing the pressure of the first pressure control chamber the pressure control valve having A fuel injection device is provided.
[0008]
Claim 1 In the fuel injection device described in 1), the second communication passage for supplying fuel into the pressure control chamber is disposed between the high pressure fuel supply passage and the pressure control valve chamber. Therefore, by setting the flow rate of fuel supplied from the high-pressure fuel supply passage to the pressure control valve chamber through the second communication passage to a relatively high flow rate, the pressure control valve chamber is closed during the closing period of the pressure control valve. The supplied fuel is quickly flowed into the pressure control chamber through the first series passage. Therefore, the pressure in the pressure control chamber can be quickly increased to quickly close the nozzle hole opening / closing valve. On the other hand, during the opening period of the pressure control valve, the fuel supplied from the high pressure fuel supply passage to the pressure control valve chamber via the second communication passage is a gap between the pressure control valve chamber and the low pressure fuel leak passage. Is sufficiently large, the pressure in the pressure control valve chamber becomes lower than the pressure in the pressure control chamber, so that the pressure is discharged into the low pressure fuel leak passage without flowing into the pressure control chamber. As a result, it is promoted that the fuel in the pressure control chamber is discharged into the low pressure fuel leak passage through the first series passage and the pressure control valve chamber, and the fuel in the pressure control chamber is quickly discharged from the pressure control chamber. . Therefore, the pressure in the pressure control chamber can be quickly reduced to quickly open the nozzle hole opening / closing valve. That is, the nozzle hole opening / closing valve can be quickly opened while the nozzle hole opening / closing valve can be quickly opened.
[0010]
Claim 1 In the fuel injection device described in 1), the pressure in the first pressure control chamber that biases the maximum lift amount adjusting means toward the side where the maximum lift amount is increased, and the maximum lift amount adjusting means is biased toward the side where the maximum lift amount is decreased. By changing the relationship with the pressure in the second pressure control chamber, the maximum lift amount when the nozzle hole opening / closing valve is fully opened can be changed. That is, in order to change the maximum lift amount, it is only necessary to change the relationship between the pressure in the first pressure control chamber and the pressure in the second pressure control chamber, and there is no need to change the pressure in the high-pressure fuel supply passage. Moreover, since the object changed in order to change the maximum lift amount is the pressure in the first pressure control chamber and the second pressure control chamber, for example, the maximum lift amount is changed by changing the extension amount of the piezoelectric actuator. As in the case, the maximum lift amount does not change with the temperature change. Therefore, the maximum lift amount when the nozzle hole opening / closing valve is fully opened can be changed without changing the pressure in the high pressure fuel supply passage, and even when the temperature changes, The maximum lift amount can be accurately controlled.
[0012]
Claim 1 In the fuel injection device described in 1), the first mode in which the pressure in the first pressure control chamber is increased and the pressure in the second pressure control chamber is increased, the pressure in the first pressure control chamber is decreased, and the second pressure control chamber is decreased. Since the pressure control valve has a second mode for reducing the pressure in the first pressure control chamber and a third mode for reducing the pressure in the first pressure control chamber and increasing the pressure in the second pressure control chamber, the mode of the pressure control valve is switched. By switching between a state in which the nozzle hole opening / closing valve is fully closed, a state in which the maximum lift amount is increased and the nozzle hole opening / closing valve is fully opened, and a state in which the maximum lift amount is reduced and the nozzle hole opening / closing valve is fully opened. Can do.
[0013]
Claim 2 According to the present invention, the passage for the fuel to flow into the first pressure control chamber is configured only by the first pressure control chamber communication passage. Claim 1 Is provided.
[0014]
Claim 2 In the fuel injection device described in 1), the passage for the fuel to flow into the first pressure control chamber is constituted only by the first pressure control chamber communication passage. Therefore, it is possible to eliminate the necessity of processing a passage that directly communicates the high-pressure fuel supply passage and the first pressure control chamber, and the cost of the fuel injection device can be reduced. In addition, the pressure in the first pressure control chamber can be reduced more quickly than when a passage that directly communicates the high-pressure fuel supply passage and the first pressure control chamber is provided.
[0015]
Claim 3 According to the invention described in (1), the passage for the fuel to flow into the second pressure control chamber is constituted only by the communication passage for the second pressure control chamber. Claim 1 Is provided.
[0016]
Claim 3 In the fuel injection device described in 1), the passage for the fuel to flow into the second pressure control chamber is constituted only by the second pressure control chamber communication passage. Therefore, it is possible to eliminate the necessity of processing a passage that directly communicates the high-pressure fuel supply passage and the second pressure control chamber, and the cost of the fuel injection device can be reduced. In addition, the pressure in the second pressure control chamber can be reduced more quickly than when a passage that directly communicates the high-pressure fuel supply passage and the second pressure control chamber is provided.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0018]
FIG. 1 is an overall configuration diagram of a first embodiment of a fuel injection device of the present invention, and FIG. 2 is an enlarged view of FIG. 1 and 2, 1 is a fuel injection nozzle hole, 2 is a needle valve that opens and closes the fuel injection nozzle hole 1, 2a is a command piston disposed above the needle valve 2, and 3 is a needle valve 2 and a command. A first pressure control chamber 4 for biasing the piston 2a toward the valve closing side is a fuel reservoir chamber 4 for biasing the needle valve 2 and the command piston 2a toward the valve opening side. Reference numeral 5 denotes a lift lock piston for adjusting a maximum lift amount that is a lift amount when the needle valve 2 is fully opened. That is, the position of the needle valve 2 when the command piston 2a is abutted against the lift lock piston 5 positioned at a predetermined position is the maximum lift position. The lift lock piston 5 is biased toward the side that increases the maximum lift amount by the pressure in the first pressure control chamber 3, and biased toward the side that decreases the maximum lift amount due to the pressure in the second pressure control chamber 6. .
[0019]
Reference numeral 7 denotes a cylinder for guiding the lift lock piston 5, and the cylinder 7 is composed of a first cylinder member 7a and a second cylinder member 7b. When the pressure in the first pressure control chamber 3 is lower than the pressure in the second pressure control chamber 6, the lift lock piston 5 is biased downward and moved downward until it hits the lower abutting surface 7c. It is done. On the other hand, when the pressure in the first pressure control chamber 3 is higher than the pressure in the second pressure control chamber 6, the lift lock piston 5 is biased upward and moved upward until it hits the upper abutting surface 7d. . 10 is a pressure control valve for adjusting the pressure in the first pressure control chamber 3 and the second pressure control chamber 6, 10 a is a rod-shaped member constituting the pressure control valve 10, and 10 b is a spherical member constituting the pressure control valve 10. , 40 is a pressure control valve chamber surrounding the pressure control valve 10. 11 is a piezo actuator for driving the pressure control valve 10, 12 is an intermediate hydraulic chamber disposed between the pressure control valve 10 and the piezo actuator 11, and 13 biases the needle valve 2 toward the valve closing side. It is a spring.
[0020]
Reference numeral 20 denotes a high-pressure fuel supply passage through which high-pressure fuel (hydraulic oil) flows. Reference numerals 21 and 22 denote low-pressure fuel leak passages through which low-pressure fuel flows in the high-pressure fuel supply passage 20. In the high-pressure fuel supply passage 20, fuel at a constant pressure is supplied from a common rail (not shown). Reference numeral 30 denotes a first pressure control chamber inlet passage through which fuel flows into the first pressure control chamber 3. A throttle portion 30 ′ is formed in the first pressure control chamber inlet passage 30. Reference numeral 31 denotes a first pressure control chamber communication passage that communicates the first pressure control chamber 3 and the pressure control valve chamber 40. A throttle portion 31 ′ is also formed in the first pressure control chamber communication passage 31. Reference numeral 32 denotes a second pressure control chamber inlet passage through which fuel flows into the second pressure control chamber 6. A throttle portion 32 ′ is also formed in the first pressure control chamber inlet passage 32. Reference numeral 33 denotes a second pressure control chamber communication passage that communicates the second pressure control chamber 6 and the pressure control valve chamber 40. A throttle portion 33 ′ is also formed in the second pressure control chamber communication passage 33. Reference numeral 34 denotes a third communication passage that directly communicates the high-pressure fuel supply passage 20 and the pressure control valve chamber 40. The third communication passage 34 is also formed with a throttle portion 34 ′. Reference numeral 50 denotes a member in which the third communication passage 34 is formed, and reference numeral 51 denotes a member in which the second pressure control chamber inlet passage 32 is formed.
[0021]
FIG. 3 is a diagram comparing the operating states of the pressure control valve 10. Specifically, FIG. 3A shows a first state in which the outflow of fuel from the first pressure control chamber 3 and the outflow of fuel from the second pressure control chamber 6 are both blocked, and FIG. ) Is a diagram showing a second state in which the outflow of fuel from the first pressure control chamber 3 and the outflow of fuel from the second pressure control chamber 6 are not blocked, and FIG. 3 (c) is the first pressure control chamber. 3 is a diagram showing a third state in which the outflow of fuel from 3 is not blocked and the outflow of fuel from the second pressure control chamber 6 is blocked. As shown in FIG. 3A, in the first state, the flow of fuel from the pressure control valve chamber 40 into the low pressure fuel leak passage 21 is blocked by the rod-shaped member 10 a of the pressure control valve 10. As a result, the fuel in the first pressure control chamber 3 cannot flow out of the first pressure control chamber 3, and similarly, the fuel in the second pressure control chamber 6 cannot flow out of the second pressure control chamber 6. As shown in FIG. 3B, in the second state, the fuel flowing out from the pressure control valve chamber 40 into the low pressure fuel leak passage 21 is not blocked by the rod-shaped member 10 a of the pressure control valve 10. Further, the fuel flowing from the second pressure control chamber 6 into the pressure control valve chamber 40 is not blocked by the spherical member 10 b of the pressure control valve 10. As a result, the fuel in the first pressure control chamber 3 can flow out of the first pressure control chamber 3, and similarly, the fuel in the second pressure control chamber 6 can flow out of the second pressure control chamber 6. it can. As shown in FIG. 3 (c), in the third state, the fuel flows out from the pressure control valve chamber 40 into the low pressure fuel leak passage 21, but is not blocked by the rod-shaped member 10a of the pressure control valve 10, but the second state. The flow of fuel from the pressure control chamber 6 into the pressure control valve chamber 40 is blocked by the spherical member 10 b of the pressure control valve 10. As a result, the fuel in the first pressure control chamber 3 can flow out of the first pressure control chamber 3, but the fuel in the second pressure control chamber 6 cannot flow out of the second pressure control chamber 6.
[0022]
FIG. 4 is a diagram comparing the operating state of the lift lock piston 5. Specifically, FIG. 4A shows a state in which the lift lock piston 5 is abutted against the lower abutting surface 7c, and FIG. 4B shows a state in which the lift lock piston 5 abuts against the upper abutting surface 7d. FIG. 4 (c) is a bottom view of the lift lock piston 5 showing the applied state. In FIG. 4, reference numeral 5 a indicates that the top surface of the command piston 2 a abutted against the bottom surface of the lift lock piston 5 is prevented from sticking to the bottom surface of the lift lock piston 5. This is a separation promoting groove for promoting the separation of the top surface of the command piston 2 a from the bottom surface of the piston 5. Reference numeral 5b denotes a separation promoting hole formed for the same purpose as the separation promoting groove 5a.
[0023]
As shown in FIGS. 1 to 4, when the fuel injection is to be started first, specifically, when the fuel is to be injected with a small maximum lift amount, the piezo actuator 11 is extended, and the pressure control valve 10 is It arrange | positions in a 3rd state (FIG.3 (c)). In this third state, fuel is caused to flow out from the first pressure control chamber 3. As a result, the resultant force of the force in which the fuel in the first pressure control chamber 3 biases the needle valve 2 toward the valve closing side and the force in which the spring 13 biases the needle valve 2 toward the valve closing side is the fuel reservoir chamber. The fuel in 4 becomes smaller than the force that urges the needle valve 2 toward the valve opening side, and therefore the needle valve 2 is opened. In this third state, the outflow of fuel from the second pressure control chamber 6 is blocked. As a result, the pressure in the second pressure control chamber 6 becomes higher than the pressure in the first pressure control chamber 3, so that the lift lock piston 5 is abutted against the lower abutting surface 7c, and a small maximum lift is achieved. The quantity is defined (FIG. 4 (a)). That is, the needle valve 2 and the command piston 2a are abutted against the lift lock piston 5 arranged in the state of FIG. 4A, and fuel injection is performed.
[0024]
Next, when fuel is to be injected with a large maximum lift amount, the piezoelectric actuator 11 is slightly contracted, and the pressure control valve 10 is placed in the second state (FIG. 3B). In the second state, as in the third state described above, the fuel is caused to flow out of the first pressure control chamber 3, so that the fuel in the first pressure control chamber 3 biases the needle valve 2 toward the valve closing side. The combined force of the force and the force of the spring 13 urging the needle valve 2 toward the valve closing side is smaller than the force of the fuel in the fuel reservoir chamber 4 urging the needle valve 2 toward the valve opening side. The open state of the needle valve 2 is maintained as it is. Further, in this second state, as a result of fuel flowing out from the second pressure control chamber 6, the pressure in the second pressure control chamber 6 also decreases to the same level as the pressure in the first pressure control chamber 3. Therefore, not only the needle valve 2 and the command piston 2a but also the lift lock piston 5 is urged upward by the pressure in the fuel pool chamber 4, and the needle valve 2 until the lift lock piston 5 hits the upper abutting surface 7d. Both the command piston 2a and the lift lock piston 5 are moved upward. That is, the maximum lift amount is increased by the stroke amount t (FIG. 4B) of the lift lock piston 5 from that shown in FIG. 4A, and fuel injection is performed under a large maximum lift amount. .
[0025]
Next, when the fuel injection is to be stopped, the piezo actuator 11 is further contracted, and the pressure control valve 10 is placed in the first state (FIG. 3A). In this first state, the outflow of fuel from the first pressure control chamber 3 and the second pressure control chamber 6 to the low pressure fuel leak passage 21 is blocked. As a result, the resultant force of the force in which the fuel in the first pressure control chamber 3 biases the needle valve 2 toward the valve closing side and the force in which the spring 13 biases the needle valve 2 toward the valve closing side is the fuel reservoir chamber. The fuel in 4 becomes larger than the force that urges the needle valve 2 toward the valve opening side, and therefore the needle valve 2 is closed. Further, when the second state described above is switched to the first state, the first pressure control chamber is configured so that the pressure in the second pressure control chamber 6 rises earlier than in the first pressure control chamber 3. 3 and the throttle part 30 ′, the second pressure control chamber 6 and the throttle part 32 ′ are formed. Specifically, the volume of the second pressure control chamber 6 is made smaller than the volume of the first pressure control chamber 3. As a result, in order to inject fuel with a small maximum lift amount at the start of the next fuel injection, the lift lock piston 5 moves downward so as to abut against the lower abutting surface 7c by the end of the current fuel injection. (Fig. 4 (a)).
[0026]
As shown in FIGS. 2 to 4, in the present embodiment, the high-pressure fuel supply passage 20 and the pressure control valve chamber 40 are communicated by the third communication passage 34. Therefore, in the first state of the pressure control valve 10 (FIG. 3A), not only fuel is supplied to the first pressure control chamber 3 via the first pressure control chamber inlet passage 30, but also the first Fuel is supplied through the three communication passages 34 and the first pressure control chamber communication passage 31. The second pressure control chamber 6 is not only supplied with fuel via the second pressure control chamber inlet passage 32, but also via the third communication passage 34 and the second pressure control chamber communication passage 33. Fuel is supplied. Therefore, by setting the flow rate of fuel supplied from the high pressure fuel supply passage 20 to the pressure control valve chamber 40 through the third communication passage 34 to a relatively high flow rate, the pressure control valve 10 is closed (FIG. 3). (A)), the fuel supplied to the pressure control valve chamber 40 is quickly allowed to flow into the first pressure control chamber 3 via the first pressure control chamber communication passage 31, and for the second pressure control chamber. The air can quickly flow into the second pressure control chamber 6 through the communication passage 33. Therefore, the pressure in the first pressure control chamber 3 and the pressure in the second pressure control chamber 6 can be quickly increased, and the needle valve 2 can be quickly closed.
[0027]
On the other hand, during the valve opening period under the second state of the pressure control valve 10 (FIG. 3B), the pressure control valve 10 is supplied from the high pressure fuel supply passage 20 to the pressure control valve chamber 40 via the third communication passage 34. The fuel is prevented from flowing into the first pressure control chamber 3 through the first pressure control chamber communication passage 31 by the throttle portion 31 ′, and the second pressure control chamber communication passage 33 is passed through the first pressure control chamber communication passage 33. From flowing into the second pressure control chamber 6 through the throttle portion 33 ′ and into the low pressure fuel leak passage 21 without flowing into the first pressure control chamber 3 and the second pressure control chamber 6. Discharged. As a result, the fuel in the first pressure control chamber 3 is promoted to be discharged into the low pressure fuel leak passage 21 via the first pressure control chamber communication passage 31 and the pressure control valve chamber 40, and the second The fuel in the pressure control chamber 6 is facilitated to be discharged into the low pressure fuel leak passage 21 via the second pressure control chamber communication passage 33 and the pressure control valve chamber 40. Therefore, the fuel in the first pressure control chamber 3 is quickly discharged from the first pressure control chamber 3, and the fuel in the second pressure control chamber 6 is quickly discharged from the second pressure control chamber 6. Therefore, the pressure in the first pressure control chamber 3 and the second pressure control chamber 6 can be quickly reduced to open the needle valve 2 quickly. Specifically, the needle valve can be quickly moved to a large maximum lift position.
[0028]
Further, during the valve opening period of the pressure control valve 10 under the third state (FIG. 3C), the pressure control valve 10 is supplied from the high pressure fuel supply passage 20 to the pressure control valve chamber 40 via the third communication passage 34. The fuel that has flowed into the first pressure control chamber 3 through the first pressure control chamber communication passage 31 is suppressed by the throttle portion 31 ′, and does not flow into the first pressure control chamber 3. It is discharged into the low pressure fuel leak passage 21. As a result, the fuel in the first pressure control chamber 3 is facilitated to be discharged into the low pressure fuel leak passage 21 via the first pressure control chamber communication passage 31 and the pressure control valve chamber 40. Therefore, the fuel in the first pressure control chamber 3 is quickly discharged from the first pressure control chamber 3. Therefore, the pressure in the first pressure control chamber 3 can be quickly reduced and the needle valve 2 can be quickly opened. Specifically, the needle valve can be quickly moved to a small maximum lift position.
[0029]
That is, according to the present embodiment, the needle valve 2 can be quickly opened while the needle valve 2 can be opened quickly.
[0030]
Specifically, first, in the case of the fuel injection device of the present embodiment provided with the pressure control valve 10, the fuel flow rate flowing out from the first pressure control chamber 3 during the valve opening period of the pressure control valve 10 is the pressure control. In order to be determined not by the valve opening amount of the valve 10 but by the throttle portion 31 ′ of the first pressure control chamber communication passage 31, it is necessary to set the throttle degree of the throttle portion 31 ′ to a relatively strong value. . Secondly, in the case of the fuel injection device of the present embodiment provided with the high-pressure fuel supply passage 20, it is necessary to inject fuel at a low pressure in the vicinity of the idle (low load side) in order to reduce the combustion noise in the vicinity of the idle. is there. When the pressure in the high pressure fuel supply passage 20 is set to a relatively low value, the fuel in the first pressure control chamber 3 urges the needle valve 2 toward the valve closing side, and the spring 13 serves as the needle valve 2. Of the force that urges the needle valve 2 toward the valve closing side and the force that the fuel in the fuel pool chamber 4 urges the needle valve 2 toward the valve opening side, the spring 13 biases the needle valve 2 toward the valve closing side. The proportion that occupies increases. As a result, thirdly, in order to quickly open the needle valve 2 by overcoming the force that the spring 13 biases the needle valve 2 toward the valve closing side when the needle valve 2 is opened, the needle valve 2 The ratio of the fuel flow rate flowing out from the first pressure control chamber 3 and the fuel flow rate flowing into the first pressure control chamber 3 during the valve opening operation of the pressure control valve 10, that is, during the valve opening period of the pressure control valve 10, becomes a considerably large value Must be set.
[0031]
On the other hand, as described above, it is necessary to set the throttle degree of the throttle portion 31 ′ of the communication passage 31 for the first pressure control chamber to a relatively strong value, so that the first pressure control is performed during the opening period of the pressure control valve 10. In order to set the ratio of the fuel flow rate flowing out of the chamber 3 and the fuel flow rate flowing into the first pressure control chamber 3 to a considerably large value, the first pressure control chamber 3 is opened during the opening period of the pressure control valve 10. It is necessary to set the flow rate of the fuel flowing into the interior to a considerably small value. Fourth, in order to quickly close the needle valve 2 during the closing operation of the needle valve 2, that is, during the closing period of the pressure control valve 10, the first operation is performed during the closing period of the pressure control valve 10. It is necessary to set the flow rate of the fuel flowing into the pressure control chamber 3 to a considerably large value.
[0032]
Based on these requirements, the fuel injection device of the present embodiment is configured as follows. First, based on the first requirement, the degree of restriction of the throttle part 31 ′ is relatively strong so that the opening of the throttle part 31 ′ of the first pressure control chamber communication path 31 is smaller than the opening amount of the pressure control valve 10. Is set to a value. Next, based on the second requirement, the pressure in the high-pressure fuel supply passage 20 is set to a relatively low value. Further, based on the third requirement, the throttle degree of the throttle portion 30 ′ of the first pressure control chamber inlet passage 30 is set to a relatively strong value. Alternatively, the fuel that flows into the first pressure control chamber 3 during the valve opening period of the pressure control valve 10 is eliminated by eliminating the first pressure control chamber inlet passage 30 as in the fuel injection device of the second embodiment described later. It is also possible to make the flow rate zero. Further, based on the fourth requirement, in order to increase the flow rate of fuel flowing into the first pressure control chamber 3 during the closing period of the pressure control valve 10, the third communication passage 34 and the pressure control are performed from the high pressure fuel supply passage 20. The throttle degree of the throttle portion 34 'of the third communication passage 34 is set to a relatively weak value so that the flow rate of fuel flowing into the first pressure control valve chamber 3 through the valve chamber 40 increases.
[0033]
In this way, it is achieved that the needle valve 2 can be quickly closed while the needle valve 2 can be opened quickly.
[0034]
Further, according to the present embodiment, the pressure in the first pressure control chamber 3 that biases the lift lock piston 5 toward the side where the maximum lift amount is increased and the lift lock piston 5 toward the side where the maximum lift amount is decreased. The maximum lift amount when the needle valve 2 is fully opened is changed by changing the relationship with the pressure in the second pressure control chamber 6 by the piezo actuator 11. That is, in order to change the maximum lift amount, the relationship between the pressure in the first pressure control chamber 3 and the pressure in the second pressure control chamber 6 may be changed, and the pressure in the high-pressure fuel supply passage 20 is changed. There is no need to do. Further, since the object to be changed to change the maximum lift amount is the pressure in the first pressure control chamber 3 and the second pressure control chamber 6, the maximum lift amount can be set by changing the extension amount of the piezo actuator. The maximum lift amount does not change with the temperature change as in the case of changing. Therefore, the maximum lift amount when the needle valve 2 is fully opened can be changed without having to change the pressure in the high-pressure fuel supply passage 20, and the maximum when the needle valve 2 is fully opened even when the temperature changes. The lift amount can be accurately controlled.
[0035]
Furthermore, according to this embodiment, the first state (FIG. 3A) in which the pressure in the first pressure control chamber 3 is increased and the pressure in the second pressure control chamber 6 is increased, and the first pressure control chamber 3 and a second state in which the pressure in the second pressure control chamber 6 is decreased (FIG. 3B), and the pressure in the first pressure control chamber 3 is decreased and the second pressure control chamber. Since the pressure control valve 10 has the third state (FIG. 3C) in which the pressure in the pressure 6 is increased, the state in which the needle valve 2 is fully closed by switching the state of the pressure control valve 10 and the maximum lift It is possible to switch between a state where the amount is increased and the needle valve 2 is fully opened and a state where the maximum lift amount is reduced and the needle valve 2 is fully opened.
[0036]
FIG. 5 is an enlarged view similar to FIG. 2 of the second embodiment of the fuel injection device of the present invention. In FIG. 5, the same reference numerals as those shown in FIGS. 1 to 4 indicate the same parts or portions as the parts or parts shown in FIGS. 1 to 4, and 2 a ′ is the upper side of the needle valve 2. It is a command piston arranged in. That is, in the present embodiment, the first pressure control chamber inlet passage 30 and the throttle portion 30 ′ of the first embodiment are excluded.
[0037]
In the present embodiment, since the high pressure fuel supply passage 20 and the pressure control valve chamber 40 are communicated by the third communication passage 34, the first pressure control is performed in the first state of the pressure control valve 10 (FIG. 3A). Fuel is supplied to the chamber 3 through the third communication passage 34 and the first pressure control chamber communication passage 31. The second pressure control chamber 6 is not only supplied with fuel via the second pressure control chamber inlet passage 32, but also via the third communication passage 34 and the second pressure control chamber communication passage 33. Fuel is supplied. Therefore, by setting the flow rate of fuel supplied from the high pressure fuel supply passage 20 to the pressure control valve chamber 40 through the third communication passage 34 to a relatively high flow rate, the pressure control valve 10 is closed (FIG. 3). (A)), the fuel supplied to the pressure control valve chamber 40 is quickly allowed to flow into the first pressure control chamber 3 via the first pressure control chamber communication passage 31, and for the second pressure control chamber. The air can quickly flow into the second pressure control chamber 6 through the communication passage 33. Therefore, the pressure in the first pressure control chamber 3 and the pressure in the second pressure control chamber 6 can be quickly increased, and the needle valve 2 can be quickly closed.
[0038]
On the other hand, during the valve opening period under the second state of the pressure control valve 10 (FIG. 3B), the pressure control valve 10 is supplied from the high pressure fuel supply passage 20 to the pressure control valve chamber 40 via the third communication passage 34. The fuel is prevented from flowing into the first pressure control chamber 3 through the first pressure control chamber communication passage 31 by the throttle portion 31 ′, and the second pressure control chamber communication passage 33 is passed through the first pressure control chamber communication passage 33. From flowing into the second pressure control chamber 6 through the throttle portion 33 ′, and does not flow into the first pressure control chamber 3 or the second pressure control chamber 6, but into the low pressure fuel leak passage 21. Discharged. As a result, the fuel in the first pressure control chamber 3 is promoted to be discharged into the low pressure fuel leak passage 21 via the first pressure control chamber communication passage 31 and the pressure control valve chamber 40, and the second The fuel in the pressure control chamber 6 is facilitated to be discharged into the low pressure fuel leak passage 21 via the second pressure control chamber communication passage 33 and the pressure control valve chamber 40. Therefore, the fuel in the first pressure control chamber 3 is quickly discharged from the first pressure control chamber 3, and the fuel in the second pressure control chamber 6 is quickly discharged from the second pressure control chamber 6. Therefore, the pressure in the first pressure control chamber 3 and the second pressure control chamber 6 can be quickly reduced to open the needle valve 2 quickly. Specifically, the needle valve can be quickly moved to a large maximum lift position.
[0039]
Further, during the valve opening period of the pressure control valve 10 under the third state (FIG. 3C), the pressure control valve 10 is supplied from the high pressure fuel supply passage 20 to the pressure control valve chamber 40 via the third communication passage 34. The fuel that has flowed into the first pressure control chamber 3 through the first pressure control chamber communication passage 31 is suppressed by the throttle portion 31 ′, and does not flow into the first pressure control chamber 3. It is discharged into the low pressure fuel leak passage 21. As a result, the fuel in the first pressure control chamber 3 is facilitated to be discharged into the low pressure fuel leak passage 21 via the first pressure control chamber communication passage 31 and the pressure control valve chamber 40. Therefore, the fuel in the first pressure control chamber 3 is quickly discharged from the first pressure control chamber 3. Therefore, the pressure in the first pressure control chamber 3 can be quickly reduced and the needle valve 2 can be quickly opened. Specifically, the needle valve can be quickly moved to a small maximum lift position.
[0040]
That is, according to this embodiment, the needle valve 2 can be quickly opened while the needle valve 2 can be opened quickly.
[0041]
Furthermore, according to the present embodiment, since the passage for the fuel to flow into the first pressure control chamber 3 is constituted only by the first pressure control chamber communication passage 31, the high-pressure fuel supply passage 20 and the first pressure control It is possible to eliminate the necessity of processing the passage (the first pressure control chamber inlet passage 30 of the first embodiment) that directly communicates with the chamber 3, and the cost of the fuel injection device can be reduced. Further, the first pressure control chamber 3 is more than the case where a passage (the first pressure control chamber inlet passage 30 of the first embodiment) that directly communicates the high pressure fuel supply passage 20 and the first pressure control chamber 3 is provided. The internal pressure can be quickly reduced.
[0042]
FIG. 6 is an enlarged view similar to FIGS. 2 and 5 of the third embodiment of the fuel injection device of the present invention. In FIG. 6, the same reference numerals as those shown in FIGS. 1 to 5 indicate the same parts or portions as the parts or parts shown in FIGS. 1 to 5, and 50 ′ denotes the third communication passage 34. Is a member formed. That is, in the present embodiment, the second pressure control chamber inlet passage 32 and the throttle portion 32 ′ thereof in the second embodiment are excluded.
[0043]
In the present embodiment, since the high pressure fuel supply passage 20 and the pressure control valve chamber 40 are communicated by the third communication passage 34, the first pressure control is performed in the first state of the pressure control valve 10 (FIG. 3A). Fuel is supplied to the chamber 3 through the third communication passage 34 and the first pressure control chamber communication passage 31. The fuel is supplied to the second pressure control chamber 6 through the third communication passage 34 and the second pressure control chamber communication passage 33. Therefore, by setting the flow rate of fuel supplied from the high pressure fuel supply passage 20 to the pressure control valve chamber 40 through the third communication passage 34 to a relatively high flow rate, the pressure control valve 10 is closed (FIG. 3). (A)), the fuel supplied to the pressure control valve chamber 40 is quickly allowed to flow into the first pressure control chamber 3 via the first pressure control chamber communication passage 31, and for the second pressure control chamber. The air can quickly flow into the second pressure control chamber 6 through the communication passage 33. Therefore, the pressure in the first pressure control chamber 3 and the pressure in the second pressure control chamber 6 can be quickly increased, and the needle valve 2 can be quickly closed.
[0044]
On the other hand, during the valve opening period under the second state of the pressure control valve 10 (FIG. 3B), the pressure control valve 10 is supplied from the high pressure fuel supply passage 20 to the pressure control valve chamber 40 via the third communication passage 34. The fuel is prevented from flowing into the first pressure control chamber 3 through the first pressure control chamber communication passage 31 by the throttle portion 31 ′, and the second pressure control chamber communication passage 33 is passed through the first pressure control chamber communication passage 33. The flow into the second pressure control chamber 6 is suppressed by the throttling portion 33 ′, and does not flow into the first pressure control chamber 3 or the second pressure control chamber 6 and enters the low pressure fuel leak passage 21. Discharged. As a result, the fuel in the first pressure control chamber 3 is promoted to be discharged into the low pressure fuel leak passage 21 via the first pressure control chamber communication passage 31 and the pressure control valve chamber 40, and the second The fuel in the pressure control chamber 6 is facilitated to be discharged into the low pressure fuel leak passage 21 via the second pressure control chamber communication passage 33 and the pressure control valve chamber 40. Therefore, the fuel in the first pressure control chamber 3 is quickly discharged from the first pressure control chamber 3, and the fuel in the second pressure control chamber 6 is quickly discharged from the second pressure control chamber 6. Therefore, the pressure in the first pressure control chamber 3 and the second pressure control chamber 6 can be quickly reduced to open the needle valve 2 quickly. Specifically, the needle valve can be quickly moved to a large maximum lift position.
[0045]
Further, during the valve opening period of the pressure control valve 10 under the third state (FIG. 3C), the pressure control valve 10 is supplied from the high pressure fuel supply passage 20 to the pressure control valve chamber 40 via the third communication passage 34. The fuel that has flowed into the first pressure control chamber 3 through the first pressure control chamber communication passage 31 is suppressed by the throttle portion 31 ′, and does not flow into the first pressure control chamber 3. It is discharged into the low pressure fuel leak passage 21. As a result, the fuel in the first pressure control chamber 3 is facilitated to be discharged into the low pressure fuel leak passage 21 via the first pressure control chamber communication passage 31 and the pressure control valve chamber 40. Therefore, the fuel in the first pressure control chamber 3 is quickly discharged from the first pressure control chamber 3. Therefore, the pressure in the first pressure control chamber 3 can be quickly reduced and the needle valve 2 can be quickly opened. Specifically, the needle valve can be quickly moved to a small maximum lift position.
[0046]
That is, according to this embodiment, the needle valve 2 can be quickly opened while the needle valve 2 can be opened quickly.
[0047]
Furthermore, according to the present embodiment, since the passage for the fuel to flow into the second pressure control chamber 6 is constituted only by the second pressure control chamber communication passage 33, the high-pressure fuel supply passage 20 and the second pressure control It is possible to eliminate the necessity of processing the passage (the second pressure control chamber inlet passage 32 of the first and second embodiments) that directly communicates with the chamber 6, and to reduce the cost of the fuel injection device. it can. Further, the second pressure is higher than the case where the passage (the second pressure control chamber inlet passage 32 of the first and second embodiments) that directly communicates the high pressure fuel supply passage 20 and the second pressure control chamber 6 is provided. The pressure in the control chamber 6 can be quickly reduced.
[0048]
The fuel injection device of the above-described embodiment has a lift lock piston 5, that is, a type having two pressure control chambers 3 and 6, but the present invention does not have a lift lock piston. The present invention can also be applied to a fuel injection device having only one pressure control chamber.
[0049]
【The invention's effect】
Claim 1 According to the invention described in the above, by setting the flow rate of fuel supplied from the high pressure fuel supply passage to the pressure control valve chamber through the second communication passage to a relatively large flow rate, the pressure control valve can be closed during the valve closing period. The fuel supplied to the pressure control valve chamber is quickly caused to flow into the pressure control chamber through the first series passage. Therefore, the pressure in the pressure control chamber can be quickly increased to quickly close the nozzle hole opening / closing valve. On the other hand, during the opening period of the pressure control valve, the fuel supplied from the high-pressure fuel supply passage to the pressure control valve chamber via the second communication passage flows into the pressure control chamber via the first series passage. This is suppressed by the throttle portion and discharged into the low pressure fuel leak passage without flowing into the pressure control chamber. As a result, the fuel in the pressure control chamber is promoted to be discharged into the low-pressure fuel leak passage through the first series passage and the pressure control valve chamber, and the fuel in the pressure control chamber is quickly discharged from the pressure control chamber. . Therefore, the pressure in the pressure control chamber can be quickly reduced to quickly open the nozzle hole opening / closing valve. That is, the nozzle hole opening / closing valve can be opened quickly while the nozzle hole opening / closing valve can be opened quickly.
[0050]
Claim 1 According to the invention described in the above, the maximum lift amount when the nozzle hole opening / closing valve is fully opened can be changed without having to change the pressure in the high pressure fuel supply passage, and the nozzle hole can be changed even when the temperature changes. It is possible to accurately control the maximum lift amount when the on-off valve is fully opened.
[0051]
Claim 1 According to the invention described in the above, the state of fully opening the nozzle hole opening / closing valve, the state of fully opening the nozzle hole opening / closing valve by increasing the maximum lift amount, and the maximum lift amount by switching the mode of the pressure control valve. The state can be switched between a state in which the nozzle hole opening / closing valve is fully opened.
[0052]
Claim 2 According to the invention described in (1), it is possible to eliminate the necessity of processing a passage that directly communicates the high-pressure fuel supply passage and the first pressure control chamber, and it is possible to reduce the cost of the fuel injection device. In addition, the pressure in the first pressure control chamber can be reduced more quickly than when a passage that directly communicates the high-pressure fuel supply passage and the first pressure control chamber is provided.
[0053]
Claim 3 According to the invention described in (1), it is possible to eliminate the necessity of processing a passage that directly communicates the high-pressure fuel supply passage and the second pressure control chamber, and it is possible to reduce the cost of the fuel injection device. In addition, the pressure in the second pressure control chamber can be reduced more quickly than when a passage that directly communicates the high-pressure fuel supply passage and the second pressure control chamber is provided.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a first embodiment of a fuel injection device of the present invention.
FIG. 2 is an enlarged view of FIG.
FIG. 3 is a diagram showing a comparison of operating states of the pressure control valve 10;
FIG. 4 is a diagram showing a comparison of operating states of the lift lock piston 5;
FIG. 5 is an enlarged view similar to FIG. 2 of the second embodiment of the fuel injection device of the present invention.
6 is an enlarged view similar to FIGS. 2 and 5 of the third embodiment of the fuel injection device of the present invention. FIG.
[Explanation of symbols]
1 ... Hole
2 ... Needle valve
3. First pressure control chamber
4 ... Fuel storage chamber
5 ... Lift lock piston
6 ... Second pressure control chamber
10 ... Pressure control valve
13 ... Spring
20 ... High-pressure fuel supply passage
21 ... Low pressure fuel leak passage
31 ... Communication path for first pressure control chamber
31 ', 33', 34 '..
33 ... Communication path for first pressure control chamber
34 ... Third passage
40 ... Pressure control valve chamber

Claims (3)

燃料噴射用噴孔を開閉する噴孔開閉弁と、前記噴孔開閉弁を閉弁側に付勢する閉弁側付勢手段と、前記噴孔開閉弁を開弁側に付勢する開弁側付勢手段とを具備し、前記閉弁側付勢手段が圧力制御室を有し、前記圧力制御室内の圧力を制御するための圧力制御弁を圧力制御弁室内に配置し、絞り部を備えた第一連通路によって前記圧力制御室と前記圧力制御弁室とを連通し、前記圧力制御弁の開弁期間中に、前記圧力制御室内の燃料が、前記絞り部を備えた第一連通路及び前記圧力制御弁室を介して低圧燃料リーク通路内に排出されるようにした燃料噴射装置において、前記圧力制御室内に燃料を供給するための第二連通路を高圧燃料供給通路と前記圧力制御弁室との間に配置し
前記噴孔開閉弁の全開時のリフト量である最大リフト量を調節する最大リフト量調節手段を設け、最大リフト量を大きくする側に前記最大リフト量調節手段を付勢する第一圧力制御室と、最大リフト量を小さくする側に前記最大リフト量調節手段を付勢する第二圧力制御室とに前記圧力制御室を分割すると共に、前記第一連通路を第一圧力制御室用連通路と第二圧力制御室用連通路とに分割し、前記第一圧力制御室内の圧力と前記第二圧力制御室内の圧力との関係を変更することにより最大リフト量を変更するようになっていて、
前記第一圧力制御室内の圧力を増加させると共に前記第二圧力制御室内の圧力を増加させる第一モードと、前記第一圧力制御室内の圧力を減少させると共に前記第二圧力制御室内の圧力を減少させる第二モードと、前記第一圧力制御室内の圧力を減少させると共に前記第二圧力制御室内の圧力を増加させる第三モードとを前記圧力制御弁が有する燃料噴射装置。
A nozzle opening / closing valve for opening / closing the fuel injection nozzle hole, a valve closing side biasing means for biasing the nozzle hole opening / closing valve toward the valve closing side, and a valve opening for biasing the nozzle hole opening / closing valve toward the valve opening side. Side biasing means, the valve closing side biasing means has a pressure control chamber, a pressure control valve for controlling the pressure in the pressure control chamber is disposed in the pressure control valve chamber, The pressure control chamber and the pressure control valve chamber are communicated with each other by a first series passage provided, and during the valve opening period of the pressure control valve, fuel in the pressure control chamber is provided with the throttle portion. In a fuel injection device that is discharged into a low-pressure fuel leak passage through a passage and the pressure control valve chamber, a second communication passage for supplying fuel into the pressure control chamber is provided as a high-pressure fuel supply passage and the pressure. disposed between the control valve chamber,
A first pressure control chamber provided with a maximum lift amount adjusting means for adjusting a maximum lift amount that is a lift amount when the nozzle hole opening / closing valve is fully opened, and energizing the maximum lift amount adjusting means toward the side of increasing the maximum lift amount And dividing the pressure control chamber into a second pressure control chamber for energizing the maximum lift amount adjusting means on the side to reduce the maximum lift amount, and the first series passage to the first pressure control chamber communication passage And the second pressure control chamber communication passage, and the maximum lift amount is changed by changing the relationship between the pressure in the first pressure control chamber and the pressure in the second pressure control chamber. ,
A first mode in which the pressure in the first pressure control chamber is increased and the pressure in the second pressure control chamber is increased; and the pressure in the first pressure control chamber is decreased and the pressure in the second pressure control chamber is decreased The fuel injection device , wherein the pressure control valve has a second mode for causing the pressure control valve to reduce a pressure in the first pressure control chamber and a third mode for increasing the pressure in the second pressure control chamber .
燃料が前記第一圧力制御室内に流入するための通路を前記第一圧力制御室用連通路のみによって構成した請求項1に記載の燃料噴射装置。 2. The fuel injection device according to claim 1, wherein a passage through which fuel flows into the first pressure control chamber is configured only by the first pressure control chamber communication passage . 燃料が前記第二圧力制御室内に流入するための通路を前記第二圧力制御室用連通路のみによって構成した請求項1に記載の燃料噴射装置。 2. The fuel injection device according to claim 1, wherein a passage through which fuel flows into the second pressure control chamber is configured only by the communication passage for the second pressure control chamber .
JP2000260779A 2000-08-30 2000-08-30 Fuel injection device Expired - Fee Related JP3829604B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000260779A JP3829604B2 (en) 2000-08-30 2000-08-30 Fuel injection device
EP20010119222 EP1184563B1 (en) 2000-08-30 2001-08-09 Fuel injector
DE2001607332 DE60107332T2 (en) 2000-08-30 2001-08-09 Kraftstoffeinpritzventil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000260779A JP3829604B2 (en) 2000-08-30 2000-08-30 Fuel injection device

Publications (2)

Publication Number Publication Date
JP2002070684A JP2002070684A (en) 2002-03-08
JP3829604B2 true JP3829604B2 (en) 2006-10-04

Family

ID=18748736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000260779A Expired - Fee Related JP3829604B2 (en) 2000-08-30 2000-08-30 Fuel injection device

Country Status (3)

Country Link
EP (1) EP1184563B1 (en)
JP (1) JP3829604B2 (en)
DE (1) DE60107332T2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10254300A1 (en) * 2002-11-21 2004-06-03 Robert Bosch Gmbh Fuel injection valve of a fuel injection device for an internal combustion engine
DE10326260A1 (en) * 2003-06-11 2005-01-05 Robert Bosch Gmbh Fuel injection valve and method for its control
AT501668B1 (en) * 2004-08-24 2007-03-15 Bosch Gmbh Robert CONTROL VALVE FOR AN INJECTION NOZZLE
DE102005004405A1 (en) * 2005-01-31 2006-08-03 Siemens Ag Fuel injection valve`s nozzle device for e.g. diesel engine, has needle with section axially spaced apart from axial ends of needle and cooperating with facing surface of guiding body to form stop unit for needle, in needle`s open position
DE102005027853A1 (en) * 2005-06-16 2006-12-21 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
DE102014201061A1 (en) 2014-01-22 2015-07-23 Robert Bosch Gmbh Valve for metering fluid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19624001A1 (en) 1996-06-15 1997-12-18 Bosch Gmbh Robert Fuel injection device for internal combustion engines
DE19729844A1 (en) * 1997-07-11 1999-01-14 Bosch Gmbh Robert Fuel injector
GB2336627A (en) * 1998-04-24 1999-10-27 Lucas Ind Plc Fuel injector with biassing spring in blind bore in valve needle
DE59908941D1 (en) * 1998-05-28 2004-04-29 Siemens Ag FUEL INJECTION VALVE FOR INTERNAL COMBUSTION ENGINES
DE19823937B4 (en) * 1998-05-28 2004-12-23 Siemens Ag Servo valve for fuel injection valve

Also Published As

Publication number Publication date
EP1184563A2 (en) 2002-03-06
EP1184563A3 (en) 2003-11-19
EP1184563B1 (en) 2004-11-24
DE60107332D1 (en) 2004-12-30
DE60107332T2 (en) 2005-12-08
JP2002070684A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
EP2134953B1 (en) Fuel injection valve for internal combustion engine
US8100345B2 (en) Fuel injection device
FI112527B (en) An injection valve
JP3557996B2 (en) Fuel injection device
JP3829604B2 (en) Fuel injection device
JP2002518630A (en) Valve control unit for fuel injection valve
JP2007500809A (en) Switching valve for fuel injector with pressure transducer
JP3991470B2 (en) Injection valve
JP3555588B2 (en) Common rail fuel injector
JP3804421B2 (en) Fuel injection device
JP5526194B2 (en) Fuel valve for turbocharged large two-cycle diesel engine
WO2006033469A1 (en) Fuel injection device
US6688537B2 (en) Injector loaded from collecting chamber and provided with cascade-shaped control device
US7347385B2 (en) Fuel injection device with a 3-way control valve for configuring the injection process
JPH11257182A (en) Fuel injection system of internal combustion engine
JP2007205324A (en) Fuel injection valve
JP2001082294A (en) Control valve for fuel injection valve
JP2004532955A (en) Fuel injector with variable control room pressure load
KR101433041B1 (en) Fuel injector
JP3829605B2 (en) Fuel injection device
KR20070108056A (en) Injector for internal combustion engine
JP3818206B2 (en) Fuel injection valve
JP2674266B2 (en) Fuel injection device for diesel engine
JP4218630B2 (en) Fuel injection device for internal combustion engine
JP4154839B2 (en) Fuel injection device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees