JP3828644B2 - Method of excavating by connecting multi-axis rotating shaft group - Google Patents

Method of excavating by connecting multi-axis rotating shaft group Download PDF

Info

Publication number
JP3828644B2
JP3828644B2 JP27698797A JP27698797A JP3828644B2 JP 3828644 B2 JP3828644 B2 JP 3828644B2 JP 27698797 A JP27698797 A JP 27698797A JP 27698797 A JP27698797 A JP 27698797A JP 3828644 B2 JP3828644 B2 JP 3828644B2
Authority
JP
Japan
Prior art keywords
rotating shaft
axis
shaft group
section
square
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27698797A
Other languages
Japanese (ja)
Other versions
JPH11117348A (en
Inventor
真博 佐藤
雅宏 矢嶋
涼 小野
伸吾 福島
守 小野
敏幸 磯崎
聖 横内
智也 塚本
一徳 森山
Original Assignee
成幸工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成幸工業株式会社 filed Critical 成幸工業株式会社
Priority to JP27698797A priority Critical patent/JP3828644B2/en
Publication of JPH11117348A publication Critical patent/JPH11117348A/en
Application granted granted Critical
Publication of JP3828644B2 publication Critical patent/JP3828644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は多軸回転軸群を接続して掘削する方法に関するものである。
【0002】
【従来の技術】
従来から地盤中に深い掘削孔10を形成するに当たっては以下のような方法により行っていた。すなわち、図13に示すように、複数本の回転軸1を連結部材2により回転自在に連結支持した多軸回転軸群3の各回転軸1の上端部を、重機4に上下移動自在に設けた回転装置5の各出力軸6に対してそれぞれ水平断面角形をした突部7と水平断面角形をした角孔8との嵌め込みにより接続し、この状態で多軸回転軸群3の各回転軸1を回転させて地盤9を掘削し、該多軸回転軸群3による第1段階の掘削を行った後、該第1段階の掘削孔10内に多軸回転軸群3を残した状態で多軸回転軸群3を回転装置5から切離し、別の多軸回転軸群3を連結部材2部分でクレーン14に設けた吊り下げ具29により吊り上げて、該クレーン14により吊り上げた別の多軸回転軸群3の各回転軸1の下端部を、それぞれ前記の掘削孔10内に残している多軸回転軸群3の各回転軸1の上端部に対向させ、上下に対向する各組の回転軸1同士を下の回転軸1の上端部と上の回転軸1の下端部とが水平断面角形をした突部7と、水平断面角形をした角孔8とが周方向において一致するように上の各回転軸1をそれぞれ回転させて位置合わせし、位置合わせ後に上の多軸回転軸群3を少し下降して上下に対向する各組の回転軸1同士を水平断面角形をした突部7と水平断面角形をした角孔8との嵌め込みにより接続し、その後、吊り装置の各接続部材を上段の多軸回転軸群3の各回転軸1の上端部から取り外し、次に、重機4に上下移動自在に設けた回転装置5の各出力軸に上段の多軸回転軸群3の各回転軸1の上端部をそれぞれ水平断面角形をした突部7と水平断面角形をした角孔8との嵌め込みにより接続し、その後に、上下に接続した多軸回転軸群3の各回転軸1を回転させて地盤9を掘削して第1段階の掘削に続いて下方に第2段階の掘削を行うものである。
【0003】
ところが上記従来例においては、第1段階の掘削を行った後に掘削孔10に残した多軸回転軸群3の各回転軸1の上端部に、クレーン14により吊り上げた別の多軸回転軸群3の各回転軸1の下端部を水平断面角形をした突部7と水平断面角形をした角孔8との嵌め込みにより接続するに当たり、図13、図14のように連結部材2をクレーン14に設けた吊り下げ具29により吊り下げているので、連結部材2に設けた各軸受け部18が各回転軸1に設けた鍔部19に強く当たり(つまり各回転軸1の自重がそれぞれ鍔部19部分において各軸受け部18にすべてかかり)、このため、回転軸1をそれぞれ独立して回転するのが難しく、回転軸1を回転して下の対向する回転軸1に対して、水平断面角形をした突部7と、水平断面角形をした角孔8とを周方向において一致させる作業が難しくて、時間もかかり、結果的に多軸回転軸群3を上下に接続して掘削孔10を形成するに当たって時間がかかっていた。
【0004】
【発明が解決しようとする課題】
本発明は、上記の従来例の問題点に鑑みて発明したものであって、多軸回転軸群を上下に接続して掘削孔を形成するに当たって、上下の多軸回転軸群の各回転軸同士を上下方向に簡単に接続することができて、多軸回転軸群を上下に接続して掘削孔を形成するに当たっての施工時間を短縮することができる多軸回転軸群を接続して掘削する方法を提供することを課題とするものである。
【0005】
【課題を解決するための手段】
上記課題を解決するために本発明の多軸回転軸群を接続して掘削する方法は、複数本の回転軸1を連結部材2により回転自在に連結支持した多軸回転軸群3の各回転軸1の上端部を重機4に上下移動自在に設けた回転装置5の各出力軸6にそれぞれ水平断面角形をした突部7と水平断面角形をした角孔8との嵌め込みにより接続し、この状態で多軸回転軸群3の各回転軸1を回転させて地盤9を掘削し、該多軸回転軸群3による第1段階の掘削を行った後、該多軸回転軸群3を掘削孔10内に残した状態で多軸回転軸群3を回転装置5から切離し、基材11から吊り部材12を介して複数の接続部材13を各々独立して回転自在に吊り下げ形成した吊り装置15の各接続部材13をそれぞれ複数本の回転軸1を連結部材2により回転自在に連結支持した多軸回転軸群3の各回転軸1の上端部に接続すると共にクレーン14により基材11を吊り上げることで吊り装置15を介して多軸回転軸群3を吊り上げ、このクレーン14で吊り上げた多軸回転軸群3の各回転軸1の下端部を、それぞれ前記の掘削孔10内に残している多軸回転軸群3の各回転軸1の上端部に対向させ、上下に対向する各組の回転軸1同士を下の回転軸1の上端部と上の回転軸1の下端部とが水平断面角形をした突部7と、水平断面角形をした角孔8とが周方向において一致するように上の各回転軸1を独立して回転させて位置合わせし、位置合わせ後に上の多軸回転軸群3を少し下降して上下に対向する各組の回転軸1同士を水平断面角形をした突部7と水平断面角形をした角孔8との嵌め込みにより接続し、その後、吊り装置15の各接続部材13を上段の多軸回転軸群3の各回転軸1の上端部から取り外し、次に、重機4に上下移動自在に設けた回転装置5の各出力軸6に上段の多軸回転軸群3の各回転軸1の上端部をそれぞれ水平断面角形をした突部7と水平断面角形をした角孔8との嵌め込みにより接続し、その後に、上下に接続した多軸回転軸群3の各回転軸1を回転させて地盤9を掘削して第1段階の掘削に続いて下方に第2段階の掘削を行うことを特徴とするものである。このような方法を採用することで、上下の多軸回転軸群3の各上下に対向する回転軸1同士を接続するに当たって、クレーン14により吊り装置15で吊り下げた上の多軸回転軸群3の各回転軸1はそれぞれ各接続部材13によりそれぞれ独立して回転自在に吊り下げられていることになり、これにより、連結部材2に各回転軸1の自重がかかることなく、各回転軸1を独立して軽い力で簡単に回転して、上下に対向する回転軸1同士を、水平断面角形をした突部7と、水平断面角形をした角孔8とを周方向において一致させて接続することができるものである。
【0007】
【発明の実施の形態】
以下本発明を添付図面に示す実施形態に基づいて説明する。
多軸回転軸群3は複数本の回転軸1を連結部材2により回転自在に連結支持して構成してある。すなわち、連結部材2は図1に示すように、複数個の半円状部16を有する半割り体17を合わせてボルトにより連結して構成してあり、対向する一対の半円状部16により円筒状の軸受け部18が構成されるものであって、連結部材2はこの円筒状の軸受け部18を複数個備えたものとなっている。回転軸1の上下方向の複数箇所には上下に小間隙を介して対向する一対の鍔部19が突設してある。そして、複数本の回転軸1を上下方向の複数箇所で連結部材2により回転自在に連結してあるが、この場合、回転軸1の一対の鍔部19間の部分に軸受け部18を回転自在に被嵌し、上下一対の鍔部19により軸受け部18が上下方向にずれないようにしてある。
【0008】
ここで、多軸回転軸群3の各回転軸1は上下両端部のうち一方の端部に水平断面角形をした突部7を設け、他方の端部に水平断面角形をした角孔8を設けたものであり(添付図面に示す実施形態では回転軸1の下端部に水平断面角形をした突部7を設け、上端部に水平断面角形をした角孔8を設けてあり)、回転軸1同士を上下に接続する際に、水平断面角形をした突部7を水平断面角形をした角孔8に嵌め込んで接続することで上下に接続した回転軸1が一体として回転できるような構成となっている。角孔8を設けた方の端部には回転軸1と直交する方向にピン挿入孔20を設けてあり、このピン挿入孔20は角孔8に連通している。また、突部7部分にはピン差込み溝21が設けてあり、突部7と角孔8とを嵌め込んだ状態でピン挿入孔20から挿入したピン22をピン差込み溝21に差し込むことで、突部7と角孔8との嵌合が上下方向に抜けないようになっている。
【0009】
上記のように連結部材2により複数本の回転軸1を回転自在に連結した多軸回転軸群3をクローラクレーンのような重機4に設けた上下移動自在な回転装置5に取付けて地盤9を掘削するのである。この場合、最初に回転装置5に取付ける多軸回転軸群3の各回転軸1の下端部には掘削ビット25が取付けてある。掘削ビット25の取付けに当たっては、掘削ビット25の上端部に水平断面角状をした角孔又は水平断面角状をした突部を設けて回転軸1の下端に設けた水平断面角状をした突部7又は水平断面角状をした角孔8と嵌合してピンを用いて上下に抜けないように連結したり、あるいは、回転軸1の下端部に掘削ビット25を直接溶接などにより固着したりするものである。
【0010】
また、クローラクレーンのような重機4の回転装置5に回転軸1を取付けるには以下のようにして行う。つまり、重機4のリーダ23に沿って回転装置5が上下移動自在に取付けてあり、この回転装置5に複数の出力軸6が設けてある。この複数の出力軸6にそれぞれ回転軸1の上端部を水平断面角形をした突部7と水平断面角形をした角孔8との嵌め込みにより接続し、つまり、実施形態においては出力軸6が水平断面角形の突部7となっており、この突部7に回転軸1の上端部の水平断面角形をした角孔8に嵌め込み、ピン22を用いて上下に抜けないように接続する。
【0011】
上記のようにして、重機4に多軸回転軸群3を取付けた状態(図3の状態)で、回転装置5を駆動して多軸回転軸群3の各回転軸1を回転させて地盤9を掘削し、該多軸回転軸群3による第1段階の掘削を行って第1段階の掘削孔10を形成する(図4の状態)。多軸回転軸群3による第1段階の掘削が終わると、図5のように多軸回転軸群3を掘削孔10内に残した状態で多軸回転軸群3を回転装置5から切り離す。次に、図6のように多軸回転装置群3を切り離した上記回転装置5を備えた重機4を側方に移動させて待機させ、クレーン14に取付けた吊り装置15により他の多軸回転軸群3を吊り上げて、このクレーン14で吊り上げた多軸回転軸群3の各回転軸1の下端部を、それぞれ前記の掘削孔10内に残している多軸回転軸群3の各回転軸1の上端部に接続するものである。
【0012】
ここで、本発明において用いる吊り装置15は図1、図2に示すように、クレーン14の吊り下げ具29に吊り下げられる基材11から下方に向けて複数個の吊り部材12を吊り下げ、各吊り部材12の下端部に接続部材13を設けて構成してある。吊り部材12はスイベルのような回転部12aにワイヤ12bを接続して構成してある。回転部12aは上部体12a1 に対して下部体12a2 を360°回転自在に連結して構成してある。したがって、基体11に吊り部材12を介して吊り下げた各接続部材13はそれぞれ独立して回転自在となっている。接続部材13には回転軸1の上端部の水平断面角形の角孔8又は水平断面角形の突部7に嵌合自在な水平断面角形の突部7又水平断面角形の角孔8が設けてあり(添付図面に示す実施形態においては接続部材13に水平断面角形の突部7が設けてあり)、また、ピン22を差し込むピン差込み溝21又はピン挿入孔20が設けてある(添付図面に示す実施形態においてはピン差込み溝21が設けてある)。また基材11の上部には引っ掛け取付け部28が設けてある。
【0013】
そして、上記吊り装置15の各接続部材13をこれから連結しようとする多軸回転軸群3の各回転軸1の上端部に水平断面角形をした角孔8と水平断面角形をした突部7との嵌合で嵌め込むと共に、ピン挿入孔20からピン22をピン差込み溝21に差し込んで上下に抜けないように接続する。この状態で吊り装置15の引っ掛け取付け部28にクレーン14のワイヤの下端部に取付けた吊り下げ具29を引っ掛けて多軸回転軸群3を吊り上げるものである。このようにして吊り装置15を介してクレーン14で吊り上げた多軸回転軸群3の各回転軸1の下端部を、それぞれ前記の掘削孔10内に残している多軸回転軸群3の各回転軸1の上端部に対向させる(図6の状態)。
【0014】
次に、上下に対向する各組の回転軸1同士を、上の回転軸1の下端部と下の回転軸1の上端部とが水平断面角形をした突部7と水平断面角形をした角孔8とが周方向において一致するように上の各回転軸1をそれぞれ独立して回転させて位置合わせをする。この場合、各回転軸1は上端部に接続した接続部材13部分で直接吊り下げてあり、該接続部材13が吊り部材12を介して基材11に回転自在に吊り下げられているので、回転軸1は吊り部材12の回転部12a部分においてスムーズに回転し、簡単に各回転軸1を独立して回転して水平断面角形をした突部7を、水平断面角形をした角孔8に周方向において一致させることができる。この場合、図7、図8(a)に示すように、作業者が回転操作治具30を水平断面角形をした突部7に係止して回転操作をするとより簡単に回転軸1の回転ができるものである。
【0015】
上記のように上の回転軸1の下端部と下の回転軸1の上端部とを水平断面角形をした突部7と水平断面角形をした角孔8とが周方向において一致するように位置合わせをした後、上の多軸回転軸群3を少し下降して上下に対向する各組の回転軸1同士を水平断面角形をした突部7と水平断面角形をした角孔8とを嵌め込み、ピン挿入孔20からピン22をピン差込み溝21に差し込んで上下に抜けないように連結する(図9参照)。
【0016】
上記のようにして上下の多軸回転軸群3を連結した後、ピン22を抜くことで、吊り装置15の各接続部材13を上段の多軸回転軸群3の各回転軸1の上端部から取り外す。次に、図10に示すように、重機4を元の位置に移動させ、重機4に上下移動自在に設けた回転装置5の各出力軸6に上段の多軸回転軸群3の各回転軸1の上端部をそれぞれ水平断面角形をした突部7と水平断面角形をした角孔8との嵌め込みにより接続する(図11参照)。この場合も、ピン22を差し込んで上下に抜けないようにする。この場合、回転装置5の各出力軸6の水平断面角状をした突部7又は角孔8の周方向の位置は下段の多軸回転軸群3の各回転軸1の上端部の水平断面角形をした角孔8又は突部7の周方向の位置と一致しているので、該下段の多軸回端軸群3の各回転軸1にそれぞれ接続した上段の多軸回転軸群3の各回転軸1の上端部の水平断面角形をした角孔8又は突部7の周方向の位置が回転装置5の各出力軸6の水平断面角形をした突部7又は角孔8の周方向の位置と自動的に一致することになり、この場合には周方向の位置合わせのための回転操作をすることなく簡単に接続できるものである。この状態で回転装置5を駆動することで上下に連結した各回転軸1をそれぞれ回転させて地盤9を掘削して第1段階の掘削に続いて下方に第2段階の掘削を行って図12に示すように深さの深い掘削孔10を形成するものである。
【0017】
上記実施形態においては、2段に多軸回転軸群3を連結する例を示したが、3段以上連結してもよいものである。つまり、図12の状態の後、回転装置5を切離して重機4を側方に移動し、その後上記と同様にして第2段目の多軸回転軸群3の各回転軸1の上端部に第3段目の多軸回転軸群3の各回転軸1の下端部を連結し、その後、重機4の回転装置5に再び接続して、更に深い掘削を行うものであり、多軸回転軸群3を4段以上に連結する場合も同様である。
【0018】
なお、添付図面に示す実施形態においては、回転装置5の各出力軸6は下端部に補助回転軸6′を連結したものとなっていて、この実施形態では出力軸6の下端部とは実際は出力軸6の端部に連結した補助回転軸6′の下端部のことを指しているが、補助回転軸6′を各出力軸6の下端部に設けない場合であってもよい。
【0019】
【発明の効果】
本発明の請求項1記載の発明にあっては、上述のように、基材から吊り部材を介して複数の接続部材を各々独立して回転自在に吊り下げ形成した吊り装置の各接続部材をそれぞれ複数本の回転軸を連結部材により回転自在に連結支持した多軸回転軸群の各回転軸の上端部に接続すると共にクレーンにより基材を吊り上げることで吊り装置を介して多軸回転軸群を吊り上げ、このクレーンで吊り上げた多軸回転軸群の各回転軸の下端部を、それぞれ前記の掘削孔内に残している多軸回転軸群の各回転軸の上端部に対向させ、上下に対向する各組の回転軸同士を下の回転軸の上端部と上の回転軸の下端部とが水平断面角形をした突部と、水平断面角形をした角孔とが周方向において一致するように上の各回転軸を独立して回転させて位置合わせし、位置合わせ後に上の多軸回転軸群を少し下降して上下に対向する各組の回転軸同士を水平断面角形をした突部と水平断面角形をした角孔との嵌め込みにより接続するので、上下の多軸回転軸群の各上下に対向する回転軸同士を接続するに当たって、クレーンにより吊り装置で吊り下げた上の多軸回転軸群の各回転軸はそれぞれ各接続部材によりそれぞれ独立して回転自在に吊り下げられていることになり、これにより、連結部材に各回転軸の自重がかかることなく、各回転軸を独立して軽い力で簡単に回転して、上下に対向する回転軸同士を、水平断面角形をした突部と、水平断面角形をした角孔とを周方向において一致させて接続することができ、このように多軸回転軸群の上下方向の連結が短時間で簡単にできるので、上下に多軸回転軸群を連結して深さの深い掘削孔を簡単且つ短時間で形成できるものである。
【図面の簡単な説明】
【図1】本発明に用いる吊り装置と多軸回転軸群の各回転軸の上端部とを示す分解斜視図である。
【図2】同上の一部切欠正面図である。
【図3】本発明の方法の順序を示す説明図である。
【図4】同上の方法の順序を示す説明図である。
【図5】同上の方法の順序を示す説明図である。
【図6】同上の方法の順序を示す説明図である。
【図7】同上の方法の順序を示す説明図である。
【図8】(a)は上段の多軸回転軸群の各回転軸を回転している状態の説明図であり、(b)は各回転軸を回転して位置合わせした状態の説明図であり、(c)は回転軸を回転して位置合わせした状態における吊り部材及び接続部材の周方向における位置関係を示す正面図である。
【図9】同上の方法の順序を示す説明図である。
【図10】同上の方法の順序を示す説明図である。
【図11】同上の方法の順序を示す説明図である。
【図12】同上の方法の順序を示す説明図である。
【図13】従来における下段の多軸回転軸群のに上段の多段回転軸群を連結するために上段の多段回転軸群をクレーンで吊り下げている状態の説明図である。
【図14】従来の要部拡大正面図である。
【符号の説明】
1 回転軸
2 連結部材
3 多軸回転軸群
4 重機
5 回転装置
6 出力軸
7 突部
8 角孔
9 地盤
10 掘削孔
11 基材
12 吊り部材
13 接続部材
14 クレーン
15 吊り装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for excavating by connecting a multi-axis rotating shaft group.
[0002]
[Prior art]
Conventionally, the deep excavation hole 10 is formed in the ground by the following method. That is, as shown in FIG. 13, the upper end of each rotary shaft 1 of a multi-axis rotary shaft group 3 in which a plurality of rotary shafts 1 are rotatably connected and supported by a connecting member 2 is provided on a heavy machine 4 so as to be movable up and down. Each of the rotating shafts 5 is connected to each output shaft 6 by fitting a projection 7 having a square horizontal section and a square hole 8 having a square horizontal section. 1 is rotated to excavate the ground 9, and after the first stage excavation by the multi-axis rotary shaft group 3, the multi-axis rotary shaft group 3 remains in the first stage excavation hole 10. The multi-axis rotating shaft group 3 is separated from the rotating device 5, and another multi-axis rotating shaft group 3 is lifted by a hanging tool 29 provided on the crane 14 at the connecting member 2, and another multi-axis lifted by the crane 14. The lower end portion of each rotating shaft 1 of the rotating shaft group 3 is left in the excavation hole 10 respectively. The upper end of each rotary shaft 1 of the multi-axis rotary shaft group 3 is opposed to each other, and the upper and lower ends of each set of rotary shafts 1 are horizontally aligned with the upper end of the lower rotary shaft 1 and the lower end of the upper rotary shaft 1. Each of the upper rotary shafts 1 is rotated and aligned so that the projection 7 having a square cross section and the square hole 8 having a horizontal cross section square coincide with each other in the circumferential direction. The groups 3 of the rotating shafts 1 that are vertically moved downward are connected to each other by fitting the protrusions 7 having a square horizontal section and the square holes 8 having a horizontal section square, and then connecting each of the suspension devices. The member is removed from the upper end of each rotary shaft 1 of the upper multi-axis rotary shaft group 3, and then the upper multi-axis rotary shaft group 3 is connected to each output shaft of the rotating device 5 provided on the heavy machine 4 so as to be movable up and down. The upper end of each rotary shaft 1 is fitted with a projection 7 having a horizontal cross section and a square hole 8 having a horizontal cross section. And then rotating each rotary shaft 1 of the multi-axis rotary shaft group 3 connected up and down to excavate the ground 9 and perform the second stage excavation downward following the first stage excavation. It is.
[0003]
However, in the above-described conventional example, another multi-axis rotating shaft group suspended by a crane 14 on the upper end portion of each rotating shaft 1 of the multi-axis rotating shaft group 3 left in the excavation hole 10 after performing the first stage excavation. 3, the connecting member 2 is connected to the crane 14 as shown in FIGS. 13 and 14 when the lower end portion of each rotary shaft 1 is connected by fitting the projection 7 having a horizontal section square and the square hole 8 having a horizontal section square. Since it is suspended by the provided suspending tool 29, each bearing part 18 provided in the connecting member 2 hits against the collar part 19 provided on each rotating shaft 1 (that is, the own weight of each rotating shaft 1 is respectively the collar part 19). Therefore, it is difficult to rotate the rotating shaft 1 independently, and the rotating shaft 1 is rotated to form a horizontal cross section with respect to the lower rotating shaft 1. And the horizontal section square And difficult task of matching the square hole 8 in the circumferential direction, time consuming, it takes a long time in forming the borehole 10 and consequently connects the multi-axis rotational axis group 3 up and down.
[0004]
[Problems to be solved by the invention]
The present invention was invented in view of the problems of the above-described conventional example, and in forming the excavation hole by connecting the multi-axis rotating shaft group up and down, each rotating shaft of the upper and lower multi-axis rotating shaft group is formed. Drilling by connecting multi-axis rotating shaft groups that can easily connect each other in the vertical direction and reduce the construction time for forming the drilling hole by connecting the multi-axis rotating shaft groups up and down It is an object of the present invention to provide a method for doing this.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the method of excavating the multi-axis rotating shaft group according to the present invention is to rotate each of the multi-axis rotating shaft group 3 in which a plurality of rotating shafts 1 are rotatably connected and supported by a connecting member 2. The upper end portion of the shaft 1 is connected to each output shaft 6 of the rotating device 5 provided in the heavy machine 4 so as to be movable up and down by fitting a protrusion 7 having a horizontal cross section and a square hole 8 having a horizontal cross section. In this state, the rotary shafts 1 of the multi-axis rotary shaft group 3 are rotated to excavate the ground 9, and after the first stage excavation by the multi-axis rotary shaft group 3, the multi-axis rotary shaft group 3 is excavated. A suspension device in which the multi-axis rotation shaft group 3 is separated from the rotation device 5 while remaining in the hole 10, and a plurality of connection members 13 are independently suspended from the base material 11 via the suspension member 12. connecting each connection member 13 of the 15 rotatably by the connecting member 2 a rotary shaft 1 of a plurality of respectively Through the suspension device 15 by lifting the substrate 11 by the crane 14 as well as connected to the upper end portion of the rotary shaft 1 of the multi-axis rotational axis group 3 which support and lift the multi-axis rotational axis group 3, hanging on this crane 14 The lower end portion of each rotating shaft 1 of the multi-axis rotating shaft group 3 is opposed to the upper end portion of each rotating shaft 1 of the multi-axis rotating shaft group 3 remaining in the excavation hole 10 and is opposed vertically. Each pair of rotating shafts 1 has a protrusion 7 in which the upper end portion of the lower rotating shaft 1 and the lower end portion of the upper rotating shaft 1 have a horizontal cross section and a square hole 8 having a horizontal cross section in the circumferential direction. The upper rotary shafts 1 are independently rotated and aligned so as to coincide with each other, and after the positioning, the upper multi-axis rotary shaft group 3 is slightly lowered and the respective rotary shafts 1 facing each other vertically are horizontally aligned. Connection is made by fitting a projection 7 having a square cross section with a square hole 8 having a horizontal cross section. Thereafter, each connecting member 13 of the suspension device 15 is removed from the upper end portion of each rotating shaft 1 of the upper multi-axis rotating shaft group 3, and then each output shaft 6 of the rotating device 5 provided in the heavy machine 4 so as to be movable up and down. The upper ends of the rotary shafts 1 of the upper multi-axis rotary shaft group 3 are connected to each other by fitting the projections 7 having a horizontal cross section square shape and the square holes 8 having a horizontal cross section square shape, and then connected vertically. The rotary shaft 1 of the multi-axis rotary shaft group 3 is rotated to excavate the ground 9 and the second stage excavation is performed downward following the first stage excavation. By adopting such a method, when connecting the upper and lower rotary shafts 1 of the upper and lower multi-axis rotary shaft groups 3 to each other, the multi-axis rotary shaft group suspended by the crane 15 by the suspension device 15 is used. 3, each rotating shaft 1 is suspended independently by each connecting member 13, so that each rotating shaft 1 is not subjected to its own weight on the connecting member 2. 1 is independently rotated with a light force, and the rotating shafts 1 that are vertically opposed to each other are made to have a projection 7 having a horizontal cross section and a square hole 8 having a horizontal cross section in the circumferential direction. It can be connected.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below based on embodiments shown in the accompanying drawings.
The multi-axis rotating shaft group 3 is configured by rotatably connecting and supporting a plurality of rotating shafts 1 by a connecting member 2. That is, as shown in FIG. 1, the connecting member 2 is configured by joining together half-divided bodies 17 having a plurality of semicircular portions 16 and connecting them with bolts, and by a pair of opposing semicircular portions 16. A cylindrical bearing portion 18 is configured, and the connecting member 2 includes a plurality of the cylindrical bearing portions 18. A plurality of vertically extending portions of the rotary shaft 1 are provided with a pair of flange portions 19 that are opposed to each other with a small gap therebetween. The plurality of rotating shafts 1 are rotatably connected by connecting members 2 at a plurality of locations in the vertical direction. In this case, the bearing portion 18 can be freely rotated between the pair of flange portions 19 of the rotating shaft 1. So that the bearing portion 18 is not displaced in the vertical direction by the pair of upper and lower flange portions 19.
[0008]
Here, each rotary shaft 1 of the multi-axis rotary shaft group 3 is provided with a projection 7 having a horizontal cross-sectional square shape at one end of the upper and lower ends, and a square hole 8 having a horizontal cross-sectional square shape at the other end. (In the embodiment shown in the accompanying drawings, a protrusion 7 having a horizontal cross section square is provided at the lower end portion of the rotary shaft 1 and a square hole 8 having a horizontal cross section square is provided at the upper end portion). A configuration in which the vertically connected rotary shaft 1 can be rotated integrally by connecting the protrusions 7 having a horizontal cross section squared into the square holes 8 having a horizontal cross section square when connecting the ones up and down. It has become. A pin insertion hole 20 is provided in a direction orthogonal to the rotation shaft 1 at the end where the square hole 8 is provided, and the pin insertion hole 20 communicates with the square hole 8. In addition, a pin insertion groove 21 is provided in the protrusion 7 portion, and the pin 22 inserted from the pin insertion hole 20 with the protrusion 7 and the square hole 8 fitted is inserted into the pin insertion groove 21. The fitting between the projection 7 and the square hole 8 is prevented from coming off in the vertical direction.
[0009]
As described above, the multi-axis rotating shaft group 3 in which a plurality of rotating shafts 1 are rotatably connected by the connecting member 2 is attached to a rotating device 5 that is movable up and down provided in a heavy machine 4 such as a crawler crane, and the ground 9 is attached. It is excavated. In this case, an excavation bit 25 is attached to the lower end portion of each rotary shaft 1 of the multi-axis rotary shaft group 3 that is first attached to the rotating device 5. When attaching the excavation bit 25, a horizontal hole having a square cross section or a projection having a horizontal cross section is provided at the upper end of the excavation bit 25, and the horizontal cross section provided at the lower end of the rotary shaft 1. It fits with the part 7 or the square hole 8 having a horizontal cross section and is connected so as not to be pulled up and down using a pin, or the excavation bit 25 is fixed to the lower end of the rotating shaft 1 by direct welding or the like. It is something to do.
[0010]
Further, the rotating shaft 1 is attached to the rotating device 5 of the heavy machine 4 such as a crawler crane as follows. That is, the rotating device 5 is attached so as to be movable up and down along the reader 23 of the heavy machine 4, and the rotating device 5 is provided with a plurality of output shafts 6. The upper ends of the rotary shaft 1 are connected to the plurality of output shafts 6 by fitting the projections 7 having a horizontal cross section square shape and the square holes 8 having a horizontal cross section square shape, that is, in the embodiment, the output shaft 6 is horizontally connected. The projection 7 has a square cross section, and is fitted into the square hole 8 having a horizontal cross section of the upper end portion of the rotary shaft 1 and connected to the projection 7 so as not to be pulled up and down using a pin 22.
[0011]
As described above, in the state where the multi-axis rotating shaft group 3 is attached to the heavy machine 4 (the state shown in FIG. 3), the rotating device 5 is driven to rotate the rotating shafts 1 of the multi-axis rotating shaft group 3 and the ground. 9 is excavated, and the first-stage excavation by the multi-axis rotating shaft group 3 is performed to form the first-stage excavation hole 10 (state of FIG. 4). When the first stage excavation by the multi-axis rotating shaft group 3 is finished, the multi-axis rotating shaft group 3 is separated from the rotating device 5 with the multi-axis rotating shaft group 3 left in the excavation hole 10 as shown in FIG. Next, as shown in FIG. 6, the heavy machine 4 provided with the rotating device 5 separated from the multi-axis rotating device group 3 is moved to the side to stand by, and another multi-axis rotation is performed by the suspension device 15 attached to the crane 14. Each shaft of the multi-axis rotary shaft group 3 that lifts the shaft group 3 and leaves the lower end portion of each rotary shaft 1 of the multi-axis rotary shaft group 3 lifted by the crane 14 in the excavation hole 10. 1 is connected to the upper end portion.
[0012]
Here, as shown in FIGS. 1 and 2, the suspension device 15 used in the present invention suspends a plurality of suspension members 12 downward from the base material 11 suspended from the suspension tool 29 of the crane 14, A connecting member 13 is provided at the lower end of each suspension member 12. The suspension member 12 is configured by connecting a wire 12b to a rotating portion 12a such as a swivel. The rotating part 12a is configured by connecting the lower body 12a 2 to the upper body 12a 1 so as to be rotatable by 360 °. Accordingly, each connection member 13 suspended from the base 11 via the suspension member 12 is independently rotatable. The connecting member 13 is provided with a square hole 8 with a horizontal cross section at the upper end of the rotary shaft 1, a projection 7 with a horizontal cross section that can be fitted to a projection 7 with a horizontal cross section or a square hole 8 with a horizontal cross section. Yes (in the embodiment shown in the accompanying drawings, the connecting member 13 is provided with a projection 7 having a rectangular horizontal section), and a pin insertion groove 21 or a pin insertion hole 20 into which the pin 22 is inserted is provided (in the attached drawing). In the embodiment shown, a pin insertion groove 21 is provided). Further, a hook attachment portion 28 is provided on the upper portion of the base material 11.
[0013]
And the square hole 8 which made the horizontal cross section square at the upper end part of each rotating shaft 1 of the multiaxial rotating shaft group 3 which is going to connect each connection member 13 of the said suspension apparatus 15, and the protrusion 7 which made the horizontal cross section square, The pin 22 is inserted into the pin insertion groove 21 from the pin insertion hole 20 and connected so as not to be pulled up and down. In this state, the multi-axis rotating shaft group 3 is lifted by hooking a hanging tool 29 attached to the lower end portion of the wire of the crane 14 to the hook attaching portion 28 of the hanging device 15. In this way, the lower end portions of the rotary shafts 1 of the multi-axis rotary shaft group 3 lifted by the crane 14 via the suspension device 15 are respectively left in the excavation holes 10. It is made to oppose the upper end part of the rotating shaft 1 (state of FIG. 6).
[0014]
Next, each pair of the rotating shafts 1 that are vertically opposed to each other is arranged such that the lower end portion of the upper rotating shaft 1 and the upper end portion of the lower rotating shaft 1 form a projection 7 having a horizontal cross section and a square having a horizontal cross section. Each of the upper rotating shafts 1 is independently rotated so as to be aligned with the hole 8 in the circumferential direction, thereby aligning. In this case, each rotary shaft 1 is directly suspended by the connecting member 13 connected to the upper end, and the connecting member 13 is suspended from the base material 11 via the suspension member 12 so as to rotate. The shaft 1 rotates smoothly at the rotating portion 12a portion of the suspension member 12, and each rotating shaft 1 is easily rotated independently to surround the projection 7 having a horizontal cross section into a square hole 8 having a horizontal cross section. Can be matched in direction. In this case, as shown in FIG. 7 and FIG. 8A, the rotation of the rotary shaft 1 can be more easily performed when the operator engages and rotates the rotation operation jig 30 on the projection 7 having a horizontal cross section. It is something that can be done.
[0015]
As described above, the lower end portion of the upper rotary shaft 1 and the upper end portion of the lower rotary shaft 1 are positioned so that the projection 7 having a horizontal cross section and the square hole 8 having a horizontal cross section have the same shape in the circumferential direction. After the alignment, the upper multiaxial rotating shaft group 3 is slightly lowered, and a pair of rotating shafts 1 facing each other in the vertical direction is fitted with a projection 7 having a horizontal cross section and a square hole 8 having a horizontal cross section. Then, the pin 22 is inserted into the pin insertion groove 21 from the pin insertion hole 20 and connected so as not to be removed vertically (see FIG. 9).
[0016]
After connecting the upper and lower multiaxial rotating shaft groups 3 as described above, the pins 22 are pulled out to connect the connecting members 13 of the suspension device 15 to the upper ends of the rotating shafts 1 of the upper multiaxial rotating shaft group 3. Remove from. Next, as shown in FIG. 10, the heavy machinery 4 is moved to the original position, and each output shaft 6 of the rotating device 5 provided on the heavy machinery 4 so as to be movable up and down is connected to each rotary shaft of the upper multiaxial rotary shaft group 3. The upper ends of 1 are connected by fitting the protrusions 7 each having a square horizontal section and the square holes 8 having a horizontal section square (see FIG. 11). Also in this case, the pin 22 is inserted so as not to be pulled up and down. In this case, the horizontal position of each of the output shafts 6 of the rotating device 5 in the horizontal direction of the projections 7 or the square holes 8 having a horizontal cross section is the horizontal cross section of the upper end portion of each rotating shaft 1 of the lower multi-axis rotating shaft group 3. Since it coincides with the circumferential position of the square-shaped square hole 8 or protrusion 7, the upper multi-axis rotating shaft group 3 connected to the respective rotating shafts 1 of the lower multi-axis rotating shaft group 3 The circumferential positions of the square holes 8 or projections 7 having a horizontal cross section of the upper end of each rotary shaft 1 are the circumferential directions of the projections 7 or square holes 8 having a horizontal cross section of each output shaft 6 of the rotating device 5. In this case, it is possible to easily connect without rotating operation for alignment in the circumferential direction. In this state, the rotating device 5 is driven to rotate the rotating shafts 1 connected to each other to excavate the ground 9 to perform the second stage excavation downward following the first stage excavation. A deep excavation hole 10 is formed as shown in FIG.
[0017]
In the above embodiment, an example in which the multi-axis rotating shaft group 3 is connected in two stages has been described, but three or more stages may be connected. That is, after the state of FIG. 12, the rotating device 5 is disconnected and the heavy machine 4 is moved to the side, and then the upper end of each rotating shaft 1 of the second stage multi-axis rotating shaft group 3 in the same manner as described above. The lower end of each rotating shaft 1 of the third stage multi-axis rotating shaft group 3 is connected, and then connected again to the rotating device 5 of the heavy machine 4 to perform deeper excavation. The same applies when the group 3 is connected in four or more stages.
[0018]
In the embodiment shown in the accompanying drawings, each output shaft 6 of the rotating device 5 has an auxiliary rotating shaft 6 'connected to the lower end portion. In this embodiment, the output shaft 6 is actually different from the lower end portion. This indicates the lower end of the auxiliary rotating shaft 6 ′ connected to the end of the output shaft 6, but the auxiliary rotating shaft 6 ′ may not be provided at the lower end of each output shaft 6.
[0019]
【The invention's effect】
In the invention according to claim 1 of the present invention, as described above, each connection member of the suspension device in which the plurality of connection members are independently suspended from the base material via the suspension member. A multi-axis rotary shaft group is connected via a suspension device by connecting a plurality of rotary shafts to the upper end of each of the rotary shaft groups in which a plurality of rotary shafts are rotatably supported by a connecting member and lifting the base material by a crane. The lower end of each rotary shaft of the multi-axis rotary shaft group lifted by this crane is opposed to the upper end of each rotary shaft of the multi-axis rotary shaft group remaining in the excavation hole, and Each of the opposing rotary shafts is such that the upper end of the lower rotary shaft and the lower end of the upper rotary shaft have a horizontal cross section of the projection and the square hole of the horizontal cross section in the circumferential direction. Rotate each rotation axis on the After alignment, the upper multi-axis rotating shaft group is slightly lowered and the respective rotating shafts facing each other in the vertical direction are connected to each other by fitting a projection having a horizontal cross section with a square hole having a horizontal cross section. When connecting the rotating shafts facing each other in the upper and lower directions of the multi-axis rotating shaft group, the rotating shafts of the multi-axis rotating shaft group suspended by a crane with a crane are rotated independently by the connecting members. As a result, the rotating shafts can be easily rotated independently with light force without the weight of each rotating shaft being applied to the connecting member. Can be connected with a projection having a horizontal cross section and a square hole having a horizontal cross section aligned in the circumferential direction. In this way, the multi-axis rotating shaft group can be easily connected in the vertical direction in a short time. Multi-axis rotation up and down In which a deep borehole depths by connecting group can be formed in a simple and short.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing a suspension device used in the present invention and an upper end portion of each rotary shaft of a multi-axis rotary shaft group.
FIG. 2 is a partially cutaway front view of the same.
FIG. 3 is an explanatory diagram showing the order of the method of the present invention.
FIG. 4 is an explanatory diagram showing the order of the above method.
FIG. 5 is an explanatory diagram showing the order of the above method.
FIG. 6 is an explanatory diagram showing the order of the above method.
FIG. 7 is an explanatory diagram showing the order of the above method.
FIG. 8A is an explanatory diagram of a state where each rotary shaft of the upper multi-axis rotary shaft group is rotating, and FIG. 8B is an explanatory diagram of a state where each rotary shaft is rotated and aligned. (C) is a front view showing the positional relationship in the circumferential direction of the suspension member and the connecting member in a state where the rotating shaft is rotated and aligned.
FIG. 9 is an explanatory diagram showing the order of the above method.
FIG. 10 is an explanatory diagram showing the order of the above method.
FIG. 11 is an explanatory diagram showing the order of the above method.
FIG. 12 is an explanatory diagram showing the order of the above method.
FIG. 13 is an explanatory diagram of a state in which the upper multi-stage rotary shaft group is suspended by a crane in order to connect the upper multi-stage rotary shaft group to the lower multi-axis rotary shaft group in the related art.
FIG. 14 is an enlarged front view of a conventional main part.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotating shaft 2 Connecting member 3 Multi-axial rotating shaft group 4 Heavy machine 5 Rotating device 6 Output shaft 7 Protrusion 8 Square hole 9 Ground 10 Excavation hole 11 Base material 12 Suspension member 13 Connection member 14 Crane 15 Suspension device

Claims (1)

複数本の回転軸を連結部材により回転自在に連結支持した多軸回転軸群の各回転軸の上端部を重機に上下移動自在に設けた回転装置の各出力軸にそれぞれ水平断面角形をした突部と水平断面角形をした角孔との嵌め込みにより接続し、この状態で多軸回転軸群の各回転軸を回転させて地盤を掘削し、該多軸回転軸群による第1段階の掘削を行った後、該多軸回転軸群を掘削孔内に残した状態で多軸回転軸群を回転装置から切離し、基材から吊り部材を介して複数の接続部材を各々独立して回転自在に吊り下げ形成した吊り装置の各接続部材をそれぞれ複数本の回転軸を連結部材により回転自在に連結支持した多軸回転軸群の各回転軸の上端部に接続すると共にクレーンにより基材を吊り上げることで吊り装置を介して多軸回転軸群を吊り上げ、このクレーンで吊り上げた多軸回転軸群の各回転軸の下端部を、それぞれ前記の掘削孔内に残している多軸回転軸群の各回転軸の上端部に対向させ、上下に対向する各組の回転軸同士を下の回転軸の上端部と上の回転軸の下端部とが水平断面角形をした突部と、水平断面角形をした角孔とが周方向において一致するように上の各回転軸を独立して回転させて位置合わせし、位置合わせ後に上の多軸回転軸群を少し下降して上下に対向する各組の回転軸同士を水平断面角形をした突部と水平断面角形をした角孔との嵌め込みにより接続し、その後、吊り装置の各接続部材を上段の多軸回転軸群の各回転軸の上端部から取り外し、次に、重機に上下移動自在に設けた回転装置の各出力軸に上段の多軸回転軸群の各回転軸の上端部をそれぞれ水平断面角形をした突部と水平断面角形をした角孔との嵌め込みにより接続し、その後に、上下に接続した多軸回転軸群の各回転軸を回転させて地盤を掘削して第1段階の掘削に続いて下方に第2段階の掘削を行うことを特徴とする多軸回転軸群を接続して掘削する方法。 Projections with a horizontal cross section on each output shaft of a rotary device in which the upper end of each rotary shaft of a multi-axis rotary shaft group in which a plurality of rotary shafts are rotatably connected and supported by a connecting member is provided on a heavy machine. Are connected by fitting a square hole with a square section with a horizontal section, and in this state, the rotary shafts of the multi-axis rotary shaft group are rotated to excavate the ground, and the first stage of excavation by the multi-axis rotary shaft group is performed. After the operation, the multi-axis rotating shaft group is separated from the rotating device with the multi-axis rotating shaft group left in the excavation hole, and the plurality of connecting members can be rotated independently from each other through the suspension member. Each connecting member of the suspension device formed in a suspended manner is connected to the upper end of each rotating shaft of a multi-axis rotating shaft group in which a plurality of rotating shafts are rotatably connected and supported by a connecting member, and the substrate is lifted by a crane. The multi-axis rotating shaft group is lifted through the lifting device. The lower end portion of each rotating shaft of the multi-axis rotating shaft group lifted by this crane is opposed to the upper end portion of each rotating shaft of the multi-axis rotating shaft group remaining in the excavation hole, and the upper and lower portions are opposed to each other. The upper and lower ends of the pair of rotating shafts and the lower end of the upper rotating shaft are aligned so that the protrusions having a horizontal cross section and the square holes having a horizontal cross section are aligned in the circumferential direction. Each rotating shaft is rotated and aligned independently, and after the alignment, the upper multi-axis rotating shaft group is slightly lowered, and each pair of rotating shafts facing each other in the vertical direction has a projecting portion and a horizontal section that have a horizontal cross section. Connected by fitting with a square-shaped square hole, after which each connecting member of the suspension device is removed from the upper end of each rotating shaft of the upper multi-axis rotating shaft group, and then the rotation provided to the heavy equipment to be movable up and down The upper end of each rotating shaft of the upper multi-axis rotating shaft group is horizontally placed on each output shaft of the device. The first step is to excavate the ground by rotating the rotary shafts of the multi-axis rotary shaft group connected up and down by fitting the projections having a square face with the square holes having a horizontal section square shape. A method of excavating by connecting a multi-axis rotating shaft group , wherein the second stage excavation is performed downward following excavation.
JP27698797A 1997-10-09 1997-10-09 Method of excavating by connecting multi-axis rotating shaft group Expired - Fee Related JP3828644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27698797A JP3828644B2 (en) 1997-10-09 1997-10-09 Method of excavating by connecting multi-axis rotating shaft group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27698797A JP3828644B2 (en) 1997-10-09 1997-10-09 Method of excavating by connecting multi-axis rotating shaft group

Publications (2)

Publication Number Publication Date
JPH11117348A JPH11117348A (en) 1999-04-27
JP3828644B2 true JP3828644B2 (en) 2006-10-04

Family

ID=17577198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27698797A Expired - Fee Related JP3828644B2 (en) 1997-10-09 1997-10-09 Method of excavating by connecting multi-axis rotating shaft group

Country Status (1)

Country Link
JP (1) JP3828644B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017160655A (en) * 2016-03-09 2017-09-14 株式会社丸徳基業 Lifting device for connecting multi-drill shafts

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006107139A1 (en) * 2005-02-28 2006-10-12 Sooho Industrial Development Co., Ltd A rock drilling apparatus
JP7202955B2 (en) * 2019-04-02 2023-01-12 株式会社オーケーソイル Ground improvement system, ground improvement method, rod stand, suspension device, connecting rod installation method and connecting rod removal method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017160655A (en) * 2016-03-09 2017-09-14 株式会社丸徳基業 Lifting device for connecting multi-drill shafts

Also Published As

Publication number Publication date
JPH11117348A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
JP3828644B2 (en) Method of excavating by connecting multi-axis rotating shaft group
JP2008044776A (en) Assembling method of jib for crane and jib for crane
JP3218183B2 (en) Pile driver top sheave device
JPH10317422A (en) Method for connecting vertical shaft in multi-shaft excavating machine
JP3692120B2 (en) Pile removal device
JP3642047B2 (en) Auger device and pile driving method
JPH0455028Y2 (en)
JPH02256716A (en) Rotational reaction taking device of casing driver
JP3237742B2 (en) Lifting frame of casing driver
JP3086187B2 (en) Press fitting device for shaft shaft casing
JP3570933B2 (en) Casing driver working scaffold
JPH1150455A (en) Moving method of tubing mechanism and device thereof
JP3284410B2 (en) Hanger for pile driver leader
JPS6219705Y2 (en)
JP3474250B2 (en) Excavator
JP2955158B2 (en) Segment assembly equipment
JP6997940B2 (en) Jig for rotating the structure Shinbashira
JP2002317440A (en) Spacer mounting device for casing rotation drilling device
JP2006125032A (en) Pile construction machine
JP3889521B2 (en) Pile driver and its work floor mounting method
JPH10139382A (en) Holding device for hoisting pulley
JP2004052232A (en) Timbering building-up device
JPH0721678Y2 (en) Variable diameter stabilizer
JP3487126B2 (en) Swivel joint for ground improvement equipment
JP3385418B2 (en) Rod connection method and rod for pile driver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees