JP3828067B2 - High corrosion resistance austenitic stainless steel with good cold workability - Google Patents

High corrosion resistance austenitic stainless steel with good cold workability Download PDF

Info

Publication number
JP3828067B2
JP3828067B2 JP2002325151A JP2002325151A JP3828067B2 JP 3828067 B2 JP3828067 B2 JP 3828067B2 JP 2002325151 A JP2002325151 A JP 2002325151A JP 2002325151 A JP2002325151 A JP 2002325151A JP 3828067 B2 JP3828067 B2 JP 3828067B2
Authority
JP
Japan
Prior art keywords
corrosion resistance
stainless steel
austenitic stainless
less
cold workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002325151A
Other languages
Japanese (ja)
Other versions
JP2004156126A (en
Inventor
雄介 及川
好宣 多田
健 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2002325151A priority Critical patent/JP3828067B2/en
Publication of JP2004156126A publication Critical patent/JP2004156126A/en
Application granted granted Critical
Publication of JP3828067B2 publication Critical patent/JP3828067B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は臨海環境等で用いられ、従来材より軟質で熱間および冷間加工性に優れた高耐食オーステナイト系ステンレス鋼に関するものである。
【0002】
【従来の技術】
ステンレス鋼はその高耐食の性質を利用し比較的過酷な環境でも発銹を生じ難い金属建材として用いられており、例えば屋根,ビルの外壁,フェンス等に板や線材等様々な形状のものが使用されている。これらにはステンレスの汎用鋼であるSUS304やSUS316が使われることが多い。
【0003】
しかしながら、当該材は臨海環境では耐食性が十分とは言えず、ウォーターフロント開発等の活発化等に合わせ臨海地区でも十分な耐食性を有するステンレス鋼が望まれている。
【0004】
それらの用途に対して、例えば特許文献1に開示されている高Cr高Mo高Nオーステナイト系ステンレス鋼や、例えば特許文献2に開示されている高Cr高Moフェライト系ステンレス鋼が発明され、屋根や外壁等の平板材としてはかなり広く使用されている。
【0005】
【特許文献1】
特開昭49−135812号公報
【特許文献2】
特開平6−279953号公報
【0006】
【発明が解決しようとする課題】
建材には、屋根等の平板だけでなく、フェンス等に用いられる線材、モニュメント等の複雑形状材、更に、屋根を締結するファスナー材等がある。これらは、曲げや冷間鍛造といった冷間加工によって所定の形状に加工される。
【0007】
しかしながら、従来材は冷間加工性が低く、上記形状に加工するのは困難であり、温間加工といった特別な加工を行うか、あるいは耐食性を犠牲にしてSUS316等の汎用鋼を用いることさえあった。
【0008】
前記特許文献1等に開示されている高Cr高Mo高Nオーステナイト系ステンレス鋼については、化学工業用機器や海水を使用する熱交換器等の用途に開発されたものであり、耐孔食性や熱間加工性について考慮されているが、強度については高強度狙いであり、熱間加工性冷間加工性何れについても劣る。
【0009】
また、前記特許文献2に開示されている高Cr高Moフェライト系ステンレス鋼については、高純フェライト系であるため軟質かつ熱間加工性良好であるが、靱性が比較的低く、冷間鍛造等を行うのは至難である。
【0010】
本発明は、臨海環境等で使用される建材として十分な耐食性を有し、かつ軟質で冷間,熱間加工性共に良好なオーステナイト系ステンレス鋼を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
上記目的を達成する本発明の要旨は、以下の通りである。
【0012】
まず、基本成分として、
(1)まず、基本成分として、質量%にてC:≦0.03%
Si:0.1〜1.0%
Mn:0.1〜0.8%
Ni:21.0〜25.0%
Cr:18.0〜22.0%
Mo:5.0〜7.0%
Cu:0.3〜3.0%
N :0.05%未満を含有し、残部がFeおよび不可避的不純物からなり、(1)式で表されるδFe(cal)値が−7.5以下とする。
δFe(cal)=3(Cr+Mo+1.5Si)―2.8{Ni+0.5(Mn+Cu)+30(C+N)}―19.8・・・(1)
(2)更に質量%でC+N:0.05%以下とすることで、冷間加工性を更に向上できる。
(3)更に質量%でB:0.001〜0.005%添加することで、冷間加工性を更に向上できる。
(4)更に質量%でAl:0.005〜0.06%Mg:0.0005〜0.004%、REM:0.0005〜0.003%の1種または2種以上を添加することで、脱酸材や脱硫材として添加した場合の加工性や耐食性の劣化を防止できる。
(5)更に質量%でTi:0.05〜0.4%、Nb:0.05〜0.25%、Zr:0.05〜0.3%、Ta:0.05〜0.2%の1種または2種以上を添加することで、耐食性を向上できる。
(6)更に質量%でV:0.5%以下、W:0.5%以下、Sn:0.1%以下の1種または2種以上を添加することで、耐食性を更に向上できる。
【0013】
【発明の実施の形態】
本発明者らは、オーステナイト系ステンレス鋼の熱間加工性、冷間加工性、耐食性に及ぼす主要元素の影響について研究した結果、以下の知見を得た。
【0014】
まず、熱間加工性即ち高温における強度については、特にC、N、Cr、Moが高強度化に大きく寄与し、増加により低強度化する元素は無い。
【0015】
冷間加工性については、熱間と同様C,N,Cr,Moの増加により高強度化するが、熱間と比較してCr,Moに対するC,Nの寄与が大きい。また、Siの増加によっても高強度化する。逆にNi,Cuの増加は低強度側に寄与する。
【0016】
一方、耐食性についてはCr,Mo,Nの3元素が増加により耐食性向上に寄与する。
【0017】
これらの結果から言えることは、耐食性向上元素であるCr,Mo,Nは何れも高強度化に寄与するため、耐食性と軟質化の両方を満足させることは困難であるということである。そこで、本発明者らは下記の考えによりこの問題を解決するに到った。
【0018】
即ち、高強度化に対する寄与が特に大きいNについてはできる限り低減し、耐食性は高Cr,高Mo化にて担保すると言うことである。更に冷間加工時の軟質化を確保すべく、Ni,Cuの添加を行った。
【0019】
もう一つ考慮しなければならないのがσ相の問題である。σ相はFe,Cr,Moの金属間化合物であり、当該材のような高Cr高Mo鋼で成分的にオーステナイト安定度が低い場合に生成し、成品の冷間加工性と耐食性を著しく損ねる。これについては実験を重ねた結果、下記(1)式で規定されるδFe(cal)値が−5.0以下になるように成分調整し、適切な熱処理を行うことにより、σ相の影響を無害化できることを突き止めた。望ましいδFe(cal)値は−7.5以下である。

Figure 0003828067
【0020】
次に各々の合金元素の成分範囲を規定した理由について説明する。
【0021】
CはNと同様に侵入型固溶元素として鋼の強度を非常に増加させる元素である。更にクロム炭化物の析出等により耐食性も減ずるため、0.03%以下にする必要がある。望ましい範囲は0.02%以下である。
【0022】
Siは冷間加工時における強度を高める元素であり、軟質化のためには低減した方がよいが、脱酸剤として精錬上必要である上、高温における耐酸化性を高め熱処理時のスケールロスを抑制する効果があるためある程度の添加は必要である。このため、Siの範囲は0.1〜1.0%にした。望ましい範囲は0.15〜0.7%である。
【0023】
MnはSiと同様に脱酸剤として働くが、1.0%超の添加は耐食性を劣化させるためMnの範囲は0.1〜1.0%にした。望ましい範囲は0.3〜0.8%である。
【0024】
Niは前述の通り軟質化とσ相抑制のために21.0%以上の添加が必要であるが、25.0%を超えて添加してもコスト高に見合う効果が得られないため上限を25.0%とした。望ましい範囲は22.0%を超え24.0%未満である。
【0025】
Crは耐食性を高める主元素であり、Cr量が増えるほど耐食性は良くなる。しかしながら過度の添加は高強度化とσ相発生に寄与するため範囲を18.0〜22.0%にした。望ましい範囲は19.0〜21.0%である。
【0026】
Moは耐食性を向上させるが、Crと同様高強度化とσ相発生に寄与するため範囲を5.0〜7.0%にした。望ましい範囲は5.5〜6.5%である。
【0027】
Cuは軟質化に寄与し、かつ隙間腐食性を向上させるが、多量に添加すると熱間加工割れの原因となるため0.3〜3.0%とした。望ましい範囲は0.5〜2.0%である。
【0028】
Nは耐食性を高めるが、熱間冷間共に強度を著しく高めるため、本発明では極力低減することとした。但し、低窒素化は精錬時の能率を悪化させるため上限を0.05%とした。望ましい範囲は精錬時の能率、コストの面から下限も設け0.01〜0.03%である。
【0029】
なお、侵入型固溶強化元素であるCとNを合計で0.05%以下に抑制すると、本発明鋼の冷間加工性を更に向上させる事が出来る。
【0030】
また、Bを0.001%以上添加することにより固溶CとNをホウ化物として析出させ、更に冷間加工性を向上させることができる。但し、過剰の添加は過剰析出ホウ化物により却って熱間、冷間加工性を損ねるので上限を0.005%とする。
【0031】
Alは0.005%以上の添加により鋼の強力な脱酸材として働くが、過剰に添加すると介在物による冷間加工割れを生じるため上限を0.06%とした。
【0033】
Mgも0.0005%以上の添加により同様の効果があるが、過剰に添加すると介在物の量を増加して耐食性等を損なうことから上限を0.004%とした。
【0034】
REMも0.0005%以上の添加により同様の効果があるが、過剰に添加すると介在物の量を増加して耐食性等を損なうことから上限を0.003%とした。
【0035】
Ti,Nb,Zr,Taは何れも0.05%以上の添加により鋼中のCを炭化物として固定し、耐食性を向上させる。しかし過剰に添加すると強度を高め熱間、冷間加工性を損ねる。各元素で強度の増加代が異なるので、上限についてはTiが0.4%、Nbが0.25%、Zrが0.3%、Taが0.2%とした。
【0036】
V、Wは添加により何れも鋼の耐食性を向上させるが、強度を高め熱間、冷間加工性を損ね、σ相を析出させやすくなるので上限は0.5%とした。Snも鋼の耐食性を向上させるが、過剰に添加すると熱間加工割れを生じるので上限を0.1%とした。
【0037】
【実施例】
表1および表2に示す成分組成で残部がFeおよび不可避的不純物からなるNo.1から49までのステンレス鋼について、直径170mmφの連続鋳造鋳片を1200℃に加熱し、連続線材圧延ラインで5.5mmφまで熱間圧延を行った後、1100℃で焼鈍を行った。
【0038】
当該材について、以下の特性を評価した。
【0039】
熱間強度は、鋳片熱処理を行った後の鋳片表層から試験片を採取し、1000℃における熱間強度を測定した。表面疵は圧延後の線材成品を目視検査し、疵の有無を判定した。σ相量は線材を非水溶媒中で電解することにより析出物を抽出し、その質量%を求めた。引張強さは線材をJIS準拠法で試験して求めた。孔食電位は線材表面研磨材を50℃、20%NaCl水溶液中で、その他の条件はJIS準拠法で求めた。
【0040】
評価結果を表3に示す。
【0041】
No.1〜10は本発明の請求項1の実施例であるが、成分、δFe(cal)が本発明範囲内にあり、鋳片熱間強度、表面疵、引張強さ、耐食性何れも狙いを満足している。No.11は本発明の請求項2を満足する、C+Nを低減させたものである。この場合、引張強さが更に低下し冷間加工性がより向上する。No.12は本発明の請求項3を満足する、Bを添加しているものである。引張強さが更に低下し冷間加工性がより向上する。
【0042】
No.13〜16は本発明の請求項4を満足する、AlMg,REMの何れかを添加したものである。何れの特性も狙いを満足しており、更にMg,REM添加材は熱間加工割れ防止効果により表面疵が極小になっている。No.17〜20は本発明の請求項5を満足する、Ti,Nb,Zr,Taの何れかを添加したものである。何れの特性も狙いを満足しており、更に耐食性がより良好になっている。No.21〜23は本発明の請求項6を満足する、V,W,Snの何れかを添加したものである。何れの特性も狙いを満足しており、更に耐食性がより良好になっている。
【0043】
No.24はCが本発明範囲上限以上の場合で、冷間強度が高い上、耐食性も劣る。No.25はSiが本発明範囲上限以上の場合で、冷間強度が高く加工性に劣る。No.26はMnが本発明範囲上限以上の場合で、Mnの過度の添加のため目標とする耐食性が得られていない。
【0044】
No.27はNiが本発明範囲下限以下の場合で冷間強度が高く加工性に劣る。No.28はCrが本発明範囲下限以下の場合で耐食性が悪い。No.29はCrが本発明範囲上限以上の場合で熱間、冷間強度が高い。No.30はMoが本発明範囲下限以下の場合で耐食性が悪い。No.31はMoが本発明範囲上限以上の場合で熱間、冷間強度が高い。No.32はCuが本発明範囲下限以下の場合で冷間強度が高い。No.33はCuが本発明範囲上限以上の場合で、熱間加工性が悪く線材全長に熱間加工割れ起因の表面疵が発生し、製造性が悪い。No.34はNが本発明範囲上限以上の場合で、熱間、冷間強度何れも高い。No.35はδFe(cal)が本発明範囲外であるが、適正な熱処理を行ってもσ相が大量に残存し、耐食性が大幅に劣化する。
【0045】
No.36はBが本発明範囲上限以上の場合で、熱間加工性が悪く線材全長に熱間加工割れ起因の表面疵が発生し、製造性が悪い。No.37はAlが本発明範囲上限以上の場合で、冷間加工時に介在物起因の割れを生じる。No.39〜40Mg,REMが本発明範囲上限以上の場合で、介在物起点の孔食を生じ耐食性が悪い。No.41〜46はTi,Nb,Zr,Ta,V,Wが本発明範囲上限以上の場合で、熱間強度が高く加工が困難となる。No.47はSnが本発明範囲上限以上の場合で、熱間加工性が悪く線材全長に熱間加工割れ起因の表面疵が発生し、製造性が悪い。
【0046】
No.48、49は発明鋼の比較として既存高耐食ステンレス鋼であるSUS329J3L,SUS317J2の引張強さと耐食性を示したものである。発明鋼は両鋼より低強度高耐食であることが判る。
【0047】
【表1】
Figure 0003828067
【0048】
【表2】
Figure 0003828067
【0049】
【表3】
Figure 0003828067
【0050】
【発明の効果】
本発明法により、臨海環境等で使用される建材向けに十分な耐食性を有し、かつ軟質で熱間,冷間加工性共に良好なオーステナイト系ステンレス鋼を提供し、それにより臨海環境の締結材やフェンス材の製造、加工の容易さと耐久性を両立することが出来、産業上有効な効果をもたらす。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a highly corrosion-resistant austenitic stainless steel that is used in a coastal environment and is softer than conventional materials and excellent in hot and cold workability.
[0002]
[Prior art]
Stainless steel is used as a metal building material that uses its high corrosion resistance properties and is unlikely to generate fire even in relatively harsh environments. For example, it has various shapes such as roofs, building outer walls, and fences, such as plates and wires. in use. For these, SUS304 and SUS316, which are general-purpose stainless steels, are often used.
[0003]
However, the material cannot be said to have sufficient corrosion resistance in the coastal environment, and stainless steel having sufficient corrosion resistance in the coastal area is desired in accordance with the activation of waterfront development and the like.
[0004]
For these applications, for example, high Cr high Mo high N austenitic stainless steel disclosed in Patent Document 1 and high Cr high Mo ferritic stainless steel disclosed in Patent Document 2, for example, are invented, It is widely used as a flat plate material for outer walls.
[0005]
[Patent Document 1]
JP 49-135812 A [Patent Document 2]
JP-A-6-279953 [0006]
[Problems to be solved by the invention]
Building materials include not only flat plates such as roofs but also wire materials used for fences and the like, complex shaped materials such as monuments, and fastener materials for fastening the roof. These are processed into a predetermined shape by cold working such as bending or cold forging.
[0007]
However, the conventional material has low cold workability and is difficult to process into the above shape, and special processing such as warm processing is performed, or even general-purpose steel such as SUS316 is used at the expense of corrosion resistance. It was.
[0008]
About the high Cr high Mo high N austenitic stainless steel currently disclosed by the said patent document 1 etc., it was developed for uses, such as a heat exchanger using a chemical industry apparatus or seawater, pitting corrosion resistance, Although hot workability is considered, the strength is aimed at high strength, and the hot workability and cold workability are both poor.
[0009]
The high Cr high Mo ferritic stainless steel disclosed in Patent Document 2 is soft and has good hot workability because it is a high purity ferritic steel, but has a relatively low toughness, such as cold forging. It is very difficult to do.
[0010]
An object of the present invention is to provide an austenitic stainless steel that has sufficient corrosion resistance as a building material used in a coastal environment and the like, is soft, and has good cold and hot workability.
[0011]
[Means for Solving the Problems]
The gist of the present invention that achieves the above object is as follows.
[0012]
First, as a basic component
(1) First, C: ≦ 0.03% in terms of mass% as a basic component
Si: 0.1 to 1.0%
Mn: 0.1 to 0.8%
Ni: 21.0-25.0%
Cr: 18.0 to 22.0%
Mo: 5.0-7.0%
Cu: 0.3 to 3.0%
N: It contains less than 0.05%, the remainder consists of Fe and inevitable impurities, and the δFe (cal) value represented by the formula (1) is −7.5 or less .
δFe (cal) = 3 (Cr + Mo + 1.5Si) −2.8 {Ni + 0.5 (Mn + Cu) +30 (C + N)} − 19.8 (1)
(2) The cold workability can be further improved by setting C + N: 0.05% or less in terms of mass%.
(3) The cold workability can be further improved by adding B: 0.001 to 0.005% by mass%.
(4) Add one or more of Al: 0.005-0.06% , Mg: 0.0005-0.004%, REM: 0.0005-0.003% by mass%. Therefore, deterioration of workability and corrosion resistance when added as a deoxidizer or desulfurizer can be prevented.
(5) Further, in terms of mass%, Ti: 0.05 to 0.4%, Nb: 0.05 to 0.25%, Zr: 0.05 to 0.3%, Ta: 0.05 to 0.2% Corrosion resistance can be improved by adding 1 type or 2 types or more.
(6) Corrosion resistance can be further improved by adding one or more of V: 0.5% or less, W: 0.5% or less, and Sn: 0.1% or less in terms of mass%.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
As a result of studying the influence of main elements on hot workability, cold workability, and corrosion resistance of austenitic stainless steel, the present inventors have obtained the following knowledge.
[0014]
First, regarding hot workability, that is, strength at high temperatures, C, N, Cr, and Mo particularly contribute greatly to increasing strength, and there is no element that decreases strength due to increase.
[0015]
The cold workability is increased by increasing C, N, Cr, and Mo as in hot, but the contribution of C and N to Cr and Mo is larger than that in hot. Further, the strength is increased by increasing Si. Conversely, an increase in Ni and Cu contributes to the low strength side.
[0016]
On the other hand, with respect to corrosion resistance, three elements of Cr, Mo, and N contribute to improvement of corrosion resistance.
[0017]
What can be said from these results is that it is difficult to satisfy both corrosion resistance and softening because Cr, Mo, and N, which are elements for improving corrosion resistance, all contribute to high strength. Accordingly, the present inventors have solved this problem based on the following idea.
[0018]
In other words, N, which has a particularly large contribution to increasing the strength, is reduced as much as possible, and the corrosion resistance is secured by increasing the Cr and Mo. Furthermore, Ni and Cu were added to ensure softening during cold working.
[0019]
Another issue to consider is the σ phase problem. The sigma phase is an intermetallic compound of Fe, Cr, Mo, and is produced when the high austenite stability is low in the high Cr high Mo steel such as the material, and significantly deteriorates the cold workability and corrosion resistance of the product. . As a result of repeated experiments, the effect of the σ phase is reduced by adjusting the components so that the δFe (cal) value defined by the following formula (1) is −5.0 or less and performing an appropriate heat treatment. I found out that it can be detoxified. A desirable δFe (cal) value is −7.5 or less.
Figure 0003828067
[0020]
Next, the reason why the component ranges of each alloy element are specified will be described.
[0021]
C, like N, is an element that greatly increases the strength of steel as an interstitial solid solution element. Furthermore, since corrosion resistance also decreases due to precipitation of chromium carbide, it is necessary to make it 0.03% or less. A desirable range is 0.02% or less.
[0022]
Si is an element that increases the strength during cold working and should be reduced for softening. However, it is necessary for refining as a deoxidizer, and it increases the oxidation resistance at high temperatures and scale loss during heat treatment. It is necessary to add a certain amount because of the effect of suppressing the above. For this reason, the range of Si was made into 0.1 to 1.0%. A desirable range is 0.15 to 0.7%.
[0023]
Mn works as a deoxidizer like Si, but the addition of more than 1.0% deteriorates the corrosion resistance, so the range of Mn was made 0.1 to 1.0%. A desirable range is 0.3 to 0.8%.
[0024]
As described above, Ni needs to be added in an amount of 21.0% or more for softening and suppressing the σ phase, but even if added over 25.0%, an effect commensurate with high cost cannot be obtained, so the upper limit is set The content was 25.0%. A desirable range is more than 22.0% and less than 24.0%.
[0025]
Cr is a main element that enhances corrosion resistance, and the corrosion resistance improves as the Cr content increases. However, excessive addition contributes to high strength and generation of σ phase, so the range was made 18.0 to 22.0%. A desirable range is 19.0 to 21.0%.
[0026]
Mo improves the corrosion resistance, but in the same way as Cr, it contributes to increasing the strength and generating the σ phase, so the range was made 5.0 to 7.0%. A desirable range is 5.5 to 6.5%.
[0027]
Cu contributes to softening and improves crevice corrosion, but if added in a large amount, it causes hot working cracks, so it was made 0.3 to 3.0%. A desirable range is 0.5 to 2.0%.
[0028]
N increases the corrosion resistance, but significantly increases the strength in both hot and cold conditions. However, lowering the nitrogen content deteriorates the efficiency during refining, so the upper limit was made 0.05%. A desirable range is 0.01 to 0.03% with a lower limit provided in terms of efficiency and cost during refining.
[0029]
In addition, when C and N which are interstitial solid solution strengthening elements are suppressed to 0.05% or less in total, the cold workability of the steel of the present invention can be further improved.
[0030]
Further, by adding B in an amount of 0.001% or more, solid solution C and N are precipitated as borides, and cold workability can be further improved. However, excessive addition causes excessive hot precipitated boride to deteriorate hot and cold workability, so the upper limit is made 0.005%.
[0031]
Al acts as a strong deoxidizing material for steel when added in an amount of 0.005% or more, but if added in excess, cold work cracking due to inclusions occurs, so the upper limit was made 0.06%.
[0033]
Mg has the same effect when added in an amount of 0.0005% or more, but if added in excess, the amount of inclusions is increased and the corrosion resistance is impaired, so the upper limit was made 0.004%.
[0034]
REM has the same effect when added in an amount of 0.0005% or more, but if added excessively, the amount of inclusions is increased and the corrosion resistance is impaired, so the upper limit was made 0.003%.
[0035]
Ti, Nb, Zr, and Ta all add 0.05% or more to fix C in the steel as carbides and improve corrosion resistance. However, excessive addition increases strength and impairs hot and cold workability. Since the amount of increase in strength is different for each element, the upper limits were set to 0.4% for Ti, 0.25% for Nb, 0.3% for Zr, and 0.2% for Ta.
[0036]
V and W both improve the corrosion resistance of the steel when added, but the strength is increased, hot and cold workability are impaired, and the σ phase is easily precipitated, so the upper limit was made 0.5%. Sn also improves the corrosion resistance of the steel, but if added excessively, hot working cracks occur, so the upper limit was made 0.1%.
[0037]
【Example】
In the composition shown in Table 1 and Table 2, the balance is No. which consists of Fe and inevitable impurities. For stainless steels 1 to 49, a continuous cast slab having a diameter of 170 mmφ was heated to 1200 ° C., hot-rolled to 5.5 mmφ in a continuous wire rolling line, and then annealed at 1100 ° C.
[0038]
The following properties were evaluated for the material.
[0039]
For the hot strength, a test piece was taken from the slab surface layer after the slab heat treatment, and the hot strength at 1000 ° C. was measured. The surface defects were visually inspected after rolling to determine the presence or absence of defects. The amount of σ phase was determined by extracting precipitates by electrolyzing the wire in a non-aqueous solvent and calculating the mass%. The tensile strength was obtained by testing the wire according to a JIS compliant method. The pitting corrosion potential was determined by a wire surface polishing material at 50 ° C. in a 20% NaCl aqueous solution, and other conditions were determined according to JIS standards.
[0040]
The evaluation results are shown in Table 3.
[0041]
No. 1 to 10 are embodiments of claim 1 of the present invention, but the component, δFe (cal) is within the scope of the present invention, and the slab hot strength, surface flaw, tensile strength, and corrosion resistance satisfy all objectives. is doing. No. No. 11 satisfies the second aspect of the present invention, and C + N is reduced. In this case, the tensile strength is further reduced and the cold workability is further improved. No. No. 12 satisfies the third aspect of the present invention, and B is added. The tensile strength is further reduced and the cold workability is further improved.
[0042]
No. Nos. 13 to 16 are obtained by adding any one of Al , Mg, and REM , which satisfies claim 4 of the present invention. Any characteristics also satisfy the aims, further Mg, REM additives are surface defects by hot working cracking prevention effect becomes minimized. No. Nos. 17 to 20 are obtained by adding any one of Ti, Nb, Zr, and Ta satisfying claim 5 of the present invention. All the characteristics satisfy the aim, and the corrosion resistance is further improved. No. Nos. 21 to 23 are obtained by adding any one of V, W and Sn satisfying the sixth aspect of the present invention. All the characteristics satisfy the aim, and the corrosion resistance is further improved.
[0043]
No. No. 24 is a case where C is not less than the upper limit of the range of the present invention, and the cold strength is high and the corrosion resistance is also poor. No. 25 is the case where Si is not less than the upper limit of the range of the present invention, and the cold strength is high and the workability is poor. No. No. 26 is a case where Mn is not less than the upper limit of the range of the present invention, and the target corrosion resistance is not obtained due to excessive addition of Mn.
[0044]
No. 27 is a case where Ni is below the lower limit of the range of the present invention, and the cold strength is high and the workability is inferior. No. 28 is a case where Cr is less than the lower limit of the range of the present invention, and the corrosion resistance is poor. No. 29 is a case where Cr is not less than the upper limit of the range of the present invention, and the hot and cold strength is high. No. 30 is a case where Mo is below the lower limit of the range of the present invention, and the corrosion resistance is poor. No. 31 is a case where Mo is not less than the upper limit of the range of the present invention, and the hot and cold strength is high. No. 32 is a case where Cu is below the lower limit of the range of the present invention, and the cold strength is high. No. No. 33 is a case where Cu is not less than the upper limit of the range of the present invention, hot workability is poor, surface flaws due to hot work cracking occur in the entire length of the wire, and manufacturability is poor. No. 34 is a case where N is equal to or higher than the upper limit of the range of the present invention, and both hot and cold strengths are high. No. No. 35 has a δFe (cal) outside the range of the present invention, but a large amount of the σ phase remains even after appropriate heat treatment, and the corrosion resistance is greatly deteriorated.
[0045]
No. No. 36 is a case where B is not less than the upper limit of the range of the present invention, hot workability is poor, surface flaws due to hot working cracks occur in the entire length of the wire, and manufacturability is poor. No. 37 is a case where Al is not less than the upper limit of the range of the present invention, and cracks due to inclusions occur during cold working. No. Nos. 39 to 40 are cases where Mg and REM are more than the upper limit of the range of the present invention, resulting in pitting corrosion of inclusion starting points and poor corrosion resistance. No. Nos. 41 to 46 are cases where Ti, Nb, Zr, Ta, V, and W are not less than the upper limit of the range of the present invention, and the hot strength is high, making it difficult to process. No. 47 is a case where Sn is not less than the upper limit of the range of the present invention, hot workability is poor, surface flaws due to hot work cracking occur in the entire length of the wire, and manufacturability is poor.
[0046]
No. 48 and 49 show the tensile strength and corrosion resistance of SUS329J3L and SUS317J2 which are existing high corrosion resistance stainless steels as a comparison with the invention steel. It can be seen that the inventive steel has lower strength and higher corrosion resistance than both steels.
[0047]
[Table 1]
Figure 0003828067
[0048]
[Table 2]
Figure 0003828067
[0049]
[Table 3]
Figure 0003828067
[0050]
【The invention's effect】
The method of the present invention provides austenitic stainless steel that has sufficient corrosion resistance for building materials used in coastal environments, etc., and is soft and has good hot and cold workability. It is possible to achieve both the ease of manufacturing and processing of fence materials and the durability, and industrially effective effects.

Claims (6)

質量%にてC:≦0.03%
Si:0.1〜1.0%
Mn:0.1〜0.8%
Ni:21.0〜25.0%
Cr:18.0〜22.0%
Mo:5.0〜7.0%
Cu:0.3〜3.0%
N :0.05%未満を含有し、残部がFeおよび不可避的不純物からなり、(1)式で表されるδFe(cal)値が−7.5以下であることを特徴とする冷間加工性が良好な高耐食オーステナイト系ステンレス鋼。
δFe(cal)=3(Cr+Mo+1.5Si)
―2.8{Ni+0.5(Mn+Cu)+30(C+N)}
―19.8・・・・・・・・・・・・・・・・・・(1)
In mass% C: ≦ 0.03%
Si: 0.1 to 1.0%
Mn: 0.1 to 0.8%
Ni: 21.0-25.0%
Cr: 18.0 to 22.0%
Mo: 5.0-7.0%
Cu: 0.3 to 3.0%
N: Less than 0.05%, the balance is Fe and inevitable impurities, and δFe (cal) value represented by the formula (1) is −7.5 or less , cold work High corrosion resistance austenitic stainless steel with good properties.
δFe (cal) = 3 (Cr + Mo + 1.5Si)
-2.8 {Ni + 0.5 (Mn + Cu) +30 (C + N)}
―19.8 (1)
請求項1に記載のオーステナイト系ステンレス鋼であり、更に質量%にて
C+Nが0.05%以下であることを特徴とする冷間加工性が良好な高耐食オーステナイト系ステンレス鋼。
A high-corrosion-resistant austenitic stainless steel with good cold workability, which is the austenitic stainless steel according to claim 1 and further has a C + N ratio of 0.05% or less by mass%.
請求項1または2に記載のオーステナイト系ステンレス鋼であり、更に質量%にてB:0.001〜0.005%を含有することを特徴とする冷間加工性が良好な高耐食オーステナイト系ステンレス鋼。  The austenitic stainless steel according to claim 1 or 2, further comprising B: 0.001 to 0.005% by mass%, and having high cold workability and high corrosion resistance austenitic stainless steel steel. 請求項1ないし3のいずれかに記載のオーステナイト系ステンレス鋼であり、更に質量%にてAl:0.005〜0.06%Mg:0.0005〜0.004%、REM:0.0005〜0.003%の1種または2種以上を含有することを特徴とする冷間加工性が良好な高耐食オーステナイト系ステンレス鋼。The austenitic stainless steel according to any one of claims 1 to 3, wherein Al: 0.005 to 0.06% , Mg: 0.0005 to 0.004%, REM: 0.0005 in mass%. High corrosion-resistant austenitic stainless steel with good cold workability, characterized by containing one or more of ˜0.003%. 請求項1ないし4のいずれかに記載のオーステナイト系ステンレス鋼であり、更に質量%にてTi:0.05〜0.4%、Nb:0.05〜0.25%、Zr:0.05〜0.3%、Ta:0.05〜0.2%の1種または2種以上を含有することを特徴とする冷間加工性が良好な高耐食オーステナイト系ステンレス鋼。  The austenitic stainless steel according to any one of claims 1 to 4, further in terms of mass%, Ti: 0.05 to 0.4%, Nb: 0.05 to 0.25%, Zr: 0.05 A high corrosion resistance austenitic stainless steel with good cold workability, characterized by containing one or more of ˜0.3% and Ta: 0.05 to 0.2%. 請求項1ないし5のいずれかに記載のオーステナイト系ステンレス鋼であり、更に質量%にてV:0.5%以下、W:0.5%以下、Sn:0.1%以下の1種または2種以上を含有することを特徴とする冷間加工性が良好な高耐食オーステナイト系ステンレス鋼。  The austenitic stainless steel according to any one of claims 1 to 5, and further, in mass%, V: 0.5% or less, W: 0.5% or less, Sn: 0.1% or less, or High corrosion-resistant austenitic stainless steel with good cold workability, characterized by containing two or more.
JP2002325151A 2002-11-08 2002-11-08 High corrosion resistance austenitic stainless steel with good cold workability Expired - Lifetime JP3828067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002325151A JP3828067B2 (en) 2002-11-08 2002-11-08 High corrosion resistance austenitic stainless steel with good cold workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002325151A JP3828067B2 (en) 2002-11-08 2002-11-08 High corrosion resistance austenitic stainless steel with good cold workability

Publications (2)

Publication Number Publication Date
JP2004156126A JP2004156126A (en) 2004-06-03
JP3828067B2 true JP3828067B2 (en) 2006-09-27

Family

ID=32804464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002325151A Expired - Lifetime JP3828067B2 (en) 2002-11-08 2002-11-08 High corrosion resistance austenitic stainless steel with good cold workability

Country Status (1)

Country Link
JP (1) JP3828067B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104160056A (en) * 2012-03-08 2014-11-19 杰富意钢铁株式会社 Seawater-resistant stainless clad steel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101641447B1 (en) * 2012-03-08 2016-07-20 제이에프이 스틸 가부시키가이샤 Stainless clad steel with excellent corrosion resistance
EP2915893A4 (en) 2012-10-30 2016-06-01 Kobe Steel Ltd Austenitic stainless steel
WO2019238401A1 (en) * 2018-06-11 2019-12-19 Nv Bekaert Sa Heat resistant separation fabric
KR20210028382A (en) * 2019-09-04 2021-03-12 주식회사 포스코 High corrosion resistant austenitic stainless steel with excellent impact toughness and hot workability

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163247A (en) * 1985-01-16 1986-07-23 Nippon Steel Corp High alloy stainless steel excelling in hot workability as well as corrosion resistance
JPS63123556A (en) * 1986-11-13 1988-05-27 Nippon Steel Corp Production of cr-ni stainless steel being hard to crack at casting and hot rolling process
JPH0625746A (en) * 1992-07-10 1994-02-01 Nippon Steel Corp Manufacture of high cr-containing steel pipe for oil well
JPH06128699A (en) * 1992-10-20 1994-05-10 Nippon Steel Corp High alloy austenitic stainless steel excellent in hot workability and local corrosion resistance and it production
JP3340225B2 (en) * 1993-01-12 2002-11-05 新日本製鐵株式会社 High strength martensitic stainless steel with excellent rust resistance and drilling tapping screw
JPH10237601A (en) * 1997-02-27 1998-09-08 Sumitomo Metal Ind Ltd Neutral chloride corrosion resistant austenitic stainless steel
JPH11181550A (en) * 1997-12-17 1999-07-06 Sanyo Special Steel Co Ltd Austenitic stainless steel excellent in cold workability
JP2001026825A (en) * 1999-07-13 2001-01-30 Nippon Steel Corp MANUFACTURE OF Cr STAINLESS STEEL FREE FROM SURFACE FLAW AT HOT ROLLING
JP3454216B2 (en) * 1999-12-24 2003-10-06 住友金属工業株式会社 Austenitic stainless steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104160056A (en) * 2012-03-08 2014-11-19 杰富意钢铁株式会社 Seawater-resistant stainless clad steel
CN104160056B (en) * 2012-03-08 2017-03-08 杰富意钢铁株式会社 Seawater corrosionresisting stainless steel clad steel

Also Published As

Publication number Publication date
JP2004156126A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP4823930B2 (en) Acid corrosion resistant steel
JP5534119B1 (en) Ferritic stainless steel
RU2443796C1 (en) Ferritic stainless steel with excellent heat resistance and viscosity
KR101463525B1 (en) High-corrosion resistantce cold rolled ferritic stainless steel sheet excellent in toughness and method for manufacturing the same
JP2005509751A (en) Super austenitic stainless steel
JP2007239094A (en) Acid corrosion resistant steel
JP4494245B2 (en) Low Ni austenitic stainless steel with excellent weather resistance
JP5324149B2 (en) Corrosion resistant austenitic stainless steel
JP2009091636A (en) Two-phase stainless steel wire rod for high-strength highly corrosion-resistant bolt having excellent cold forgeability, steel wire, bolt and method for producing the same
JP4190993B2 (en) Ferritic stainless steel sheet with improved crevice corrosion resistance
JP4116867B2 (en) Abrasion resistant steel with excellent weldability and wear resistance and corrosion resistance of welded parts, and method for producing the same
JP5677819B2 (en) Ferritic stainless steel plate with excellent oxidation resistance
JP3828067B2 (en) High corrosion resistance austenitic stainless steel with good cold workability
JP2009114471A (en) High strength stainless steel pipe
JP2001164335A (en) High workability and good weldability sulfuric acid dew point corrosion resistant steel sheet
JP4237072B2 (en) Ferritic stainless steel sheet with excellent corrosion resistance and workability
WO2015015735A1 (en) Ferritic stainless steel having excellent weld corrosion resistance
JP5556951B2 (en) Ferritic stainless steel
JP5171198B2 (en) Soft duplex stainless steel wire rod with excellent cold workability and magnetism
JP5214542B2 (en) High-strength and high-corrosion-resistant stainless steel, and steel materials and steel products using the same
JP4823534B2 (en) Low Ni austenitic stainless steel with excellent stress corrosion cracking resistance
JP7462439B2 (en) Austenitic stainless steel and calculation method for upper limit of N
JP2000290754A (en) High corrosion resistance clad steel and chimney for coal fired power plant
JP3294282B2 (en) Austenitic stainless steel with excellent sulfuric acid corrosion resistance and workability
JP2019035112A (en) Steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040811

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3828067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term